
A Large Scale Exploratory Analysis of Software Vulnerability Life Cycles

Muhammad Shahzad, M. Zubair Shafiq, Alex X. Liu

Department of Computer Science and Engineering

Michigan State University

East Lansing, MI, U.S.A.

{shahzadm, shafiqmu, alexliu}@cse.msu.edu

Abstract—Software systems inherently contain vulnerabili-
ties that have been exploited in the past resulting in significant
revenue losses. The study of vulnerability life cycles can help
in the development, deployment, and maintenance of software
systems. It can also help in designing future security policies
and conducting audits of past incidents. Furthermore, such
an analysis can help customers to assess the security risks
associated with software products of different vendors.

In this paper, we conduct an exploratory measurement study
of a large software vulnerability data set containing 46310

vulnerabilities disclosed since 1988 till 2011. We investigate
vulnerabilities along following seven dimensions: (1) phases in
the life cycle of vulnerabilities, (2) evolution of vulnerabilities
over the years, (3) functionality of vulnerabilities, (4) access
requirement for exploitation of vulnerabilities, (5) risk level of
vulnerabilities, (6) software vendors, and (7) software products.
Our exploratory analysis uncovers several statistically signif-
icant findings that have important implications for software
development and deployment.

Keywords-vulnerability; disclosure; patch; exploit; NVD;
OSVDB

I. INTRODUCTION

In computer software, a vulnerability is a loophole in the

software code that enables an attacker to circumvent the

deployed security measures [1]. Each software vulnerability

has a life cycle that consists of distinct phases characterized

by the events of its discovery, disclosure, exploitation, and

patching. Each phase has a certain level of risk associated

with it. The first phase of the life cycle of a vulnerability

starts when it is discovered by the vendor, a hacker, or

any third-party software analyst. The security risk associated

with a vulnerability is particularly high if it is first discovered

by hackers. The next phase starts with the public disclo-

sure of the vulnerability, which can again be done by the

vendor, a hacker, or any third-party software analyst. After

disclosure, the information about a vulnerability is freely

available to everyone; therefore, the level of security risk

increases further because the hacker community is active in

developing and releasing zero-day exploits [2]. The aim of

the vendor is to release a patch for the vulnerability as soon

as possible. It is noteworthy that many users of the affected

software do not instantly install the patch released to fix the

vulnerability. The life cycle of a vulnerability ends when all

users of a software install the patch to fix the vulnerability. A

vulnerability can be exploited by hackers at any time during

its entire life cycle.

The exploratory analysis of vulnerability life cycles can

uncover interesting patterns for vendors and software prod-

ucts that are helpful in following ways: First, a thorough

analysis is helpful in the deployment of best practices in the

software development processes. Second, such analysis is

useful to develop the security policies that can handle future

attacks and threats more effectively. Third, an exploratory

analysis provides insights about the previous security inci-

dents that are helpful in their audit. Finally, it also helps

customers to assess the security risks associated with the

software products of a particular vendor.

To the best of our knowledge, no previous work has

been done to analyze the evolution of life cycle of different

types of vulnerabilities for different software products and

vendors. The only work in this direction was reported by Frei

et al. [3], [4]. In [3], Frei et al. studied the performance of

the software industry as a whole but did not characterize the

behavior of individual vendors. In [4], the authors only com-

pared the vulnerability handling process of two vendors and

based their analysis on a small data set. Some researchers

have focused on the modeling of vulnerability discovery

process [2], [5], [6]. The goal of such work is to estimate the

number of vulnerabilities in new software products. Another

direction of work aims to study the changes in the patching

behavior of vendors in response to vulnerability disclosures

and the existence of competitors [7], [8]. These studies

analyze only small vulnerability data sets and do not cover

the behavior of individual vendors.

In this paper we make following three contributions. (1)

We have aggregated a large software vulnerability data set

from three vulnerability repositories: (a) National Vulnera-

bility Database (NVD) [9], (b) Open Source Vulnerability

Database (OSVDB) [10], and (c) the vulnerability data

collected by Frei et al. (FVDB) [3]. Our aggregated software

vulnerability data set contains 46310 vulnerabilities since

1988 to 2011. (2) We have comprehensively analyzed soft-

ware vulnerabilities along the seven dimensions mentioned

in the abstract. Our observations are supported by statistical

tests for significance. (3) To systematically analyze patterns

in our vulnerability data set, we have utilized association rule

mining to extract rules that represent exploitation behavior

of hackers and the patching behavior of vendors.



The rest of the paper is organized as: Section II explains

the terminology and notations used in the paper and provides

details about our vulnerability collection process and the

aggregated data set. In Section III, we analyze the evolution

of vulnerability disclosure rates, access methodology for

vulnerability exploitation, impact of the exploitation, risk

associated with vulnerabilities and evolution of different

types of vulnerabilities. In Sections IV and V, we study

the exploitation and patching behavior of hackers and ven-

dors respectively. In Section VI, we cross examine the

exploitation behavior of hackers and the patching behavior

of vendors. In Section VII, we present the implications of

our work followed by the related work and conclusion.

II. PRELIMINARIES

In this section, we first explain the terms and notations

used in rest of the paper and then present the data set used

for analysis.

A. Terminology and Notations

Vendor is an entity (an individual, a group of individuals,

or an organization) that develops a software product and

is responsible to keep it secure. An ideal vendor would

discover and patch all the vulnerabilities in its products

before they are exploited.

Hacker is an entity that releases exploits for the

vulnerabilities in the software products.

Independent organization is an entity that independently

discovers and discloses vulnerabilities as well as their

corresponding exploits and patches but is not involved in

the development of patches or exploits.

Disclosure Date (td) refers to the date when information

about a vulnerability is made publicly available after

establishing that the vulnerability poses a potential risk.

Patch Date (tp) is the date when a vendor provides a

solution (i.e. patch) for a vulnerability to neutralize the

threat posed by it. We consider only those patches that are

released by the corresponding vendor.

Exploit Date (te) is the earliest date when a vulnerability

is exploited. An exploit can be in the form of an automatic

script, a virus, a tool, or any such thing that can breach the

security of a software.

Exploit – Disclosure (ted) is the duration (in days) between

the date an exploit for a given vulnerability was provided

by hackers and the date the vulnerability was disclosed.

Patch – Disclosure (tpd) is the duration (in days) between

the date a patch for a vulnerability was released by the

vendor and the date the vulnerability was disclosed.

Patch – Exploit (tpe) represents the duration (in days)

between the dates of availability of a patch and an exploit

for a given vulnerability.

Risk Score is assigned to a vulnerability by Common

Vulnerability Scoring System (CVSS) [11] and establishes

the magnitude of risk associated with that vulnerability. We

divide vulnerabilities into three categories of low, medium,

and high risk severity based on their CVSS scores.

Access Vector (AV ∈ {Local, Adjacent Network, Network})

indicates if local or network access to the hardware is

required to exploit the vulnerability.

Access Complexity (AC ∈ {Low, Medium, High}) is a

measure of the complexity of the attack required to exploit

the vulnerability.

Integrity Impact (Ii ∈ {None, Partial, Complete})

measures the potential impact of a successfully exploited

vulnerability on the integrity of the system. Integrity refers

to the trustworthiness of information.

B. Data Set

In this section, we provide details of our data aggregation

process and the basic statistics of the data. We provide

details about the selection criteria of vendors and products

for our study. We have collected vulnerability information

from three sources: (1) NVD [9], (2) OSVDB [10], and (3)

FVDB [3].

1) Data Aggregation: NVD and FVDB identify each

vulnerability with Common Vulnerability and Exposures

Identifier (CVE-ID) [12]. OSVDB also provides CVE-IDs

of about 70% of vulnerabilities. We leverage the CVE-IDs

to aggregate the vulnerability data from the three sources.

We take CVSS scores, CVSS vectors, vendor and product

names, text description, and disclosure dates from NVD.

From OSVDB and FVDB, we take disclosure dates, exploit

dates, and patch dates.

The total number of vulnerabilities in our aggregate data

set are 46310 and the number of vulnerabilities for which

disclosure dates, patch dates, and exploit dates are available

are 46310, 9667, and 15456 respectively. We do not have

exploit dates and patch dates for all the vulnerabilities in

our aggregate data set. Due to the shear size of the data set,

it is not feasible to find them manually. To systematically

conduct our study, we divide our aggregate data set into

following three subsets:

ED-subset consists of 15456 vulnerabilities and contains

those vulnerabilities for which both exploit and disclosure

dates are known. PD-subset consists of 9667 vulnerabilities

and contains those vulnerabilities for which we have both

patch and disclosure dates. PE-subset consists of 1424
vulnerabilities and contains those vulnerabilities for which

both patch and exploit dates are known.

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

%age of vendors (total: 11263)

N
u

m
b

e
r 

o
f 

v
u

ln
e
ra

b
il

it
ie

s

Figure 1. # of vulnerabilities for each vendor (in descending order)



15000

20000

25000

30000

35000

40000

45000

50000

500

750

1000

1250

1500

v
u
ln
e
ra
b
il
it
y

 d
is
cl
o
su
re
s Monthly Disclosures

Cummulative Disclosures

e
d
is
cl
o
se
d
v
u
ln
e
ra
b
il
it
ie
s

0

5000

10000

15000

0

250

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

M
o
n
th
ly

 v

Year

C
u
m
m
u
la
ti
v
e

(a) Vulnerability disclosure trend

30

40

50

60

70

80

90

100

A
cc
e
ss

 V
e
ct
o
r

Local Access

Adjacent Network

Network

0

10

20

30

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
6

2
0
0
7

2
0
0
8

2
0
1
0

Year

(b) Access Vector Evolution

30

40

50

60

70

80

90

100

cc
e
ss

 C
o
m
p
le
x
it
y

 

Low Complexity

Medium Complexity

High Complexity

0

10

20

30

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
6

2
0
0
7

2
0
0
8

2
0
1
0

A
c

Year

(c) Access Complexity Evolution

30

40

50

60

70

80

90

100

n
te
g
ri
ty

 I
m
p
a
ct

None

Partial

Complete

0

10

20

30

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
6

2
0
0
7

2
0
0
8

2
0
1
0

In

Year

(d) Integrity Impact Evolution

4

6

8

10

12
V
S
S
S
co
re
s

0

2

C

(e) Boxplots of the CVSS scores of selected

vendors

25000

te
r 

rs

20000

ra
!c
lu
st

cl
u
st
e
r

15000

e
n

 i
n
tr

e
cu
ti
v
e

 

10000

b
e
tw

e

o
f 
co
n
se

5000

e
re
n
ce

 

ta
n
ce

 o

0

D
if
fe

d
is
t

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Clusters

(f) Difference between intra-cluster dissimilarity

of consecutive clusters

Figure 2. Vulnerability trends in the data set

2) Selection of Vendors and Products: The aggregate data

set contains vulnerabilities from more than 11 thousand

vendors and over 17 thousand software products. Figure

1 plots the number of vulnerabilities of each vendor in

the descending order. It can be seen that over 95% of

the vendors have less than 10 vulnerabilities. Therefore, to

make statistically sound observations, we focus our attention

only on the top 8 vendors each of which has at least 500
vulnerabilities. For our study, we select Microsoft, Apple,

Sun, Oracle, Linux1, Mozilla, Red Hat, and Google. We also

study popular software products of these vendors that in-

clude Internet Explorer, Safari, Firefox, Chrome, Windows,

MAC OS X, Solaris, and several Linux based operating

systems.

III. GENERAL VULNERABILITY ANALYSIS

In this section, we study the trends in vulnerability dis-

closure and CVSS-vector metrics (i.e., access vector, access

complexity, and integrity impact) over the past 2 decades.

We also categorize the vulnerabilities into groups and study

their evolution.

A. Vulnerability Disclosure Trend

The rate of vulnerability disclosures experienced an ex-

ponential growth since 1997 and lasted till 2006 as can be

seen in Figure 2(a). The vertical lines in the figure show the

number of vulnerabilities disclosed every month since Jan-

uary 1990 and the dashed line shows the cumulative number

1Linux is not a vendor. It only represents the vulnerabilities in Linux kernel.

of vulnerabilities. The number of vulnerability disclosures

has not been increasing since 2006. In fact, on average, the

number of vulnerabilities being disclosed every month have

been decreasing since 2008 despite the ever increasing use

of software products.

B. Evolution of CVSS-Vector Metrics

Figures 2(b) to 2(d) show the evolution of three metrics

of CVSS-vector. For each metric, we have calculated the

percentage of vulnerabilities corresponding to each of its

three values for every month since January 1990. We observe

from Figure 2(b) that the percentage of remotely exploitable

vulnerabilities has been increasing since 1998. The fact that

most computer systems are connected to Internet has made

it possible for hackers to exploit these systems remotely.

Figure 2(c) shows the change in access complexity of

vulnerabilities over the years. We observe that the percentage

of low complexity vulnerabilities has decreased over time

indicating that the hackers have to use more sophisticated

techniques to exploit new vulnerabilities. From Figure 2(d),

we also observe a reduction in the percentage of vulnerabil-

ities having complete integrity impact.

C. General Trend of CVSS Score for Short-listed Vendors

Recall from Section II that every vulnerability has an

associated risk quantified by CVSS score. Figure 2(e) shows

the box plots of CVSS scores for vulnerabilities in the

products of the selected vendors. We note that CVSS scores

of most vulnerabilities in our study lie in medium to high



range. The median CVSS scores for closed-source vendors

are greater than the median scores for open-source vendors.

D. Evolution of Types of Vulnerabilities

To determine the prevalent types of vulnerabilities and

to study their evolution, we utilize unsupervised k-means

clustering to group different types of vulnerabilities. We

leverage the text information provided by NVD and OSVDB

for each vulnerability to cluster them into groups of distinct

types. We extracted the keywords from the text description

of each vulnerability that characterize its functionality and

used them as features to cluster all the vulnerabilities into

groups. Some example keywords include denial, service,

buffer, injection etc. We had a total of 608 relevant keywords.

It is well known that k-means clustering algorithm is well

suited for large data sets with large number of attributes.

To set an appropriate value of k in k-means algorithm,

we used Euclidean distance as the intra-cluster dissimilarity

metric due to the binary nature of the attributes [13]. Figure

2(f) shows the difference in the intra-cluster dissimilarity

between consecutive clusters. It can be seen that the distance

decreases as the number of clusters increases for lower

values of k. The bar above any value x in Figure 2(f)

represents the difference between intra-cluster distances of x

and x+1 clusters. Note that increasing the number of clusters

to 8 increases the intra-cluster distance (the bar above 6 is

smaller than that above 7). Therefore, the optimum value of

k is 7. For statistical rigor, we repeated k-means clustering

algorithm 20 times with different seeds for each value of

k. The coefficient of variation in each case was less than

0.05 which shows the statistical significance of results.

We analyzed the centroids of clusters to determine their

dominant keywords. Table I tabulates dominant keywords

for each centroid. From the observed keywords, we label

the vulnerability clusters as PHP vulnerabilities (PHP), exe-

cutable code (EXE), denial of service (DoS), buffer overflow

(BO), SQL injection (SQL), cross-site scripting (XSS), and

miscellaneous vulnerabilities (Misc). Figure 3 shows the

number of vulnerabilities belonging to each cluster disclosed

since 1999.

Only BO, DoS, and EXE vulnerabilities were prevalent

till 2001. These types of vulnerabilities constitute a major

portion of software vulnerabilities even today which indi-

cates that the vendors have not been able to devise effective

strategies to limit these types of vulnerabilities. Since 2002,

we observe an increase in the XSS vulnerabilities, which

peak in 2006. PHP vulnerabilities were prevalent in 2006
Table I

RESULTS OF VULNERABILITY CLUSTERING

C# Keywords Label Size

1 php, parameter, execute, file, code, url PHP 8.32%

2 – MISC 36.6%

3 execute, code EXE 7.25%

4 service, denial DoS 14.2%

5 buffer, execute, code, overflow BO 10.2%

6 injection, sql, execute, commands SQL 11.2%

7 cross, scripting, site, script, html, inject XSS 12.3%

and 2007 and SQL vulnerabilities became dominant since

2005. These trends highlight the shift in focus of hackers to

exploit new services as they become popular.

In the sections that follow, we present the behavior of

hackers and vendors towards vulnerabilities.

IV. EXPLOITATION BEHAVIOR

In this section, we study the behavior of hackers in

releasing exploits for vulnerabilities. For this, we analyze

trends in ted values of vulnerabilities. The analysis presented

in this section is done on ED-subset. We study three ranges

of ted values.

ted < 0 shows that an exploit for a given vulnerability

was released before its public disclosure. The vulnerabilities

falling in this range represent a big threat to the security of

end-users as the vendor could be oblivious about them. A

total of 2.8% software vulnerabilities fall into this range.

ted = 0 refers to the case when an exploit for a given

vulnerability was released on the day it was disclosed.

The exploits corresponding to such vulnerabilities are called

zero-day exploits. In our ED-subset, a total of 88.2% vul-

nerabilities have zero-day exploits.

ted > 0 means that the exploit for a vulnerability was

released after its public disclosure. The vulnerabilities for

which ted > 0 represent the case where a vulnerability is

disclosed by the vendor or an independent organization and

the hackers used this information to release an exploit in

more than a day. 9.7% vulnerabilities fall in this range. To

do more detailed analysis, we subdivide this range into three

parts: (1) 0 < ted ≤ 7 gives us the percentage of exploits

released within a week of disclosure, (2) 7 < ted ≤ 30
gives us the percentage of exploits released after a week and

within a month of disclosure, and (3) ted > 30 gives us the

percentage of exploits released a month after the disclosure.

A. Evolution of Exploitation

To extract and construe the dominant trends, we first

divided the vulnerabilities in ED-subset into groups where

each group contains vulnerabilities disclosed in one distinct

year. Then we subdivided the vulnerabilities in each group

into five subgroups corresponding to the five ranges of ted.

We then calculated the percentage of vulnerabilities in each

400

600

800

1000

1200

1400

1600
PHP

Exe

DoS

BO

SQL

XSS

r 
o
f 
v
u
ln
e
ra
b
il
it
ie
s 
o
f 
e
a
ch

 t
y
p
e

0

200

'99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11

N
u
m
b
e

Years

Figure 3. Evolution of vulnerability clusters over the years



subgroup (called the percentage size of the subgroup) in

its respective group and plotted the results in Figure 4 in

the form of stacked bars where each bar corresponds to

the group of vulnerabilities disclosed each year and each

block in every bar represents the percentage size of the

corresponding subgroup in its respective group. The number

inside each block is the value of the percentage size of the

corresponding subgroup. The number at the top of each

bar represents the total number of vulnerabilities in the

corresponding group. All figures in rest of the paper have

been made using similar methodology.

It can be seen from Figure 4 that majority of vulnerabil-

ities have always been exploited on their disclosure dates

(having ted = 0). Till 2004, the percentage size of the

subgroup of ted < 0 was non-negligible which shows that

the hackers were finding a significant number of vulnerabil-

ities themselves and exploiting them. At the same time we

observe a decrease in the percentage size of the subgroup

of ted = 0. This does not mean that hackers were getting

sluggish because we also observe a significant increase in

the total number of exploited vulnerabilities. Since 2004,

although we observe a decrease in the percentage size of the

subgroup of ted < 0, an increasing trend in the percentage

size of subgroup of ted = 0 still shows that the hackers are

becoming more and more active.

B. Exploitation of Types of Vulnerability

We now see the exploitation of different types of vulner-

abilities. Figure 5 has been made in the same way as Figure

4 except that now the groups are the types of vulnerabilities.

It can be seen that over 80% of vulnerabilities of each

type (except BO and EXE) are exploited on or before the

day of disclosure. In case of BO and EXE, a significant

percentage of vulnerabilities is exploited several weeks after

the disclosure. According to our data set, 79% of BO

and EXE pose high risk and only 7% have high access

complexity, so intuitively, they should attract more attention

from hackers. The total number of exploited vulnerabilities

of these two types are large which justifies the intuition.

C. Exploitation Trend for Vendors and Products

We study the behavior of hackers in exploiting the vulner-

abilities for different vendors and their respective products.

Figures 6 and 7 show the exploit data for the selected

91 94 93 88
86

71

80 86 85 86
98 97

89 91

4 8

15

9 6 9 8 44
54 4 7

43 156 243 291 619 483 1471 2215 3022 1982 2782 1400 612 44

40

60

80

100

.

> 30 days

+30 days

+7 days

0 dayo
f 
E
x
p
lo
it
e
d

 v
u
ln
e
ra
b
il
it
ie
s

5 4 4 60

20

'98 '99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11

0 day

< 0 days

P
e
rc
e
n
ta
g
e

 o

Years

Figure 4. Yearly change in exploitation behavior for different ted ranges

94

58
76

45

97
85

4

17

8

19

8
7

14

8 7
13

67 298 418 346 106 62

40

60

80

100

.

> 30 days

+30 days

+7 days

0 dayf 
E
x
p
lo
it
e
d

 v
u
ln
e
ra
b
il
it
ie
s

10 7 9
0

20

PHP EXE DoS BO SQL XSS

y

< 0 days

P
e
rc
e
n
ta
g
e

 o
f

Vulnerability Type

Figure 5. Exploitation trend in clusters

vendors and products respectively. These figures have been

made for vendors and products in the same way as Figure

5 was made for vulnerability types.

Lets first compare the vulnerability exploitation in open

vs. closed-source vendors. In comparison to closed-source

vendors, for open-source vendors e.g., Linux, Red Hat etc.,

comparatively smaller percentage of vulnerabilities is ex-

ploited till the day of disclosure while a larger percentage of

vulnerabilities is exploited before the disclosure. To generate

statistically significant conclusion from these two conflicting

observations, we do statistical hypothesis testing.

As our samples for open-source and closed-source ven-

dors contain large number of data points, therefore, the

most appropriate statistical test for this scenario (and all

the subsequent scenarios) is the standard one-tailed t-test.

t-test is considered to be the most appropriate when the

number of data points in the samples are large (typically

> 50) regardless of the distributions they come from.

To remove any bias in testing, we state the null hypothesis

as: the mean value of ted for open-source vendors, µted(O),
is equal to the mean value for closed source vendors,

µted(C). The alternative hypothesis is: µted(C) is greater

than µted(O). We apply the right tailed t-test to the null

hypothesis. If the null hypothesis is rejected, it would be

statistically sound to claim that the average time to exploit

a vulnerability in closed-source software is larger compared

to open-source software. We give a general equation for

hypothesis testing that will be used for all the subsequent

tests:
H0 : µA(X) = µB(Y )

H1 : µA(X) > µB(Y ) (1)

70 76
70

58
61

62

58

13 11
11

18
13

23

19

6 5
7

11 4 8

5 5 10 11 14
4

10

602 235 122 85 76 127 79

40

60

80

100

.

> 30 days

+30 days

+7 days

0 dayo
f 
E
x
p
lo
it
e
d

 v
u
ln
e
ra
b
il
it
ie
s 

(V
e
n
d
o
rs
)

6 3 2 4 8 10 5

58

0

20

Microsoft Apple Sun Oracle Linux Mozilla Redhat

0 day

< 0 days

P
e
rc
e
n
ta
g
e

 o

Figure 6. Exploited vulnerabilities for vendors relative to disclosure dates



6
10 10 5 6

16 14 10 8 7 5

127 116 121 72 50 76 30 37 192 41 76
100

it
ie
s 

12
15

12 13 20 16

13
5 2412 13

6

4 4
3 5 7

10 10 16 14 10

80
.ln

e
ra
b
il
i

21 21
60

.

> 30 days

+30 days

o
it
e
d

 v
u
l

u
ct
s)

48 48

78
71 62 61

63 65
73 76 5740

y

+7 days

0 dayo
f 
E
x
p
lo

(P
ro
d

9 8 2 3 6 8 3 5 8 5
13

20

y

< 0 days

e
n
ta
g
e

 o

9 8 2 3 6 8 3 5 8 50

Win 

XP

Win 

2000

OS X OS X 

Srvr

Sol!

aris

Lnx 

Krnl

Entp 

Lnx

RH 

Lnx

Int 

Exp

Saf!

ari

Fire!

fox

P
e
rc
e

XP 2000 Srvr aris Krnl Lnx Lnx Exp ari fox

Figure 7. Exploited vulnerabilities for products relative to disclosure dates

where X = C represents closed-source vendors, Y = O

represents open-source vendors, and A = B = ted rep-

resents that the data points of ted are being considered.

We do the hypothesis testing for a 95% confidence interval

i.e., α = 0.05. Our test resulted in a p-value of 0.003
which is much smaller than α, thus we reject H0 to accept

H1. Therefore, it is statistically sound to state that the

exploitation of vulnerabilities in closed-source software is

slower compared to open-source software.

Figure 6 shows that hackers release most exploits till the

disclosure dates for Microsoft and Apple. This is primarily

because hackers find it more rewarding to exploit these

products due to their wider market capitalization. For the

selected products, we see the similar trend in Figure 7 as

for vendors in Figure 6 except for Windows. The percentage

of exploited vulnerabilities for Windows till disclosure date

is lesser as compared to OS X but at the same time the

percentage of exploited vulnerabilities for Windows before

disclosure is greater than that for OS X. In fact, the mean

value of ted for Windows is negative while that for OS X is

positive. The t-test with X = “OS X”, Y = “Windows”, and

A = B = ted yields p = 0.031 proving that the exploitation

in Windows is quicker compared to OS X.

Among web browsers, Firefox has the smallest percentage

of vulnerabilities exploited till disclosure date compared to

Internet Explorer and Safari but at the same time has the

highest percentage of vulnerabilities exploited before the

disclosure. The t-test with X = “Safari” and Y = “Internet

Explorer” yields p = 0.05 showing that exploitation in

Internet Explorer is quicker compared to Safari. The t-test

with X = “Safari” and Y = “Firefox” yields p = 0.09, and

therefore, fails to reject the null hypothesis.

D. Exploitation Behavior: CVSS Scores

Recall from Section II that each vulnerability is assigned

a CVSS score depending upon the level of risk associated

with it. Based on CVSS scores, we divide vulnerabilities

into three categories. Low: 0 ≤ CVSS Score < 4; Medium:

4 ≤ CVSS Score < 7; High: 7 ≤ CVSS Score ≤ 10.

Figure 8 has been generated in the same way as Figure

6 except that we plotted the vulnerabilities belonging to

low, medium, and high categories separately. The white

8176
62

85
78

72 7878
63 5063

50

4869

63

63

58
71

50
55

63

1111

15

9
15

22
10

10 13
20

15

12

9
21

19

26
17

30
26

10 12 6 6

8 13

8

15

12 10 11

5 4 7 4 6 4
16 13 6

19
121616

5 1013 8

20

40

60

80

100

> 30 days

+30 days

+7 days

0 dayo
f 
E
x
p
lo
it
e
d

 v
u
ln
e
ra
b
il
it
ie
s 

(C
V
S
S

 S
co
re
s)

7 6 4
13

4
16

6
19

9 9 8
0

20

L M H L M H L M H L M H L M H L M H L M H

Microsoft Apple Sun Oracle Linux Mozilla Redhat

0 day

< 0 days

P
e
rc
e
n
ta
g
e

 o

(

Figure 8. Exploited vulnerabilities for different CVSS scores

lines with round markers represent the percentage of total

vulnerabilities belonging to low, medium, or high categories.

It is intuitive to think that hackers would be less interested

in exploiting low risk vulnerabilities because such vulnera-

bilities usually cause lesser damage. This is exactly what the

markers for low risk vulnerabilities show in Figure 8. The

bars in Figure 8 show that the percentage of medium risk

vulnerabilities for which exploits are released till the disclo-

sure date is greater than that for high risk vulnerabilities for

all closed-source vendors and some open-source vendors.

E. Interesting Exploitation Rules

Now we present some interesting association rules about

the exploitation behavior in the products of the short-listed

vendors. We used implementation of Apriori association

rule mining algorithm in WEKA to extract the rules with

confidence greater than 95% [14], [15]. For association rule

mining, we used following 7 attributes of each vulnerability:

Vendor Name <vnd>, Product Name <prd>, Vulnerability

Type <typ>, Severity <sev>, ted, tpd, and tpe. For the rules

presented in this section, we used ted as class attribute.

We found that in case of Microsoft, majority of vul-

nerabilities including DoS, XSS, and BO are exploited on

the day they are disclosed. One such rule obtained from

association rule mining is: vnd=Microsoft typ=XSS sev=H

→ ted=0-day.

In case of Apple, the vulnerabilities are exploited on or

before their disclosure date. For example, as shown in the

following rule, vulnerabilities in Safari browser are mostly

exploited on the day of disclosure: vnd=Apple prod=Safari

typ=BO sev=H → ted=0-day.

For Solaris, association rules show that high risk vulnera-

bilities are exploited on the day of disclosure while medium

risk vulnerabilities are mostly exploited within a week after

their disclosure. The latter trend is shown by the following

rule: vnd=Sun prod=Solaris sev=M → 0<ted≤ +1 week.

For Mozilla, we get interesting rules showing that hackers

do not exploit a vulnerability that has already been patched

while they quickly exploit those that have not been patched.

Two rules stating this observation are: (1) vnd=Mozilla

prod=Firefox typ=BO tpd=0-day → ted> +1 month, (2) vnd

= Mozilla prod=Firefox typ=BO +1 week <tpd≤+1 month

→ ted=0-day.



V. PATCHING BEHAVIOR

Now we study the behavior of vendors in providing

patches for vulnerabilities in their products. For this, we

study the trends in tpd values of vulnerabilities. The analysis

presented in this section is based upon PD-subset. The three

ranges for tpd that we study are described below.

tpd < 0 shows that the patch for a given vulnerability

was released before its public disclosure. A total of 10.1%
vulnerabilities have tpd < 0 which is greater than the

corresponding value for ted < 0. One possible reason is

that the independent organizations inform the vendors about

the vulnerabilities they discover and give them a reasonable

time to release a patch before disclosing the vulnerabilities.

tpd = 0 means that the patch for a vulnerability was

released on the disclosure day. Such patches provide zero-

day protection against exploitation. In our data set, zero-day

patches are provided for 62.2% of the vulnerabilities.

tpd > 0 refers to the case where the patch for a given

vulnerability was released after its public disclosure. In our

PD-subset, 27.7% of all the vulnerabilities are patched more

than a day after their disclosures. We further subdivide the

range tpd > 0 into the same three parts as in Section IV.

The t-test with A = tpd, B = ted, and X = Y =
“aggregate data set” yields p ≈ 0 which leads us to ac-

cepting the alternative hypothesis that, compared to hackers,

vendors take more time on average to patch a vulnerability

(considering disclosure date as reference).

A. Evolution of Patching Behavior

In Figure 9 we observe that till 2005, the percentage of

vulnerabilities patched on or before disclosure dates consis-

tently decreased. Keeping in view the fact that independent

organizations inform the vendors about vulnerabilities well

before disclosing them, such a poor patching behavior of

vendors indicates that security was not a major concern

for vendors at that time. However, we see a significant

improvement after 2005. Since 2008, vendors have been

providing patches for more than 80% of total vulnerabilities

till their disclosure dates. A possible reason for this can be

that it has become more common to not report vulnerabilities

publicly, rather, the vendors “pay” for vulnerabilities.

61 50 41
30

34
54

66 80
84 89

16

8
10

17

10 12 12
13

22

14

6
4

5

14
13

5

12 13 16 21
9

9

4

32

7
13

21
31 30 29 28 27

16

19 71 212 240 399 336 507 762 854 867 883 1624 2429 463

40

60

80

100

.

> 30 days

+30 days

+7 days

0 daye
 o
f 
p
a
tc
h
e
d

 v
u
ln
e
ra
b
il
it
ie
s

10 14 16 17
11 11 7 6 6

21
12 7 7

47
34 31

31 36

0

20

'98 '99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11

0 day

< 0 days

P
e
rc
e
n
ta
g
e

Years

Figure 9. Yearly change in the patching behavior for different tpd ranges

73
52

67 26
68

6

6

8

26

9

45

7

9

6 4
27

7

23
8

15
6

11 1563 927 1025 34 171

40

60

80

100

.

> 30 days

+30 days

+7 days

0 day o
f 
P
a
tc
h
e
d
v
u
ln
e
ra
b
il
it
ie
s

18
6 10 11

29

12

9

0

20

PHP EXE DoS BO SQL XSS

y

< 0 days

P
e
rc
e
n
ta
g
e

Vulnerability Type

Figure 10. Patching trend in clusters

B. Patching of Types of Vulnerabilities

From Figure 10, we can note that the vendors are gen-

erally slower in patching the PHP and SQL vulnerabilities.

Recall from Section IV-B that hackers tend to quickly exploit

these groups of vulnerabilities. On the other hand, the ven-

dors are quicker in patching the EXE and BO vulnerabilities

because these vulnerabilities are quickly exploited and thus

pose high security risk.
C. Patching Trend for Vendors and Products

Here we study the behavior of the selected vendors in

patching the vulnerabilities in their products. Figures 11 and

12 show the patch data for selected vendors and products.

Closed-source vendors are typically profit based organi-

zations and have more resources to secure their products

as compared to open-source vendors. Therefore, we expect

better patching behavior from closed-source vendors. Figure

11 confirms this intuition as Microsoft, Apple, and Oracle

release patches for about 70% or more of all the vulner-

abilities on or before disclosure dates. In comparison, we

observe significantly smaller percentages and quantity of

patched vulnerabilities for open-source vendors. Applying

the t-test with X = O, Y = C, and A = B = tpd, we

obtained p ≈ 0 which statistically justifies the observation

that open source-vendors are slower in patching as compared

to closed-source vendors.

We see the similar trend for the selected products in Figure

12 as for vendors in Figure 11. We also see that over 85% of

the vulnerabilities in Windows are patched on or before the

disclosure dates. If we compare Figure 12 with Figure 7, we

observe that the percentage of zero-day patches for Windows

is greater than the percentage of zero-day exploits.

76 78 78

64
55 27

94

3
5 4

29

13

14

12

5
6 2

17

10

16

12
6 8

45

16
27

1530 998 298 666 325 392 279 175

40

60

80

100

.

> 30 days

+30 days

+7 days

0 dayP
a
tc
h
e
d

 v
u
ln
e
ra
b
il
it
ie
s 

V
e
n
d
o
rs
)

4 5 7 4
10 5

19

2

16

55 2713

0

20

Microsoft Apple Sun Oracle Linux Mozilla Redhat Google

0 day

< 0 days

P
e
rc
e
n
ta
g
e

 o
f 
P (V

Figure 11. Patched vulnerabilities for vendors relative to disclosure dates



610 9 6 5 8 8
16

386 374 529 390 73 325 118 111 334 172 324 169
100

it
ie
s 

4 5 8 7
10

4

7 6
5

8 5
11

10

45
32

20 22
16

80
.ln

e
ra
b
il
i

59 22 96

14
4 11

1960

.

> 30 days

+30 daysch
e
d

 v
u
l

d
u
ct
s)

82 80 74 80
59 22

64

86

58

96

13

817
40

y

+7 days

0 daye
 o
f 
P
a
tc

(P
ro
d

5
18

10 8

36

4 5

16
31

20

y

< 0 days

rc
e
n
ta
g
e

5 10 8 4 50

Win 

XP

Win 

2000

OS X OS X 

S

Sol!

i

Lnx 

K l

Entp 

L

RH 

L

Int 

E

Saf!

i

Fire!

f

Chr!

P
e
r

XP 2000 Srvr aris Krnl Lnx Lnx Exp ari fox ome

Figure 12. Patched vulnerabilities for products relative to disclosure dates

Among web browsers, Figure 12 shows that Google

Chrome is the fastest patched web browser followed by Ap-

ple’s Safari. t-test with Y = Chrome and X = (Internet Ex-

plorer, Safari, Firefox) respectively yields p = (0, 0.024, 0)

confirming that our observation about Chrome from Figure

12 is statistically significant. t-test with Y = Safari and

X = (Internet Explorer, Firefox) yields p = (0.009, 0.0786)

confirming that Safari is patched more quickly compared

to Internet Explorer but the test fails to reject the null

hypothesis of Safari against Firefox.

D. Patching Behavior: CVSS Scores

One would expect the vendors to be quicker in patching

the medium and high risk vulnerabilities compared to low

risk vulnerabilities. This is exactly what we observe in

Figure 13. Open-source vendors are slower as compared

to closed-source vendors for vulnerabilities belonging to all

risk categories.

E. Interesting Patching Rules

We present some association rules about the patching

behavior of the vendors extracted using tpd as class attribute.

Microsoft is quicker in patching vulnerabilities in Win-

dows as compared to its remaining products. The follow-

ing two rules show this: (1) vnd=Microsoft prod=Windows

XP typ=BO → tpd=0-day, (2) vnd=Microsoft prod=Internet

Explorer typ=BO → tpd>+1 month.

Apple also patches vulnerabilities in its operating systems

as soon as they are disclosed. The following rule highlights

this trend: vnd=Apple prod=MAC OS typ=BO → tpd=0-day.

Following rule shows that Apple generally takes about a

week to fix DoS vulnerabilities even if they are exploited on

the day they are disclosed: vnd=Apple prod=MAC OS typ=DoS

→ 0<tpd≤+1 week. Other rules show that Apple takes about

a month after disclosure to patch the EXE and PHP vulner-

abilities although they are always exploited before the patch

is released and are prevalent types of vulnerabilities.

Sun is quicker in patching all kinds of vulnerabilities

except XSS. Sun fixes DoS vulnerabilities before their

disclosure which is a better performance as compared to

Microsoft and Apple.

For Mozilla, BO and EXE vulnerabilities are mostly

patched till the day of disclosure; however, SQL vulnera-

bilities are not patched for months. Following rules state

77
70

78

64
79
79

100
78

75

88
82

37 30
29

52
62

29
31
22

100
89

96

14 6 7
1313

52

17
10

11 21

11

16

121014

11 5
5 7

1815

18 12

13

7

101618

56
1611

10 6 6 12 6

5050

28 29
18
12

312626

20

40

60

80

100

> 30 days

+30 days

+7 days

0 dayo
f 
P
a
tc
h
e
d

 v
u
ln
e
ra
b
il
it
ie
s 

(C
V
S
S

 S
co
re
s)

6 12 6 8 8 3 7 7 1112 9 6 4
181621

3 2

8
14

0

20

L MH L MH L MH L MH L MH L MH L MH L MH

Microsoft Apple Sun Oracle Linux Mozilla Redhat Google

0 day

< 0 days

P
e
rc
e
n
ta
g
e

 

Figure 13. Patched vulnerabilities for different CVSS scores

this: (1) vnd=Mozilla prod=Seamonkey typ=BO sev=M →

tpd=0-day, (2) vnd= Mozilla prod=Firefox typ=SQL sev=H

→ tpd>+1 month .

VI. PATCHING VS. EXPLOITATION

In this section, we compare the quickness of vendors with

hackers. We study the trends in tpe values of vulnerabilities

present in the PE-subset.

tpe < 0 shows that a vulnerability was patched before its

exploitation irrespective of whether or not it was disclosed.

The inherent time-lag between the release of patches by ven-

dors and their installation by end-users motivates the hackers

to write exploits for vulnerabilities even after corresponding

patches have been released. In our PE-subset, 31.7% of all

the vulnerabilities fall in this range.

tpe = 0 means that a given vulnerability was exploited on

the day its patch was released. 21.8% of the vulnerabilities

fall in this range.

tpe > 0 shows that an exploit for a given vulnerability

was released before the vendor patched it. A total of 46.4%

of vulnerabilities have tpe > 0. The larger percentage of

tpe > 0 compared to tpe < 0 indicates that hackers have

generally been quicker in exploiting the vulnerabilities as

compared to vendors in patching. This observation affirms

the result of the first t-test presented in Section V.

A. Patching vs. Exploitation: Over the Years

From Figure 14 we can see the same behavior as observed

in Section V-A: patching response of vendors was poor

till around 2005 and a large percentage of vulnerabilities

was being exploited before being patched. In 2006, the

situation was so bad that the patches for about 38% of the

69

67
26

30
19

22 18
18 13 17

22 35 31

8

40

24

10
15

12
8

14
6

13

17
17

14

23
11 9

10
8 14

18

18

12

16

8 4

40

24
30 29 33

22

38
25

5 6 10

5 9 34 50 100 111 204 228 139 124 143 127 136 13

40

60

80

100

.

> 30 days

+30 days

+7 days

0 dayv
u
ln
e
ra
b
il
it
ie
s 
fo
r 
d
if
fe
re
n
t

t p
e
ra
n
g
e
s

22

38
26 28 23 24 27 31 29

47
39 41

20

18

0

20

'98 '99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11

0 day

< 0 days

P
e
rc
e
n
ta
g
e

 o
f 

Years

Figure 14. Yearly change in patching vs. exploitation trend for tpe



24

22

44

16

10

19

5

14

12

9

13

22

15
9 19

4

5

15 28

19
31

26

4
12

35 30

12

297 125 25 43 40 69 52

40

60

80

100

.

> 30 days

+30 days

+7 days

0 dayn
ta
g
e

 o
f 
v
u
ln
e
ra
b
il
it
ie
s

t p
e
ra
n
g
e
s 
(V
e
n
d
o
rs
)

31
20

36

58

28
16

35

22 10

4

22

0

20

Microsoft Apple Sun Oracle Linux Mozilla Redhat

0 day

< 0 days

P
e
rc
e
n

fo
r
t

Figure 15. Patched vulnerabilities for vendors relative to exploit dates

vulnerabilities were released more than a month after their

exploitation. However, after 2007 a significant improvement

can be observed in the vendor response. It is encouraging to

see that since 2008, over 70% of all the vulnerabilities have

been patched on or before the release date of their exploits.

From the discussion in this section and Sections IV-A and

V-A, we can conclude that the security state of the software

industry has been improving for the last 3 years.

B. Patching vs. Exploitation: Vendors and Products

It can be seen from Figure 15 that for all vendors

except Oracle and Sun, the percentage size of the subgroups

corresponding to tpe > 0 is greater than that for tpe < 0. The

magnitude of the difference between the percentage sizes

of tpe < 0 and tpe > 0 can serve as a measure to gauge

the agility of the vendors in reference to hackers. We can

see that among the vendors, only Oracle and Sun are faster

than hackers, whereas hackers are, on average, faster than

all other vendors. From Figure 16 we can see that, compared

to hackers, Microsoft and Sun are quicker for Windows and

Solaris respectively.

C. Patching vs. Exploitation: CVSS Scores

From Figure 17, it can be seen that for Microsoft and

Apple, approximately the same percentage of vulnerabilities

belonging to medium and high risk categories are patched

before the release of their exploits. However, the percentage

of vulnerabilities for which tpe = 0 is generally greater

for medium risk vulnerabilities as compared to high risk

vulnerabilities. It can be seen that closed-source vendors are

quicker in patching the medium and high risk vulnerabilities

compared to open-source vendors.

6
6

84 82 82 53 10 40 23 18 88 15 51
100

20

22

5

6

16 13

6
29

20 22 21
35

22

50
60

27
80

.a
b
il
it
ie
s

u
ct
s)

17

17 30

33
17

15
9

5 16 13

15

22

33

60

60 > 30 days

+30 daysv
u
ln
e
ra

e
s 
(P
ro
d

55 50
27

30
10 26

33

7

13

9

7
14

1740

y

+7 days

0 dayn
ta
g
e

 o
f 

t p
e
ra
n
g
e

48
55

18 21

50

28
22

33

16
27 22

8
4

20

y

< 0 days

P
e
rc
e
n

fo
r
t

0

Win 

XP

Win 

2000

OS X OS X 

Srvr

Sol!

aris

Lnx 

Krnl

Entp 

Lnx

RH 

Lnx

Int 

Exp

Saf!

ari

Fire!

foxXP 2000 Srvr aris Krnl Lnx Lnx Exp ari fox

Figure 16. Patched vulnerabilities for products relative to exploit dates

100

46 40

56

69

43

33
2921

16

2817

73
23 40

16

8

11

14

5

27
17

11 4
5 21

11
13

9

12 8

14

11

14

20

1441
14

14

17

22

9
9

5
23

21

8 4

7

16

29

40
26

24
29

14
22

11

2933
262328

8
20

12 8

57

32 3033
24 29

9 9

20

40

60

80

100

> 30 days

+30 days

+7 days

0 dayta
g
e

 o
f 
v
u
ln
e
ra
b
il
it
ie
s

ra
n
g
e
s 
(C
V
S
S

 S
co
re
s)

22
2932 32

1521 18

40

14

32
43

10
21

6

29
36357

6

20

0

20

L M H L M H L M H L M H L M H L M H L M H

Microsoft Apple Sun Oracle Linux Mozilla Redhat

y

< 0 days

P
e
rc
e
n
t

fo
r
t p

e
r

Figure 17. Patched vulns. relative to exploited vulns.: CVSS

VII. IMPLICATIONS

Observations from our study have important implications

in software design, development, deployment, and manage-

ment. We separately discuss them in the following text.

A. Software Design

The analysis of access requirements, functionality, and

risk level of vulnerabilities presented in Sections III-B,

III-D, and III-C respectively, can reveal inherent flaws in

software design process for specific products and vendors.

For instance, if a particular software series has more than

typical instances of buffer overflow vulnerabilities, then this

may reflect lack of sanity checks in socket read processes.

From our data set, we observed that DoS is the most

exploited vulnerability type in Solaris accounting for 38.85%
of all its vulnerabilities. At the same time, only 11.7%
of vulnerabilities in OS X involve DoS, which shows that

Solaris is more susceptible to DoS attacks compared to OS

X. The observation mentioned above implies that Solaris

developers need to take additional steps to make the design

more robust to DoS attacks.

B. Code Development Practices

The analysis of vulnerability life cycles during the evolu-

tion of a given software can reveal insights about potential

flaws in its code development and testing practices. In

particular, a correlation analysis of count of vulnerabilities

across different software and vendors can highlight impor-

tant differences in code development practices. For instance,

we observe in Figure 11 that the percentage sizes of the

subgroups corresponding to tpd > 0 for open-source ven-

dors (Linux, Redhat) are significantly greater than those of

closed-source vendors (Microsoft, Apple). This observation

highlights an important insight into the code development

practices of open-source vendors which typically rely on

contributions from a group of volunteer developers. On the

other hand, closed-source vendors have dedicated resources

to fix newly disclosed vulnerabilities as soon as possible.

Therefore, open-source vendors tend to have a slower patch

response compared to closed-source vendors.

C. Customer Assessment of Vendors and Products

The analysis presented in this paper also has direct

implications in product assessment, certification, and se-

curity recommendations to consumers. Several commercial



products e.g. eEye Digital Security (http://www.eeye.com),

Arellia (http://www.arellia.com/), can leverage the presented

analysis for product recommendation and design of future

security policies. For example, given that the exploits of

vulnerabilities have already been released, our measurement

analysis showed that Sun releases patches for 96% of the

vulnerabilities within a month; whereas, Microsoft, Apple,

and Linux provide patches for only 69%, 74%, and 65%
of vulnerabilities in the same time period. Therefore, if

the patch response of vendor is of prime importance to

a customer, then the products from Sun should be pre-

ferred. As another example, if a customer’s infrastructure

has less tolerance for DoS attacks, then it is more suitable

to deploy Mac OS X, which has the lowest percentage of

DoS vulnerabilities compared to other operating systems.

Likewise, if a customer requires more robustness to buffer

overflow attacks, then it is more suitable to deploy Solaris

because BO vulnerabilities account for about 20% of all the

vulnerabilities in Windows and Mac but only 13% in Solaris.

VIII. RELATED WORK

The major focus of the work on large scale analysis of

vulnerabilities has been on the development of vulnerability

discovery models (VDMs). Some work has also been done to

understand the economic impacts of vulnerability disclosures

in software. We briefly describe the work that has been done

in these areas in relation to our work.

A. Large Scale Vulnerability Analysis

The work most relevant to ours was reported in [3] in

which the authors presented a large scale analysis of vulner-

abilities keeping in view the discovery, disclosure, exploit,

and patch dates. They analyzed about 14000 vulnerabilities

and showed that till 2006, the hackers had been quicker

than vendors. This observation is in accordance with what

we presented in this paper but we also show that in the last

three years, the response of vendors has been improving.

Their work does not differentiate between vendors and types

of vulnerabilities.

In [16], authors study the life-cycle of vulnerabilities

from the time a software is released till the time the first

vulnerability is discovered. They show that the time till

the discovery of the first vulnerability is a function of

the familiarity with the system and the amount of legacy

code. In [17], the authors propose to use semantic templates

to help the developers understand the vulnerabilities and

their artifacts. This work only focuses on understanding the

technical details of a disclosed vulnerability and does not

study any large scale trend in vulnerabilities.

B. Studies on Disclosure and Patching

In [18], authors have studied the economic aspects of

the quickness of vendors in releasing patches for Internet

based vulnerabilities. In [19], authors show that on average

a vendor loses 0.6% of the stock price with the disclosure

of a vulnerability. In [8], authors show that a vendor with

more competitors patches the vulnerabilities more quickly.

In [7], they show that the vulnerability disclosure accelerates

the patch release. Although their work is based upon a

small data set of just 354 vulnerabilities disclosed till 2003,

they make similar observation as ours that the closed-source

vendors are quicker in patching the disclosed vulnerabilities.

These studies, however, do not develop any insight into

understanding individual behaviors of vendors and hackers.

In [20], using a small data set, authors make a claim

that there is no difference between the patching behavior of

open and closed-source vendors. They make this observation

because they only consider the percentage of patched vulner-

abilities as a measure of goodness of a vendor which is un-

reasonable because without analyzing the duration between

disclosure dates and patch dates, one can not determine how

active a vendor is in fixing vulnerabilities in its products.

C. Modeling and Classification

The motivation behind the work on VDMs is to enable the

prediction of quantity and timing of vulnerability discoveries

in new software. Four notable VDMs have been proposed:

(1) Anderson Thermodynamic Model [2], (2) Rescorla Lin-

ear Model [6], (3) Rescorla Exponential Model [6], and

(4) Alhazmi-Malaiya Logistic Model [5]. Another work

focused on modeling the time interval between disclosure

date of vulnerabilities and their corresponding exploit, patch,

and discovery dates [21]. A recent work extracted various

features from NVD and OSVDB and used SVM to predict

whether a recently disclosed vulnerability will be exploited

within a given time or not [22]. Our focus, however, is not

the prediction rather the study of phases of vulnerability life

cycle in reference to different variables along with several

aspects associated with the nature of vulnerabilities.

IX. CONCLUSION

In this paper, we presented a large scale study of various

aspects associated with software vulnerabilities during their

life cycle. We aggregated a large software vulnerability

data set containing 46310 vulnerabilities disclosed till 2011.

Our study showed that the number of vulnerabilities being

disclosed every year has stopped increasing since 2008. We

showed that the most primitive and most exploited form

of vulnerabilities are DoS, BO, and EXE; however, SQL,

XSS, and PHP have also become significantly large. We

also observed that the percentage of remotely exploitable

vulnerabilities has gradually increased to over 80% of all the

vulnerabilities. Since 2008, the vendors have been becoming

more agile in patching the vulnerabilities and the access

complexity of vulnerabilities has been increasing. However,

even then, the average time taken by hackers to exploit a

vulnerability is smaller than that taken by the vendor. Our

findings also highlighted that patching of vulnerabilities in

closed-source software is faster compared to open-source

software and at the same time the exploitation is slower.



REFERENCES

[1] E. E. Schultz, D. S. Brown, and T. A. Longstaff, Responding
to Computer Security Incidents: Guidelines for Incident Han-
dling, Lawrence Livermore National Laboratory, Livermore,
CA, 1990.

[2] R. Anderson, “Security in open versus closed systems – the
dance of boltzmann, coase and moore,” in Proc. Open Source
Software: Economics, Law, and Policy Confocuce, June 2002.

[3] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale
vulnerability analysis,” in Proc. 2006 SIGCOMM workshop
on Large-Scale Attack Defense, September 2006, pp. 131–
138.

[4] S. Frei, B. Tellenbach, and B. Plattner, “0-day patch expos-
ing vendors (in) security performance,” in Proc. Black Hat
Technical Security Conf. , vol. 14, 2009.

[5] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability
assessment of systems software,” in Proc. Annual Reliability
and Maintainability Symposium, 2005, pp. 615–620.

[6] E. Rescorla, “Is finding security holes a good idea?” IEEE
Security and Privacy, vol. 3, no. 1, pp. 14–19, Januray 2005.

[7] A. Arora, R. Krishnan, R. Telang, and Y. Yang, “An empirical
analysis of software vendors patch release behavior: Impact
of vulnerability disclosure,” Information Systems Research,
vol. 21, no. 1, pp. 115–132, 2010.

[8] A. Arora, C. Forman, A. Nandkumar, and R. Telang, “Com-
petition and patching of security vulnerabilities: An empirical
analysis,” Information Economics and Policy, vol. 22, no. 2,
pp. 164–177, 2010.

[9] (http://nvd.nist.gov/) National Vulnerability Database.

[10] (http://osvdb.org/) The Open Source Vulnerability Database.

[11] (http://www.first.org/cvss) Forum for Incident Response and
Security Teams.

[12] (http://cve.mitre.org/) Common Vulnerabilities and Expo-
sures.

[13] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the
number of clusters in a data set via the gap statistic,”
Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 63, no. 2, pp. 411–423, 2001.

[14] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in Proc. of 20th Int. Conf. on Very Large
Data Bases, 1994, pp. 487–499.

[15] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and
S. J. Cunningham, Weka: Practical Machine Learning Tools
and Techniques with Java Implementations. Citeseer, 1999.

[16] S. Clark, S. Frei, M. Blaze, and J. Smith, “Familiarity breeds
contempt: The honeymoon effect and the role of legacy
code in zero-day vulnerabilities,” in Proc. 26th Int. Annual
Computer Security Applications Conf. , 2010, pp. 251–260.

[17] Y. Wu, H. Siy, and R. Gandhi, “Empirical results on the study
of software vulnerabilities: NIER track,” in Proc. 33rd Int.
Conf. on Software Engineering, 2011, pp. 964–967.

[18] R. Anderson, “Why information security is hard – an eco-
nomic perspective,” in Proc. 17th Annual Computer Security
Applications Conf. , 2001, pp. 358–365.

[19] R. Telang and S. Wattal, “An empirical analysis of the impact
of software vulnerability announcements on firm stock price,”
IEEE Transactions on Software Engineering, vol. 33, no. 8,
pp. 544–557, 2007.

[20] G. Schryen, “A comprehensive and comparative analysis of
the patching behavior of open source and closed source
software vendors,” in Proc. 5th Int. Conf. on IT Security
Incident Management and IT Forensics, 2009, pp. 153–168.

[21] G. Vache, “Vulnerability analysis for a quantitative security
evaluation,” in Proc. 3rd Int. Symp. on Empirical Software
Engineering and Measurement, 2009.

[22] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker,
“Beyond heuristics: Learning to classify vulnerabilities and
predict exploits,” in Proc. of 16th Int. Conf. on Knowledge
discovery and data mining, 2010, pp. 105–114.


