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A Large-scale genetic association study of esophageal adenocarcinoma risk
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The incidence of esophageal adenocarcinoma (EA) has been in-
creasing rapidly, particularly among white males, over the past
few decades in the USA. However, the etiology of EA and the
striking male predominance is not fully explained by known risk
factors. To identify susceptible genes for EA risk, we conducted
a pathway-based candidate gene association study on 335 Cauca-
sian EA cases and 319 Caucasian controls. A total of 1330 single-
nucleotide polymorphisms (SNPs) selected from 354 genes were
analyzed using an Illumina GoldenGate assay. The genotyped
common SNPs include missense and exonic SNPs, SNPs within
untranslated regions and 2 kb 5# of the gene, and tagSNPs for
genes with little functional information available. Logistic regres-
sion adjusted for potential confounders was used to assess the
genetic effect of each SNP on EA risk. We also tested gene–gender
interactions using the likelihood ratio tests. We found that the
genetic variants in the apoptosis pathway were significantly asso-
ciated with EA risk after correcting for multiple comparisons.
SNPs of rs3127075 in Caspase-7 (CASP7) and rs4661636 in
Caspase-9 (CASP9) genes that play a critical role in apoptosis
were found to be associated with an increased risk of EA. A pro-
tective effect of SNP rs572483 in the progesterone receptor (PGR)
gene was observed among women carrying the variant G
allele [adjusted odds ratio (OR) 5 0.19; 95% confidence interval
(CI) 5 0.08–0.46] but was not observed among men (adjusted
OR 5 1.38; 95% CI 5 0.95–2.00). In conclusion, this study sug-
gests that the genetic variants of CASP7 and CASP9 in the apo-
ptosis pathway may be important predictive markers for EA
susceptibility and that PGR in the sex hormone signaling pathway
may be associated with the gender differences in EA risk.

Introduction

The incidence of esophageal adenocarcinoma (EA) is increasing more
rapidly than any other cancer in the USA (1,2) and is typically de-
tected at an advanced stage with a 5 year mortality of .80% (3,4). EA
is found seven times more often in men than in women in almost all

developed countries. In addition, it is very unusual for women before
menopause to develop EA, suggesting the possibility that female sex
hormones may protect against the development of EA (5–7). How-
ever, the etiology of EA and the striking male predominance is not
fully understood.

Both genetic and environmental factors are suspected contributors
to cancer development. Barrett’s esophagus is a syndrome that devel-
ops among a subgroup of patients with chronic gastroesophageal re-
flux disease (GERD) (8). Although Barrett’s esophagus is the only
known premalignancy of EA, only a small fraction (0.5–1% annually)
of Barrett’s esophagus patients subsequently develop adenocarcinoma
(9). The other potential risk factors include smoking, alcohol and obe-
sity (10–13). However, only a fraction of individuals with these risk
factors develop EA. For instance, the progression from GERD to
Barrett’s and Barrett’s to carcinoma occurs among very few patients (14).

Systematic review of published common genetic variants and EA
risk have been reported (15). While these studies have provided some
promising results, a large-scale candidate gene analysis has not been
performed to evaluate genetic susceptibility to EA risk. Therefore, we
conducted a pathway-based candidate gene association study on 335
Caucasian EA cases and 319 Caucasian controls. A total of 1330
single-nucleotide polymorphisms (SNPs) in 354 genes were success-
fully genotyped using an Illumina GoldenGate assay.

Materials and methods

Study population and DNA sample collection

This study was approved by the Human Subjects Committees of Massachusetts
General Hospital, Dana-Farber Cancer Institute and the Harvard School of
Public Health (Boston, MA). Cases and controls were over the age of 18 years.
Written informed consent was obtained from all subjects prior to study partic-
ipation. Patients with incident, histologically confirmed EA were recruited at
Massachusetts General Hospital between 1999 and 2005 and at Dana-Farber
Cancer Institute between 2004 and 2005; patients with secondary or recurrent
tumors were excluded. There was no restriction on tumor stage. Both Massa-
chusetts General Hospital and Dana-Farber Cancer Institute are networked
hospitals with similar practice patterns. Controls were selected from healthy
friends and non-blood-related family members (usually spouses) of a multi-
cancer susceptibility study conducted between 1999 and 2003 at Massachusetts
General Hospital. All controls never had any diagnosis of cancer (16). Details
of the control population have been described previously (16,17).

An in-person interview was conducted by a trained interviewer immediately
after enrollment. A modified questionnaire (18) was used to obtain information
on subjects’ socio-demographic characteristics and a detailed smoking and
alcohol exposure assessment.

Blood samples were collected from all participants at the time of recruit-
ment. DNA was extracted from peripheral blood samples using the Puregene
DNA Isolation Kit (Gentra Systems/QIAGEN, Valencia, CA).

SNP selection and genotyping

The selected candidate genes were in the pathways of carcinogens/procarcinogens
metabolism, DNA repair, cell cycle control, apoptosis, inflammation, cell
growth, cell signaling, angiogenesis, metastasis, sex hormone signaling, im-
munity, molecular transport, DNA methylation and telomere maintenance.
These genes were selected based on published evidence of their relationship
to carcinogenesis (19–30).

The genotyped common SNPs include missense and exonic SNPs, SNPs
within untranslated regions and 2 kb 5# of the gene and tagSNPs for genes with
little functional information available. The common non-synonymous SNPs
were selected using SNP500Cancer Project (http://snp500cancer.nci.nih.gov)
and International HapMap Project (http://hapmap.org). Potential functional
non-synonymous SNPs from cancer-associated genes were selected from
the PICS (Predicted Impact of Coding SNPs) database (http://www.icr.ac.uk
/cancgen/molgen/MolPopGen_PICS_database.htm) (31) and FASTSNP (http:
//fastsnp.ibms.sinica.edu.tw) (32). SNPs on the Illumina Cancer Panel were
selected with priority (http://www.illumina.com/products/cancer_snp_panel
.ilmn). TagSNPs were selected using the r2-based Tagger program (33)
with pairwise r2 � 0.80 and minor allele frequency � 5% in the HAPMAP
Caucasian population (CEU). SNPs probably to be problematic for genotyping

Abbreviations: CI, confidence interval; EA, esophageal adenocarcinoma;
GERD, gastroesophageal reflux disease; PGR, progesterone receptor; OR,
odds ratio; SNP, single-nucleotide polymorphism.
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were eliminated based on the Illumina genotyping performance score for
BeadArray assays.

Genotyping was performed on the Illumina GoldenGate assay at the Broad In-
stitute, Cambridge, MA, by laboratory personnel without the knowledge of case–
control status. Duplicate samples (n 5 48) were randomly selected for quality
control. The concordance rate of the replicate samples for all assays was .99%.

A total of 1536 SNPs were genotyped. After exclusion of 162 SNPs from
unstable assays, 24 SNPs with low minor allele frequency (,0.01) and 20 SNPs
with substantial deviation from Hardy–Weinberg equilibrium (P , 0.0001) and
1330 SNPs in 354 genes were left for analysis (Supplementary Table S1 is
available at Carcinogenesis Online).

Statistical analysis

Among the study subjects genotyped, 31 (8%) of the EA cases and 21 (6%) of
the controls were removed from the data analysis since they had .10% miss-
ing genotype information. We further restricted the analysis to Caucasians
(.90% of the study subjects) and the study subjects with complete information
on age, gender and smoking status (97% cases and 93% controls).

Genotype frequencies among controls were tested for departure from
Hardy–Weinberg equilibrium by the Pearson v2 test (degree of freedom 5 1).
The selected principal characteristics were evaluated using v2, Fisher exact and
t-tests as appropriate.

Several potential confounders were adjusted for in the multiple regression
models: age, gender, smoking status, body mass index at 18 years old, alcohol
intake and prior history of GERD. As no confounding was seen (changes in
‘estimated effects’ ,0.2) by these variables alone or together on the associa-
tions of interest, the results presented are only adjusted for age and gender.

To control the overall type I error rate while adjusting for correlation be-
tween SNPs, empirical P-values based on global random permutation tests
were computed. Specifically, we jointly permuted the case–control status
and the demographic covariates of each subject and recorded the minimal
P-value for each permuted dataset. The distribution of the minimal P-values
obtained from 10 000 permuted datasets was used to derive the empirical
significance of the observed test statistic (Ppermutation). The adjusted global-
wide P-values were determined as Padjusted 5 P (Pobserved � Ppermutation). All
reported P-values are based on two-sided tests. An adjusted P-value ,0.05 was
considered to be statistically significance. Data were analyzed using the SAS�
software version 9.1 (SAS Institute, Inc., Cary, NC) and R version 2.1.0 (The R
Project for Statistical Computing, Vienna, Austria; http://www.r-project.org/).

Pathway-based analysis was performed by the logistic kernel machine regres-
sion test for genetic data (Michael,C., Wu,P.K., Michael,P. Epstein, Deanne,
M.Taylor, Stephen,J.Chanock, David,J.Hunter and Xihong Lin, in preparation).
Specifically, for each pathway, we analyzed all the SNPs within the pathway
simultaneously and tested for their joint effect on the outcome, while adjusting
for the potential confounders (age and gender). We applied the logistic kernel
machine regression test of Liu et al. (34) using the identical-by-state kernel
function (35) to measure genetic pathway similarity between subjects. This ap-
proach tests whether pairwise genetic similarity in the pathway (defined as the
proportion of alleles shared identical-by-state across the pathway) is correlated
with phenotypic similarity while adjusting for confounding covariates. Subjects
with missing genotype values, for the SNPs in the pathway, were initially omitted
from the pathway analysis. Pathway analyses in which the missing values were
first imputed to the most common genotype (for each SNP) generated results that
were concordant with the complete-case-only pathway analyses. The Bonferroni
correction (36) was used to control for multiple comparisons.

Individual SNP analysis was performed among the 1330 SNPs by using
multiple logistic regressions with additive genetic effect models. Dominant
genetic effect models were used to test for interactions. Likelihood ratio tests
were used to test the significance of the interaction terms.

Results

Demographics

A total of 335 cases and 319 controls were included in the final
analyses. The distributions of selected characteristics among study
subjects are summarized in Table I. Cases were older than controls
and had a greater proportion of males. All cases and controls were
Caucasians. Body mass index at 18 years was higher in cases than in
controls. Not surprisingly, more smokers, alcohol drinkers and higher
GERD prevalence were seen in the cases, as these are known risk
factors for the development of EA.

Pathway and SNP effects

A total of 1330 SNPs in 354 genes were successfully genotyped.
Under the pathway-based analysis, we categorized the 354 genes into

14 pathways (Table II): carcinogens/procarcinogens metabolism,
DNA repair, cell cycle control, apoptosis, inflammation, cell growth,
cell signaling, angiogenesis, metastasis, sex hormone signaling, im-
munity, molecular transport, DNA methylation and telomere mainte-
nance. As expected, several genes overlap between pathways. Only
the apoptosis pathway remained significant after correcting for
multiple comparisons (nominal P 5 0.0004, Bonferroni P 5 0.006).

TagSNPs of rs3127075 in CASP7 (nominal P 5 0.0001, permuta-
tion P , 0.05) and rs4661636 in CASP9 (nominal P 5 0.0004, per-
mutation P 5 0.2) are the top SNPs in the apoptosis pathway
associated with EA risk. The minor allele frequencies of CASP7
rs3127075 and CASP9 rs4661636 among the control population were
0.15 and 0.33, respectively. An increased risk was observed among
subjects with polymorphisms rs3127075 in CASP7 [odds ratio
(OR) 5 1.93; 95% confidence interval (CI) 5 1.40–2.67] and
rs4661636 in CASP9 (OR 5 1.60; 95% CI 5 1.24–2.05) after adjust-
ment for age and gender. No confounding effects of smoking status,
body mass index at 18 years old, alcohol intake and prior history of
GERD were observed by adjusting for these variables alone or
together on the associations of interest.

Table I. Distribution of study subjects by demographic and risk factors

Variablea EA

Case (n 5 335) Control (n 5 319) P-value

Age (years) (range) 64 (31–91) 57 (30–83) ,0.0001
Sex ,0.0001

Male (%) 295 (88.1) 181 (56.7)
Female (%) 40 (11.9) 138 (43.3)

Smoking ,0.0001
Never (%) 66 (19.7) 112 (35.1)
Ever (%) 269 (80.3) 207 (64.9)

Body mass index at age 18 0.0003
,25 (%) 231 (69.0) 261 (82.3)
25–29 (%) 84 (25.0) 47 (14.8)
�30 (%) 20 (6.0) 9 (2.9)

Alcohol intake 0.35
Never (%) 26 (11.6) 41 (18.7)
Ever (%) 199 (88.4) 178 (81.3)

Prior history of GERD ,0.0001
No (%) 143 (49.8) 45 (65.2)
Yes (%) 144 (50.2) 24 (34.8)

aNumber and percent of group (%). Percents are rounded.

Table II. Results of the pathway analyses

Pathway Number
of genes

Number
of SNPs

Nominal
P-valuea

Bonferroni
P-value

Carcinogens /procarcinogens
metabolism

71 201 0.0119 0.1663

DNA repair 51 133 0.2218 1.0000
Cell cycle control 48 166 0.0417 0.5832
Apoptosis 41 234 0.0004 0.0062
Inflammation 37 224 0.0725 1.0000
Cell growth 30 63 0.6744 1.0000
Cell signaling 28 83 0.5267 1.0000
Angiogenesis 15 145 0.2296 1.0000
Metastasis 15 18 0.4344 1.0000
Sex hormone signaling 11 65 0.0583 0.8160
Immunity 10 20 0.8972 1.0000
Molecular transport 8 16 0.2100 1.0000
DNA methylation 4 14 0.2667 1.0000
Telomere maintenance 1 5 0.0174 0.2432

aPathway-based analysis assessed by the logistic kernel machine regression
adjusted for age and sex. Significant pathway effect after correcting for
multiple comparisons is indicated in bold.
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We tested for possible joint effect between the polymorphisms
rs3127075 in CASP7 and rs4661636 in CASP9 as caspase-7 is one
of the downstream effectors activated by caspase-9 in the apoptosis
pathway. Compared with the subjects with homozygous wild type of
both CASP7 rs3127075 and CASP9 rs4661636, the subjects who carry
the variant alleles of both CASP7 rs3127075 and CASP9 rs4661636
have 3.52 times higher risk of having EA (Table III).

Interaction effects

We conducted further analyses to evaluate the association of these
SNPs with smoking and gender. There was no significant gene–
smoking interaction effect after adjusting for multiple comparisons.
Significant gene–gender interaction was observed among the poly-
morphism rs572483 in PGR (Table IV; nominal P , 0.0001, permu-
tation P , 0.05). A protective effect was observed among women
carrying the variant G allele (adjusted OR 5 0.19; 95% CI 5 0.08–
0.46) but was not observed among men (adjusted OR 5 1.38; 95%
CI 5 0.95–2.00).

Discussion

To our knowledge this is the first large-scale systematic pathway-
based study to investigate the role of common genetic variation in
susceptibility to EA. In this case–control study, we analyzed 14 path-
ways that are potentially important in carcinogenic processes and
found that the genetic variants in the apoptosis pathway to be signif-
icantly associated with EA risk after correction for multiple compar-
isons. Polymorphisms of rs3127075 in CASP7 (nominal P 5 0.0001,
permutation P , 0.05) and rs4661636 in CASP9 (nominal P 5
0.0004, permutation P 5 0.2) are the top SNPs in the apoptosis path-
way associated with EA risk.

Apoptosis, a genetically controlled process of programmed cell
death, provides a protective mechanism by removing DNA-damaged
cells that could either interfere with normal function or lead to neo-
plastic proliferation (37,38). Resistance to apoptosis is an important
indicator related to esophageal carcinogenesis and chemotherapy re-
sistance (38–42). Apoptosis activation occurs through the caspase

family in both mitochondrial and death receptor pathways (43).
CASP7 knockout mice were reported to be resistant to endotoxin-
induced apoptosis (44). An inactivation mutation of the caspase genes,
CASP7, has been found in esophageal cancer cells (42). It is plausible
that SNPs in multiple genes in this pathway could affect cancer risk,
as caspase-8, -9 and -10 initiate a cascade of caspase activation by
cleaving downstream effectors such as caspase-7, which consequently
causes cell death (45,46). Polymorphisms in CASP7 and CASP9 genes
have found to be associated with several diseases including cancers
(47–50) but have not been investigated in the EA risk. Polymorphisms
of rs3127075 in CASP7 and rs4661636 in CASP9 are the top SNPs
in the apoptosis pathway were associated with EA risk in our study.
Our tagSNP CASP7 rs12416109 is in complete linkage disequilibrium
with CASP7 rs2227309 (r2 5 1; D’ 5 1), which has been found to be
associated with different CASP7 expression level and rheumatoid
arthritis by Garcia-Lozano et al. (51), although the association of
CASP7 rs2227309 with rheumatoid arthritis was not replicated in
another study (52). The tagSNP CASP7 rs12416109 in our study
did not show significant association with EA risk (data not shown).
The polymorphism rs4661636 in CASP9 was found to be associated
with non-Hodgkin’s lymphoma in a pooled analysis of three popula-
tion-based case–control studies (53). In a Korean population, genetic
polymorphisms in CASP7 and CASP9 were also found to be associ-
ated with survival in early-stage non-small-cell lung cancer and with
worse outcome with the two genotypes combined (54). Different
genetic polymorphisms in CASP7 and CASP9 have been found to
be associated with these different diseases, possibly because the re-
ported SNPs are in linkage disequilibrium with a nearby functional
SNP. The observed associations in our study provide additional mo-
lecular epidemiologic evidence supporting the proposed role of apo-
ptosis genes in EA risk.

Another interesting finding of the study is the gene–gender inter-
action effect of the PGR gene. A protective effect was observed
among women carrying the variant G allele (adjusted OR 5 0.19;
95% CI 5 0.08–0.46) but was not observed among men (adjusted
OR 5 1.38; 95% CI 5 0.95–2.00). Since the high male to female
rate ratios are not probably to be explained by the different lifestyle
risk factors among males and females (55), the different levels of
hormones between genders may provide some further insights into
the EA mechanisms. These results should be treated with caution due
to the limited female cases in the current study. Further studies are
needed to investigate the role of rs572483 in PGR gene in relation to
the EA susceptibility.

The controls were selected to represent the general middle-aged
adult distribution of Massachusetts population (56). While the case
and control groups differed in several risk factors (Table I), we did not
find the observed genetic associations confounded by these risk fac-
tors. No confounding bias was detected using multiple logistic regres-
sion models adjusting for these variables alone or in combination on
the associations of interest.

It is important that the observed associations be confirmed in
a larger, independent study. Although functionality is not known for
all of the genotyped SNPs on our platform, our results are biologically
plausible given the connections between the variants in apoptosis

Table III. The frequencies and adjusted ORs of genotypes of CASP7
rs3127075 and CASP9 rs4661636 to the susceptibility of EA

Polymorphism Case (%) Control (%) Adjusted OR
(95% CI)a

CASP7 CASP9
rs3127075 rs4661636
GG CC 67 (20.0) 99 (31.0) Ref
GC or CC CC 51 (15.2) 41 (12.9) 1.98 (1.13–3.47)
GG CT or TT 122 (26.4) 133 (41.7) 1.51 (0.98–2.32)
GC or CC CT or TT 95 (28.4) 46 (14.4) 3.52 (2.12–5.87)�

aORs assessed by logistic regression adjusted for age and gender.
�P , 0.0001.

Table IV. The frequencies and adjusted odds ratio of PGR rs572483 polymorphism stratified by gender

Polymorphism Women Men

Case (%) Control (%) Adjusted OR (95%CI)a Case (%) Control (%) Adjusted OR (95% CI)a

PGR
rs572483b

AA 30 (75.0) 55 (39.9) Ref 130 (44.7) 95 (52.5) Ref
AG or GG 10 (25.0) 83 (60.1) 0.19 (0.08–0.46)� 161 (55.3) 86 (47.5) 1.38 (0.95–2.00)

aORs assessed by logistic regression adjusted for age.
bSignificant interaction effect (nominal P , 0.0001, permutation P , 0.05) according to the likelihood ratio tests.
�P , 0.0005.
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genes and EA risk. However, associations with any specific SNP
should be interpreted with caution until functionality is identified
and these results are replicated.

Supplementary material

Supplementary Table S1 can be found at http://carcin.oxfordjournals
.org/
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