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A large scale hearing loss screen reveals an
extensive unexplored genetic landscape for
auditory dysfunction
Michael R. Bowl

The developmental and physiological complexity of the auditory system is likely reflected in

the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic

loci have been identified, and there are more than 400 human genetic syndromes with a

hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in

mouse and human, but we remain ignorant of the full extent of the genetic landscape involved

in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we

undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we

identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast

majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored

genetic landscape involved with auditory function.
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H
earing impairment is the most common sensory deficit in
the human population. According to figures from the
World Health Organisation, there are currently around

360 million people worldwide living with mild to profound
hearing loss. Approximately half of these cases have a genetic
basis, with the hearing loss either occurring as an isolated con-
dition (non-syndromic, 70%) or presenting with additional phe-
notypes (syndromic, 30%). Around 150 non-syndromic loci have
been identified in humans (hereditaryhearingloss.org) and over
400 genetic syndromes are known that include hearing loss1, 2. To
date, around two-thirds of the genes for non-syndromic hearing
loss loci are known3, 4, and, while the causative genes for several
of the well-known hearing loss syndromes have been identified5,
the vast majority of genes underlying syndromes with hearing
loss are unknown. As such, we are far from having a complete
understanding of the genetics underlying hearing function.
Importantly, we do not know the extent of the mammalian gene
set that impacts auditory function. Mouse genetics has played an
important role in our understanding of the development and
functioning of the mammalian auditory system6, 7. Utilising
forward-genetic screens, many hearing loss mouse mutants have
been identified8, 9, and characterisation of these has enabled genes
critical for hearing function to be elucidated. Allied with gene-
driven approaches, mouse mutants continue to help identify the
molecular mechanisms and physiological bases of human hearing
impairment. Moreover, the availability of a disease model that
allows for the study of pathological changes occurring within the
cochlea is invaluable for understanding disease onset and
progression.

The International Mouse Phenotyping Consortium (IMPC)
aims to generate and phenotype a null mutant for every gene in
the mouse genome (www.mousephenotype.org)10, 11. Until
recently, IMPC has generated mouse mutants using principally
the International Knockout Mouse Consortium (IKMC) tm1b
null allele (see Methods section and Skarnes et al.12). Homo-
zygous viable mutants, or heterozygotes in the case of homo-
zygous lethal lines, enter an extensive adult phenotyping pipeline
that includes a range of phenotyping tests generating broad-based
phenotype information across diverse physiological systems,
including hearing10. To date, the IMPC has generated over 5800
genotype confirmed mutant strains and of these, 3006 have been
subject to Auditory Brainstem Response (ABR) testing to deter-
mine their hearing thresholds.

Here, using a robust statistical approach coupled with manual
curation, we analyse the ABR data set generated from the 3006
mutant lines and identify 67 that show elevated hearing thresh-
olds compared to wild-type control mice, matched for strain,
gender and age. Our findings identify a significant number of
candidate hearing loss genes that have not previously been
reported, which not only increases our knowledge of the auditory
genetic landscape and the molecular mechanisms required for
hearing, but also provides a fund of new genes for the many
unidentified loci in the human population.

Results
Auditory phenotyping. In order to identify genes required for
hearing function, the consortium uses an ABR test in the adult
pipeline at week 14 that assesses hearing at five frequencies—6,
12, 18, 24 and 30 kHz. The consortium aimed to analyse a
minimum of four mutant mice for each gene and, in most cases,
both mutant males and females were analysed. Data from each
IMPC centre is uploaded to the IMPC Data Coordination Centre,
where it is subject to data validation and quality control (QC)
procedures prior to statistical analysis and public access (www.
mousephenotype.org).

Statistical analysis. Statistical analysis for a high-throughput
project such as IMPC requires a robust generic analysis pipeline
to produce statistically significant and biologically relevant
results. IMPC uses the ‘PhenStat’ package13, which employs a
number of different statistical techniques appropriate to the
phenotype data being examined.

To date for ABR data, a mixed model approach has been
employed in IMPC, using sex and genotype as fixed parameters
and date-of-procedure as a random term (in order to allow for
any batch effects). The genotype parameter is tested for its
significant effect on the model, and this p-value is returned for the
genotype effect within the data. However, mixed models cannot
be fitted when the target values are all the same, which
occasionally happens in ABR data (e.g., when every mutant
animal is profoundly deaf at all frequencies). Thus we adopted a
different method to undertake a more robust analysis of the ABR
data set.

The PhenStat package includes a ‘reference range plus’
function13. Within this function, a reference range is created by
ordering all of the baseline data points and creating a 98%
reference range. This is achieved by taking the 1% percentile and
99% percentile data values, between which 98% of all values lie.
The reference range is a non-parametric technique that makes no
assumptions about the data distribution. The number of
observations within and without this range is counted for the
baseline and the mutant data values. A two-way contingency table
is thus created. A Fisher’s exact test is then used to compare the
baseline values against the mutant value, producing a p-value that
reflects whether the two sets of counts are from the same data set.
For our analysis we employed all the available IMPC ABR mutant
data, and C57BL/6N wild-type data. For each genotype, the
mutant and matched wild-type data were used to create reference
ranges, build contingency tables, and calculate p-values.

Using this approach, the available ABR data from 3006 lines
yielded 328 candidate hearing loss genes (Supplementary Data 1).
The genotype p-values provide an initial indicator of possible
biological significance. As such, the ABR phenotyping data for
each of these 328 lines underwent expert-led manual curation to
assess phenodeviance and identify a robust data set of candidate
hearing loss genes with a low false discovery rate.

Manual curation. The ABR threshold data for each of the 328
individual mutant strains were examined to ascertain the spread
of data points in relation to their respective centre wild-type
mean. Strains showing discordant thresholds within sex were
removed from the list. In addition, strains that exhibited elevated
thresholds at only one middle-range frequency (12, 18 or 24 kHz)
were also removed from the list. Employing these criteria led to
261 strains being removed from further analyses. Strains that
showed highly concordant elevated thresholds at either, low fre-
quency (6 kHz), high frequency (30 kHz) or across two or more
frequencies, were deemed to be true hearing-impaired mutants
(65 strains). In addition, strains with hearing thresholds that were
discordant between sex, but concordant within sex were also
deemed to be true hearing-impaired mutants (2 strains). Using
these criteria, our analyses generated a list of 67 mutant strains
that we deemed to be robust auditory pheno-deviants (Supple-
mentary Table 1; Fig. 1). The majority of these 67 candidate
hearing loss genes were identified from homozygous viable
mutants (Supplementary Table 1). However, a small number of
heterozygous mutants (eight in total) from homozygous lethal
lines showed hearing impairment.

The stringent critical p-value and manual curation parameters
were selected to allow production of a robust gene list with few
false positives. However, we recognise that our analyses will likely
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generate some false negatives. To test this, we examined the set of
261 excluded genes across all relevant gene function databases for
evidence of an association with hearing loss. PubMed, OMIM and
MGI searches demonstrated that only nine had evidence for an
auditory phenotype in either human or mouse (Supplementary
Table 2). Six of these genes, however, showed association with
hearing loss in human patients only and studies of mouse
mutants have failed to uncover an auditory phenotype. This may
reflect a difference in the role of these genes between mouse and

human, or alternatively, the impact of genetic background on
penetrance.

Candidate hearing loss gene classification. Dependent on their
auditory profile, we assigned each of the 67 candidate genes to
four broad classes of hearing loss using the following criteria: only
the higher frequencies affected—high-frequency hearing loss (13
genes); only the lower frequencies affected—Low-frequency
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Fig. 1 Summary audiograms for hearing loss genes identified by individual IMPC centres. At each centre auditory thresholds (dB SPL) were assessed at five
frequencies—6, 12, 18, 24 and 30 kHz. Each graph, displaying the data from a single IMPC centre, portrays a reference range (yellow shaded area) and

median (dashed line) for control wild-type animals. The colour of each audiogram line relates to the classification of hearing loss as shown in Fig. 2 and
listed in Table 1. Severe, magenta; mild, orange; high frequency, green; low frequency, blue. Phenotyping centres: GMC, Helmholtz Zentrum Munchen;

Harwell, MRC Harwell; ICS, Institut Clinique de la Souris; JAX, Jackson Laboratories; RBRC, RIKEN Tsukuba Institute, BioResource Center; TCP, The Centre
for Phenogenomics; UCD, University of California, Davis; WTSI, Wellcome Trust Sanger Institute
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hearing loss (10 genes); if three or more frequency thresholds are
≥45 dB above the centre median—severe hearing loss (25 genes);
and, if <3 frequency thresholds are ≥45 dB above the centre
median—mild hearing loss (19 genes) (Fig. 2; Table 1; Methods
section). PubMed, OMIM and MGI searches indicated that 15 of
the 67 genes were known hearing loss-associated genes. However,
despite these database searches 52 genes had not been associated
with an auditory phenotype in either mouse or human. These
genes were found in all four classes of hearing loss (Fig. 2;
Table 1).

Our investigation of false negatives (see above) allows us to
calculate a false omission rate for loci that may have been missed
by our stringent manual curation of the set of 261 genes for which
there was initial evidence of an auditory phenotype. Overall, the
false omission rate for known loci is 3/261 or around 1%.
Extrapolating to novel loci, based on the ratio of novel to known
loci (52/15) within the set of 67 candidate hearing loss genes, we
surmise that around 10 (i.e., 3 × 52/15) additional loci would be
undiscovered from the set of 261 genes. This provides an estimate
of 13/261 for the false omission rate.

The screen we have undertaken is effectively unbiased for both
the developmental and physiological origin of the auditory
phenotype, as well as for syndromic features that might be
associated with the observed hearing loss. Without further
investigation of individual mutants, we are unable to distinguish
between hearing loss due to a deficit at the level of the central
auditory pathway, a sensorineural origin in the inner ear, or due
to conductive hearing loss due to middle ear problems, such as
otitis media. However, we can take advantage of the compre-
hensive phenotype assessment that each mutant undergoes in the
IMPC phenotyping pipeline, and are able to assess the prevalence
of additional phenotypes in the hearing loss mutants. In
Supplementary Table 3, we present a summary of the additional
phenotypes observed for the 67 mutants, both the known and

novel candidate hearing loss genes. Sixty of these mutants (~90%)
show multiple phenotypes (ranging from 1 to 64 additional
significant phenodeviant parameters). We observed that a large
number of mutants were positive for the Combined SHIRPA and
Dysmorphology (CSD) test (33 out of 67, ~50%). Our analysis
indicates that this is due to the absence of a Preyer reflex in
response to a click box test (see Methods section), which is a
strong indicator of a profound auditory deficit. Indeed, the
majority of mutants classified as severe hearing loss were reported
to have an absent Preyer reflex (20 out of 25, 80%)
(Supplementary Table 3). Auditory mutants can sometimes also
display a vestibular component to their abnormal phenotype. The
CSD test includes a visual inspection for behavioural signs that
may indicate vestibular dysfunction, e.g., head bobbing or
circling. Only 3 of the 67 candidate hearing loss mutants were
identified as having a head bobbing/circling phenotype: Elmod1,
Myo7a and Ush1c, which are known hearing loss genes. The
respective allelic mutants roundabout, shaker-1 and deaf
circler have previously been reported to exhibit vestibular
dysfunction14–16. However, aside from the CSD test, there is no
obvious pattern to the prevalence of additional phenotypes
observed in the mutants tested. Of the 60 mutants that display
additional phenotypes: 44 have 1-to-10 additional phenodeviant
parameters; 10 have 11-to-20 additional phenodeviant para-
meters; 4 have 21-to-30 additional phenodeviant parameters; and
2 have >50 additional phenodeviant parameters detected. In
contrast, seven of the mutants do not show any significant
phenodeviance for any other phenotype parameter tested.

Protein network interactions and pathways. The products of the
52 novel candidate hearing loss genes encompass a very wide
range of functions, from structural proteins to transcription fac-
tors, which reflects the complexity and cell type diversity of the
auditory system. We assessed for potential interactions between
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Fig. 2 Summary audiograms for the 67 hearing loss genes identified within the IMPC. ABR screen assessing auditory thresholds (dB SPL) at five
frequencies—6, 12, 18, 24 and 30 kHz. The genes are divided into four broad categories of hearing loss—severe (magenta lines), mild (orange lines), high

frequency (green lines) and low frequency (blue lines). In each category, the median of auditory thresholds for control mice for each of the contributing
centres to genes in that category is shown (black lines). GMC, Helmholtz Zentrum Munchen; Harwell, MRC Harwell; ICS, Institut Clinique de la Souris;

JAX, Jackson Laboratories; RBRC, RIKEN Tsukuba Institute, BioResource Center; TCP, The Centre for Phenogenomics; UCD, University of California, Davis;
WTSI, Wellcome Trust Sanger Institute
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the encoded proteins of the 52 genes with known human her-
editary hearing loss dominant (DFNA), recessive (DFNB) and X-
linked (DFNX) gene products. The predicted network interaction
map shows that a significant number of known genes (65) formed
a densely connected hub that incorporated 11 IMPC novel genes
(Fig. 3). However, the majority of the 52 genes (41/52) were
unconnected, free nodes, highlighting the unexplored and diverse

functions revealed. We also undertook a gene ontology analysis of
both the novel and known IMPC hearing loss gene sets (Supple-
mentary Table 4). While there was no significant gene ontology
enrichment in the 52 candidate hearing loss genes, we found a wide
range of predicted and enriched functions when the novel and
known hearing loss genes were amalgamated and analysed together.
We observed that in many cases while the candidate hearing loss
genes were represented at the highest ontological level, this declined
markedly at associated lower levels (Fig. 4), again reflecting the
novel and unexplored functionality of this set of genes and potential
new insights into gene function within the auditory system.

For three genes, recent reports from the Consortium confirm the
hearing loss in mutant mice—Spns217, Nptn18, 19, Slc4a1020—that
emerged subsequent to identification in the IMPC screen. For
example, the identification via the IMPC catalogue of Neuroplastin
(Nptn) as a novel hearing loss gene has recently been extended in a
report that demonstrates a role for this protein in synaptogenesis in
inner hair cells in the organ of Corti in the mouse18. Neuroplastin,
along with Embigin (Emb) and Basigin (Bsg), form a small family of
neural cell adhesion molecules, belonging to the Ig superfamily. It is
noteworthy that we report here Emb as a candidate hearing loss
gene demonstrating high-frequency hearing loss, indicating that this
family of neural CAMs merits further investigation as to their wider
role in the auditory system.

Discussion
We have assessed 3006 mouse mutants for hearing using an ABR
test, and identified a large number of candidate hearing loss
genes. After automated statistical analysis of the data set followed
by manual curation, we uncovered a set of 67 mutants with
hearing impairment. Of the 67 genes, 15 were known hearing loss
loci, while the vast majority, 52, were novel candidate hearing loss
genes that had not previously been associated with hearing loss.

Each of the 52 candidate hearing loss genes will merit further
investigation. Some of the candidate genes are known to be
expressed in the inner ear (e.g., Atp2b1) or to play a role in some
aspect of hair cell function in the cochlea (e.g., Sema3f and sensory
hair cell innervation)21, 22. However, for the majority of candidate
loci, it will be important to further explore expression and function
in the auditory apparatus. In particular, an ABR screen is relatively
unbiased and will reveal auditory phenotypes that arise due to
conductive hearing impairment as well as sensorineural hearing
loss, or possibly a combination of both. We cannot rule out that
some of the candidate hearing loss genes impact on middle ear
function, or cause otitis media. This class of hearing loss genes is
unlikely to be represented by mutations with severe hearing loss or
high-frequency hearing loss, and would be more likely to be pre-
sent in the class of genes with low-frequency or mild hearing loss.
The mouse has proved an excellent model for the identification of
genes involved in chronic otitis media23–25 and it will be interesting
to determine if the set of candidate hearing loss genes uncovered
here further extends our knowledge of the genetic pathways
involved in this form of hearing loss.

The unbiased nature of the IMPC phenotyping pipeline
encompassing a wide range of phenotyping tests covering various
biological systems allowed us to explore the pleiotropic state of
the mutants that we have discovered that may inform us about
the syndromic nature of the candidate hearing loss genes we have
identified. In the human population, many forms of hearing loss
present as a component of a wider genetic syndrome with a range
of phenotypes. It is quite likely that some non-syndromic forms
of hearing loss may also have additional unrecognised pheno-
types. Large-scale studies of mutants analysed through compre-
hensive phenotyping pipelines demonstrate a high level of
pleiotropy26, 27. Indeed for the 67 genes uncovered via our screen,
we find that the majority show additional phenotypes. This is true

Table 1 Summary of known and novel hearing loss genes

identified in the IMPC hearing loss screen

Type of hearing loss Known genes Novel genes

Severe (all frequencies) Adgrv1 A730017C20Rik

Cib2 Duoxa2

Clrn1 Eps8l1a

Col9a2 Klc2

Elmod1 Nedd4l

Gipc3 Nptnb

Ildr1 Slc5a5

Marveld2 Spns2b

Myo7a Tmem30b

Ocm Tmtc4

Otoa Tox

Tprn Zfp719

Ush1c

Mild (all frequencies) Srrm4 Acvr2a

Adgrb1

Ankrd11

Ap3m2

Ap3s1

Baiap2l2

Ccdc92

Cyb5r2

Gga1

Mpdz

Myh1

Nisch

Odf3l2

Slc4a10b

Tram2

Ube2b

Ube2g1

Vti1a

High frequency Aak1

Acsl4

Ahsg

Ccdc88c

Dnase1

Emb

Ewsr1

Gpr152

Ikzf5

Nin

Phf6

Ppm1a

Wdtc1a

Low frequency Gata2 Atp2b1

B020004J07Rik

Gpr50

Il1r2

Klhl18

Med28

Nfatc3

Sema3f

Zcchc14

Genes are categorised into four broad categories of hearing loss
aGenes where only females are affected
bGenes that have been recently published
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for both known hearing loss genes, classified as non-syndromic in
humans, as well as the novel candidate hearing loss genes. We
cannot conclude from these data that the majority of mutants
should be classified as syndromic, but rather as with many genetic
and disease systems, hearing loss genes demonstrate considerable
pleiotropy, which in some cases in humans may present as syn-
dromic disease features. Finally, we could not discern any pat-
terns or prevalence in terms of organ, disease or system areas
across our gene set. This might require a more extensive data set
covering the entire catalogue of loci involved in auditory function.

In our screen for auditory-related genes, we have explored
around 15% of the mouse genome. Thus, we calculate that at a
minimum the mammalian genome carries around 450 genes
required for hearing function. In humans, around 150 non-
syndromic hearing loss (DFNA, DFNB and DFNX) loci have
been mapped, with 103 underlying genes identified
(www.hereditaryhearingloss.org). There are over 400 genetic
syndromes that include a hearing loss component1, 2. However,
most of the genes underlying syndromic hearing loss are

unknown5. Our analysis thus reveals a very extensive and unex-
plored genetic landscape of genes required for auditory function
and uncovers a large set of novel candidate hearing loss genes. We
should emphasise that 450 genes represents a minimum set, as
our screen may have failed to uncover several classes of genes,
which contribute to hearing in either mouse or human. First, we
discuss above our estimate of the false omission rate arising from
our stringent manual curation of the set of 328 candidate genes.
Moreover, we cannot rule out that there are hearing loss genes, in
particular those with modest threshold effects, which our ABR
test failed to identify. Also our analysis of the ABR data from
3006 genes did not include a waveform analysis that may have
revealed further mutants. Second, we are unable to assess the
contribution to auditory function of embryonic lethal, develop-
mental mutations, which on different genetic backgrounds or in
different genetic contexts may be homozygous viable and man-
ifest a hearing loss phenotype not detectable in heterozygotes.
Third, the hearing loss screen will not identify age-related hearing
loss (presbycusis) genes, which again are likely to add

Tnc

Hgf

Sema3f

Met

Nedd4l
Rdx

Wdtc1
Atp2b1

Otoa
Otog

Ocm

Cib2

Phf6

Ewsr1

Adgrb1

Srrm4

Nin

Dnase1

Ccdc92

Klc2

Ube2b

Ube2g1

Gata2

Tmem30b

Ikzf5

Gpr152

Ccdc88c

Ahsg

Gpr50

Vti1a

Nptn

Nfatc3

B020004J07Rik

Emb

Mcm2

Serpinb6a

S1pr2

Nars2

Kars

Adcy1

Ankrd11

Odf3l2

Klhl18

Spns2

Cyb5r2

Med 28

Il1r2

Tmtc4

A730017C20Rik

Ap3m2

Ildr1

Zcchc14

Nisch

Tox

Zfp719

Acvr2

Ppm1a

Aak1

Baiap2l2

Tram2

Ap3s1

Myo6

Mpdz

Clrn1
Gipc3

Slc22a4

Slc17a8

Crym

Marveld2

Tmie
Gjb2

Smpx
Tprn

Pou4f3

Pou3f4

Slc5a5

Duoxa2

Slc4a10

Gjb3

Cabp2

Myh9

Tmc1 Tjp2

Myh1

Gjb6

Elmod3

Slc26a4

Kcnq4

Loxhd1 Coch

Tecta

Six1

Eya4

Dlap1

Eps8
Eps8l2Adgrv1

Slc26a5

Dfnb59

Actg1

Cldn14

Elmod1

Grxcr1

Lhfpl5
Pcdh15

Cdh23

Myh14

Myo3a

Myo7a

Wfs1

Strc Eps8l1

Ptprq

Otof

Ush1c

Myo15 Triobp
Whrn

Dfna5
Col11a2

Col9a2

Col4a6

Acsl4

Esrrb

Ggal1

Espn

DFNA

DFNA/DFNB

IMPC NOVEL

IMPC KNOWN

DFNB

DFNX

Fig. 3 A network interaction map incorporating the proteins encoded by the 67 hearing loss genes identified from the IMPC ABR test. A STRING interaction

map, incorporating known and predicted interactions, was generated for the known (15) and novel (52) IMPC hearing loss genes. Blue nodes are the IMPC
novel candidate genes. Other nodes are previously reported genes that underlie hereditary hearing loss in humans, including DFNA (dominant hearing loss

genes), DFNA/DFNAB (hearing loss genes showing both dominant and recessive inheritance), DFNB (recessive hearing loss genes), and DFNX (X-linked
hearing loss genes). IMPC known genes are a subset of these genes and are highlighted by purple colour. The highly connected interaction map (shaded)

consists of 65 known hearing loss genes and 11 novel candidate IMPC genes. The majority of IMPC novel candidate genes (41/52) are unconnected to the
central network. Thin grey edges show interactions with a combined confidence score of ≥0.4, summated from evidence types: ‘curated databases’;

‘experimentally determined’; and, ‘automated text mining’. Bold red edges show ‘known’ interactions with a combined confidence score of ≥0.4, summated
from ‘curated databases’ and ‘experimentally determined’ only
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substantially to the total number of hearing loss loci20. Finally, the
data from a parallel screen of around 1000 genes reports similar
findings to IMPC27.

In summary, the IMPC programme has identified a significant
number of novel candidate hearing loss genes, amplifying our
understanding of the auditory genetic landscape and providing
the bases for new insights into auditory mechanisms, as well as a
fund of new candidate genes for the many unidentified loci in the
human population. IMPC continues to screen mutants for
hearing loss phenotypes and expects the data set of novel genes to
grow further over the coming years.

Methods
Ethical approval. IMPC Centres breeding mice and collecting phenotyping data
were guided by their own ethical review panels and licensing and accrediting bodies,
reflecting the national legislation under which they operate. Details of their ethical
review bodies and licenses are provided in Table 2. All efforts were made to minimise
suffering by considerate housing and husbandry. All phenotyping procedures were
examined for potential refinements that were disseminated throughout the Con-
sortium. Animal welfare was assessed routinely for all mice involved.

Mouse generation. In the majority of cases, targeted ES cell clones were obtained
from the European Conditional Mouse Mutagenesis Program (EUCOMM) and
Knockout Mouse Project (KOMP) resource12, 28 and injected into BALB/cAnN or
C57BL/6J blastocysts for chimera generation. The resulting chimeras were mated to
C57BL/6N mice, and the progeny were screened to confirm germline transmission.
In a small number of cases, CRISPR/Cas9-mediated non-homologous end joining
was utilised to generate small loss-of-function indels via pronuclear injection of
C57BL/6N zygotes. In both instances, following the recovery of germline-
transmitting progeny, heterozygotes were intercrossed to produce homozygous
mutants. All strains are available from http://www.mousephenotype.org/.

Genotyping and allele quality control. Each mutant line underwent allele vali-
dation at the centre where the mouse model was produced. The consortium website
(http://www.mousephenotype.org) has a webpage dedicated to each gene with a
link to the allele created. Targeted alleles were validated by a combination of short-
range PCR, quantitative PCR and non-radioactive Southern blot29, 30. These
included allele-specific assays undertaken at the level of the ES cell and of the
resulting mouse. The CRISPR-engineered alleles were validated by PCR amplifi-
cation of the targeted locus and Sanger sequencing to confirm introduction of the
required editing event. All QC data, including for CRISPR-engineered alleles and
the guides employed, and Sanger sequencing of the engineered allele, are centrally
deposited in the iMits (International Micro-injection tracking system) database.

This centrally held IMPC database tracks allele generation and enables all mouse
clinics to assess data of any generated strain. These data are freely available on
request. In addition, when mice or germplasms are distributed from an IMPC
repository, the full allele-specific genotyping details are communicated.

Housing and Husbandry. Housing and husbandry data are captured for each
IMPC Centre as described in Karp et al.31 and is available from the IMPC portal
(http://www.mousephenotype.org/about-impc/arrive-guidelines). In addition, per-
tinent metadata parameters for each IMPC centre are also available from the portal
including, cage-type, caging density, bedding and enrichment details, feed con-
stituents, lighting regimes, temperature and humidity of animal holding rooms,
and full strain nomenclature.

Auditory threshold phenotyping data collection. We have used data collected
from the IMPC high-throughput phenotyping pipeline, which is based on a
pipeline design where a mouse is characterised by a series of standardised and
validated set of tests underpinned by standard operating procedures (SOPs). The
IMPReSS (International Mouse Phenotyping Resource of Standardised Screens)
database (https://www.mousephenotype.org/impress), defines the experimental
design, detailed procedural information, the data that is to be collected, age of the
mice, significant metadata parameters and data QC for IMPC pipeline tests. Unlike
most experiments, we cannot randomly allocate animals to experiment groups,
rather we rely on Mendelian inheritance to provide the randomisation method.
However, at different institutes a variety of approaches are taken to minimise bias
such as order effects including: alternate animal order; cage casual randomisation;
and casual randomisation within a cage. There were no consistent approaches to
blinding for ABR data collection and annotation across the institutes within IMPC.
These issues are discussed with regard to the ARRIVE guidelines at http://www.
mousephenotype.org/about-impc/arrive-guidelines.

The IMPC phenotyping pipeline included an ABR test32, carried out at
14 weeks, to determine hearing sensitivity using evoked potential recordings in
anaesthetised mice (IMPC_ABR_002). Hearing was assessed at five frequencies—6,
12, 18, 24 and 30 kHz. Tone pips were presented from 0 to 85 dB sound pressure
level (SPL) in 5 dB intervals and were 5 ms in duration with a 1 ms rise/fall,
presented 256 times at 42.6/sec. If hearing loss was suspected for a particular
mutant line (e.g., absence of ABR waveforms at any stimulus level), stimulus
presentation levels were extended to 95 dB SPL. Tone stimuli were presented in
decreasing frequency order for a particular sound level and from low to high
stimulus level. A click-evoked ABR is optional, and some centres, but not all, also
acquired click data, but we have not included this in our analysis. The ABR test is
conducted open field with hearing thresholds determined for one ear. Importantly,
each centre records significant metadata parameters including: equipment
manufacturer; equipment model; recording environment; anaesthetic agent; and
anaesthetic dose. In addition, the Combined SHIRPA and Dysmorphology test
[IMPC_CSD_003], carried out at 9 weeks, includes a click box test that provides a
crude assessment of hearing9. The click box, which emits a high-frequency (~20 kHz)
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Fig. 4 Distribution of IMPC known and IMPC novel hearing loss genes on three different gene ontology-directed acyclic graphs. Over-represented gene
ontology terms for a joint data set of IMPC known (K) and IMPC novel (N) hearing loss genes were identified using gProfiler (Supplementary Table 4). The

number of genes associated with any given term were counted and split into known and novel groups. Manual inspection of the enriched gene ontology
terms and the gene count highlighted examples, where IMPC novel candidate genes were depleted at the lower ontology level. Here we show three

examples of enriched gene ontology terms mapped onto their respective directed acyclic graphs (DAGs), alongside the number of known and novel
candidate genes associated with enriched terms. For instance, the first example shows 34 known genes and 10 IMPC novel genes associated with the level

1 GO term ‘Cell Projection’. From the 34 genes, 24 are annotated with ‘Stereocilium’ at level 3 while no novel candidate genes are annotated at this level
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tone stimulus at 90 dB SPL, was held 30 cm above the mouse. When the click box is
activated, a hearing mouse will elicit a ‘Preyer’ reflex (the pinnae flick backwards). A
lack or reduction of Preyer reflex indicates possible hearing impairment.

ABR experimental design. At each IMPC Centre, ABR phenotyping data from
each mutant strain, and age-matched wild-type mice of equivalent genetic back-
grounds, were collected at 14 weeks of age. When possible, cohorts of at least four
mutant mice were tested, with a preference for two male and two female mice. If no
homozygotes were obtained from 28 or more offspring of heterozygote inter-
crosses, the strain was scored non-viable. Similarly, if <13% of the pups resulting
from intercrossing were homozygous, the line was scored as being subviable. In
such circumstances, heterozygote mice were used in the phenotyping pipelines. The
random allocation of mice to experimental group (wild-type vs. knockout) was
driven by Mendelian inheritance. The individual mouse was considered the
experimental unit within the studies. Further detailed experimental design infor-
mation (e.g., exact definition of a control animal) for each phenotyping Centre, or
the blinding strategy implemented is captured with a standardised ontology as
detailed in Karp et al.31 and is available from the IMPC portal (http://www.
mousephenotype.org/about-impc/arrive-guidelines). As a high-throughput project,
the target sample size of four animals per knockout strain is relatively low. The
IMPC determined to set the lowest sample size that would consume the least
amount of resources while achieving the goal of detecting auditory threshold
abnormalities. At times, viability issues or the difficulty in administering the ABR
test might further limit the number of animals. As such, when data are visualised
on the IMPC portal, the number of animals phenotyped is listed.

Data quality control. The data generated in each IMPC centre are captured
centrally by the Data Coordination Centre (DCC), where a team of data wranglers
perform QC. The QC process involves data wranglers checking all data both
manually and with automated methods. QC issues are raised through a QC web
interface, where IMPC centres can respond to confirm it is an issue or alternatively
that the data are correct. Each QC issue is then tracked with the corresponding data
points until it has been corrected by the data contributing centre. Once the data
have passed QC, it is released to the Core Data Archive (CDA) at the European
Bioinformatics Institute, through a regular release schedule. The data set analysed
here consists largely of data from the IMPC data release 5.0 with a smaller set of
pre-QC data from the DCC. For the purpose of this article, the ABR data in this
smaller set were QC’d and manually curated.

Wild-type data sets. Wild-type data sets were assembled for a trait by selecting
wild-type mice that were generated by the same IMPC Centre. The wild-type mice
are analysed with the same genetic background, sex, pipeline and metadata para-
meters (e.g., instrument).

Statistical analysis. ABR data from IMPC release v5.0 along with additional pre-QC
data deposited up until 6 September 2016 was used for the detection of putative
pheno-deviants. In total, data from 3006 mutant strains were available for analysis.
Each knockout strain was examined in three ways: only males, only females and both
sexes combined. A minimum of 20 wild-type data points and 3 mutant data points
was required for the analysis to proceed. The parameters assigned for annotation in
the ABR procedure, stored in IMPReSS (http://www.mousephenotype.org/impress/)
were analysed by comparing the knockout strain with the appropriate wild-type
control data. The default statistical analysis employed for the IMPC annotation
pipeline is a mixed model approach, or a Mann–Whitney inference test may be
employed as an alternative. However, for analysis of ABR data neither approach is
suitable when there is lack of variation within the data set (e.g., if all mutant mice are
profoundly deaf at all the frequencies tested) or due to the step nature of the data,
respectively. Therefore for this analysis, we used an enhanced version of PhenStat
version 2.6.013 that includes a reference range plus approach, which allows identifi-
cation of hearing impairment even when there are few data points or a lack of
variation within the data set. The ‘testDataset’ function within range plus approach
was used with a 98% reference range, produced from the wildtypes for each sex. Per
knockout line, range plus approach classifies phenotype values as normal or low
(below the 1% critical value) or high (above the 99% critical value) for each sex. A
Fisher’s exact test is used to compare the proportions of classification, independent of
sex, between wild-type and knockout (low/normal vs. high and high/normal vs. low)
and the lowest p-value returned. This approach was used due to the small sample size
of the experiment. A critical p-value (p≤ 0.01) was used to generate a list of putative
auditory pheno-deviant knockout lines. This list was used for further manual curation
by domain experts.

Assessing the functional enrichment of hearing loss genes. A single data set
consisting of 103 known human hereditary hearing loss genes (DFNA, DFNB and
DFNX) and 52 IMPC novel hearing loss genes was used for functional assessment.
We used g:Profiler (version r1665_e85_eg32) to find enrichment within the gene
ontology, categories include; molecular function, cellular component and biological
process33. Results were corrected for multiple testing using g:Profiler’s internal
method g:SCS, with enrichments considered significant at q < 0.05. Assessment of

Table 2 Ethical review board information for each phenotyping centre

Institute Information

BCM Baylor College of Medicine Approval committee: Institutional Animal Care and Usage Committee
Approval Licence: AN-5896

GMC Helmholtz Zentrum München Approval committee: Regierung von Oberbayern
Approval Licence: 2532

ICS Mouse Clinical Institute Approval Committee: Com’Eth. agreement nb: 17
Approval licences: internal numbers 2012-009 and 2014-024.
Approval from the Ministry of research: APAFIS#4789-20J6040511578546v2

MRC Harwell Approval committee: Animal Welfare and Ethical Review Body (AWERB)
Approval Licence: 30/2890

Nanjing University Approval committee: IACUC of MARC
Approval Licence: NRCMM9

RBRC RIKEN Tsukuba Institute, BioResource
Center

Approval committee: The RIKEN Tsukuba Animal Experiments Committee

Approval Licence: Approval Number: Exp14—010 Research title: Collection, maintenance, storage,
breeding and distribution of the mouse strains for the Biological Resource

The Jackson Laboratory Approval committee: The Jackson Laboratory Institutional Animal Care and Use Committee (IACUC)
Approval Licence: Institutional Permit: NIH Office of Laboratory
Animal Welfare (OLAW) # A3268-01 OLAW
Assurance # 811101 Production Grant IACUC
Protocol: 99066 Phenotyping grant Animal Use
Summary IACUC protocol 11005

The Centre for Phenogenomics Approval committee: Animal Care Committee (ACC) of The Centre for Phenogenomics
Approval Licence: Animal Use Protocol (AUP) 0153, 0275, 0277, 0279

UCD University of California, Davis Approval committee: UC Davis Institutional Animal Care and Use Committee (IACUC)
Approval Licence: Protocol #18119

WTSI Wellcome Trust Sanger Institute Approval committee: Animal Welfare and Ethical Review Body (AWERB)
Approval Licence: PPL 80/2076 Valid 27 November 2006—3 January 2012; PPL 80/2485 valid 22
December 2011—3 January 2017
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protein interactions was undertaken using STRING (version 10.0) at a combined
medium confidence setting of ≥0.434.

Data availability. Data from this study are available from IMPC at www.
mousephenotype.org. An API in the form of RESTful interfaces is available for
accessing post-QC data from the Core Data Archive (http://www.mousephenotype.org/
data/documentation/data-access), and pre-QC data are also available for manual
download (via Phenoview) or on request (http://www.mousephenotype.org/contact-us).
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