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 21 

Abstract 22 

Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics. However, the 23 

sheer volume of data and its dynamical complexity are critical barriers to uncovering and interpreting these dynamics. 24 

Deep learning methods are a promising approach due to their ability to uncover meaningful relationships from large, 25 

complex, and noisy datasets. When applied to high-D spiking data from motor cortex (M1) during stereotyped behaviors, 26 

they offer improvements in the ability to uncover dynamics and their relation to subjects’ behaviors on a millisecond 27 

timescale. However, applying such methods to less-structured behaviors, or in brain areas that are not well-modeled by 28 

autonomous dynamics, is far more challenging, because deep learning methods often require careful hand-tuning of 29 

complex model hyperparameters (HPs). Here we demonstrate AutoLFADS, a large-scale, automated model-tuning 30 

framework that can characterize dynamics in diverse brain areas without regard to behavior. AutoLFADS uses distributed 31 

computing to train dozens of models simultaneously while using evolutionary algorithms to tune HPs in a completely 32 

unsupervised way. This enables accurate inference of dynamics out-of-the-box on a variety of datasets, including data 33 

from M1 during stereotyped and free-paced reaching, somatosensory cortex during reaching with perturbations, and 34 

frontal cortex during cognitive timing tasks. We present a cloud software package and comprehensive tutorials that 35 

enable new users to apply the method without needing dedicated computing resources. 36 

 37 

Introduction 38 

Ongoing advances in neural interfacing technologies are enabling simultaneous monitoring of the activity of large neural 39 

populations across a wide array of brain areas and behaviors (1–5). Such technologies may fundamentally change the 40 

questions we can address about computations within a neural population, allowing neuroscientists to shift focus from 41 

understanding how individual neurons’ activity relates to externally-measurable or controllable parameters, toward 42 

understanding how neurons within a network coordinate their activity to perform computations underlying those 43 

behaviors. A natural method for interpreting these complex, high-dimensional datasets is that of neural population 44 

dynamics (6–8). The dynamical systems framework centers on uncovering coordinated patterns of activation across a 45 

neural population and characterizing how these patterns change over time. Knowledge of these hidden dynamics has 46 

provided new insights into how neural populations implement the computations necessary for motor, sensory, and 47 

cognitive processes (9–15). 48 

 49 

A focus on population dynamics could also facilitate a shift away from reliance on stereotyped behaviors and trial-50 

averaged neural responses. Standard approaches must typically average activity across trials, sacrificing single trial 51 

interpretability for robustness against what is perceived as noise in single trials. However, as articulated by Cunningham 52 

and Yu (16): “If the neural activity is not a direct function of externally measurable or controllable variables (for example, 53 

if activity is more a reflection of internal processing than stimulus drive or measurable behavior), the time course of 54 
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neural responses may differ substantially on nominally identical trials.” This may be especially true of non-primary cortical 55 

areas, and cognitively demanding tasks that involve decision-making, allocation of attention, or varying levels of 56 

motivation. 57 

 58 

To move beyond this bottleneck, high-time resolution single-trial analyses are essential. These can be enabled by a 59 

combination of neural population recordings and novel analytical tools like those proposed here. Single-trial, population-60 

level analyses benefit from two principles of the dynamical systems view: first, that simultaneously recorded neurons are 61 

not independent, but rather exhibit coordinated patterns of activation that reflect the state of the overall network rather 62 

than individual neurons. Second, the coordinated patterns evolve over time in ways that are largely predictable based 63 

on the population’s internal dynamics. Thus, while it may be challenging to accurately estimate the network’s state based 64 

solely on activity observed at a single time point, knowledge of how the state evolves can constrain an estimate at any 65 

given time point. 66 

 67 

Several approaches have been developed to infer latent dynamical structure from neural population activity on individual 68 

trials, including a growing number that leverage artificial neural networks (17–22). One such method, latent factor 69 

analysis via dynamical systems (LFADS) (22,20) achieved precise inference of motor cortical firing rates on single trials 70 

of stereotyped behaviors, enabling accurate prediction of subjects’ behaviors on a moment-by-moment, millisecond 71 

timescale (20). Further, in tasks with unpredictable events, a modified network architecture enabled inference of 72 

dynamical perturbations that corresponded to how subjects ultimately responded to the unpredictable events.  73 

 74 

Though highly effective, artificial neural networks, including LFADS, typically have many thousands of parameters, and 75 

potentially dozens of non-trainable hyperparameters (HPs) that need to be tuned to achieve good performance. HPs 76 

include architecture parameters like the type, dimensionality, and number of various layers, as well as regularization and 77 

optimization parameters. Until recently, the HP optimization problem was typically addressed by an iterative manual 78 

process, a random search, or some combination of the two. In the past several years, a host of more advanced 79 

approaches promises to eliminate the tedious work and domain knowledge required for manual tuning while performing 80 

better and more efficiently than random search (23–25). The form and variety of possible neuroscientific datasets present 81 

unique challenges that make HP optimization a particularly impactful problem (26). Thus, bringing efficient HP search 82 

algorithms to neuroscience could allow more effective experimentation with models based on artificial neural networks, 83 

like LFADS. 84 

 85 

Here we present AutoLFADS, a framework for large-scale, automated model tuning that enables accurate single-trial 86 

inference of neural population dynamics across a range of brain areas and behaviors. We evaluate AutoLFADS using 87 

data from three cortical regions: primary motor and dorsal premotor cortex (M1/PMd), somatosensory cortex area 2, and 88 

dorsomedial frontal cortex (DMFC). The tasks span a mix of functions where population activity can be well-modeled by 89 

autonomous dynamics (e.g., pre-planned reaching movements, estimation of elapsed time) and those for which 90 

population activity is responsive to external inputs (e.g., mechanical perturbations, unexpected appearance of reaching 91 

targets, variable timing cues). 92 

 93 

Using this broad range of datasets, we show that AutoLFADS achieves high-time resolution, single-trial inference of 94 

neural population dynamics, surpassing LFADS in all scenarios tested. Remarkably, AutoLFADS does this in a 95 

completely unsupervised manner that does not depend on the knowledge of the tasks, subjects’ behaviors, or brain 96 

areas. In all applications, the method is applied “out of the box” without careful adjustment for each dataset. We believe 97 

these capabilities greatly extend the range of neuroscientific applications for which accurate inference of single-trial 98 

population dynamics should be achievable, and substantially lower the barrier to entry for applying these methods. 99 

Finally, we present a cloud software package and comprehensive tutorials to enable new users without machine learning 100 

expertise or dedicated computing resources  to apply AutoLFADS successfully. 101 

 102 

  103 
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Results 104 

 105 
Fig1 | AutoLFADS combines a novel neural network regularization method with a large-scale framework for automated 106 
hyperparameter optimization. (a) Schematic of the LFADS architecture, showing how the generative model infers the firing rates 107 
that underlie the observed spikes. (b) Examples of LFADS-inferred rates (colored) and the corresponding synthetic input data (spikes, 108 
shown as black triangles) and data-generating distribution (ground truth rates, shown as gray traces) for three fitting modes. (c) Left: 109 
performance of 200 LFADS models with random HPs in matching the spikes and the known rates of a synthetic dataset, measured 110 
by negative log-likelihood (NLL) and variance accounted for (VAF) respectively. Colored points indicate the models that produced the 111 
rates in the previous panel. Right: same as previous, but for models trained with CD. (d) Schematic of the PBT approach to HP 112 
optimization. Each colored circle represents an LFADS model with a certain HP configuration and partially filled bars represent model 113 
performance. Models are trained for fixed intervals (generations), between which poorly-performing models are replaced by copies of 114 
better-performing models with perturbed HPs. 115 
 116 

LFADS architecture  117 

The LFADS architecture (Fig. 1a) has been detailed previously (20,22,26). Briefly, LFADS is based on the idea that the 118 

evolution of a neural population’s activity in time can be modeled as a non-autonomous dynamical system, i.e., a 119 

dynamical system whose state evolution is influenced by both internal dynamics and external inputs. This dynamical 120 

system is approximated by a recurrent neural network (RNN) known as the generator. Observed spiking activity from 121 

each neuron is assumed to reflect an underlying firing rate that is linked to the state of the generator at each timestep. 122 

Separately, to enable modeling of input-driven dynamical systems, time-varying inputs are inferred by a controller RNN, 123 

which receives as input an encoding of the spike count data as well as the generator’s output at the previous time step. 124 

This architecture is a modification of a sequential variational autoencoder (VAE) (22,27,28). When training the model, 125 

the objective is to maximize a lower bound on the Poisson likelihood of the observed spiking activity given the inferred 126 

rates (see Methods for details).  127 

 128 

It is imperative to regularize the model properly in order to extract useful spike rates (Fig. 1b) (26). This can be achieved 129 

through HP optimization. The two main classes of LFADS HPs are those that set the network architecture (e.g., number 130 

of units in each RNN, dimensionality of initial conditions, inputs, and factors), and those that control regularization and 131 

training (e.g., L2 penalties, scaling factors for KL penalties, dropout probability, and learning rate; described in Methods). 132 

The optimal values of these HPs could depend on various factors such as dataset size, dynamical structure underlying 133 

the activity of the brain region being modeled, and the behavioral task.  134 

 135 

A critical challenge for autoencoders is that automatic HP searches face a type of overfitting that is particularly hard to 136 

address (26). Given enough capacity, the model can find a trivial solution where it simply passes individual spikes from 137 

the input to the output firing rates, akin to an identity transformation of the input without modeling any meaningful structure 138 

underlying the data (Fig. 1b). Importantly, such pathological overfitting is not detectable by standard validation likelihood, 139 
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as the failure mode also results in high likelihood and poor modeling of validation data. We performed a 200-model 140 

random search over a space of KL, L2, and dropout regularization HPs that was empirically determined to yield both 141 

underfitting and overfitting models on a synthetic dataset (see Methods for a description of the dataset). Models that 142 

appear to have the best likelihoods actually exhibit poor inference of underlying firing rates, indicating a type of 143 

pathological overfitting (Fig. 1c, left). This phenomenon is also consistently observed on real data throughout this paper: 144 

better validation loss did not indicate better performance for any of our decoding or PSTH-based metrics. 145 

 146 

The lack of a reliable validation metric has prevented automated HP searches because it is unclear how one should 147 

select between models when underlying firing rates are unavailable or non-existent. To address this issue, we developed 148 

a novel regularization technique called coordinated dropout (CD) that forces the network to model only structure that is 149 

shared across neurons (26). After applying CD, we repeated the previous test on synthetic data using 200 LFADS models 150 

from the same HP search space, and found that they no longer overfit spikes (Fig. 1c, right). CD restored the 151 

correspondence between model quality assessed from matching spikes (validation likelihood) and matching rates, 152 

allowing the former to be used as a surrogate when the latter is not available. 153 

 154 

The premise of this paper is that this reliable validation metric should enable large-scale HP searches and fully-155 

automated selection of high-performing neuroscientific models despite having no access to ground truth firing rates. To 156 

test this, we needed an efficient HP search strategy. We chose a recent method based on parallel search called 157 

Population Based Training (PBT; Fig. 1d) (25,29). PBT distributes training across dozens of models simultaneously, and 158 

uses evolutionary algorithms to tune HPs over many generations. Because PBT distributes model training over many 159 

workers, it matches the scalability of parallel search methods such as random or grid search, while achieving higher 160 

performance with the same amount of computational resources (25,29).  161 

 162 

These two key modifications - a novel regularization strategy (CD) that results in a reliable validation metric, and an 163 

efficient approach to HP optimization (PBT) - yield a large-scale, automated framework for model tuning, which we refer 164 

to as AutoLFADS. In the following sections, we test the performance of AutoLFADS on previously characterized datasets, 165 

as well as novel ones. We start by evaluating AutoLFADS using data from M1/PMd in a structured reaching task to 166 

investigate the model’s performance on a well-characterized dataset that had been previously used to benchmark the 167 

performance of LFADS (20,26). On this data, we demonstrate that proper HP tuning leads to models that consistently 168 

outperform LFADS and that this gap grows substantially when data are limited. Next, we move to assessing the ability 169 

of AutoLFADS to approximate input-driven dynamics, using data from M1 in a random target task, data from area 2 in a 170 

reaching task with mechanical perturbations, and data from DMFC in a cognitive timing task. In each case, by several 171 

metrics, AutoLFADS consistently achieves better results than random searches that used three times the computational 172 

resources, despite performing model selection in a completely unsupervised fashion. 173 

 174 
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 175 
Fig2 | Application of AutoLFADS to data from motor cortex. (a) Schematic of the maze task (top), and representative reach 176 
trajectories across 108 total conditions, colored by target location (bottom). (b) Average reach trajectories (top), PSTHs (second row) 177 
and single-trial firing rates (bottom) obtained by smoothing (Gaussian kernel, 30 ms s.d.) or AutoLFADS for a single neuron across 4 178 
reach conditions. All data is modeled at 2 ms bins. Dashed lines indicate movement onset and vertical scale bars denote rates 179 
(spikes/s). (c) PSTHs produced by smoothing spikes (top) or by applying AutoLFADS (bottom), for 5 example neurons. Shaded 180 
regions are standard errors. Movement onset and rate scales are denoted as in the previous panel. (d) Performance in decoding 181 
reaching kinematics (arm velocities) as a function of training dataset size. Trial counts exclude the 20% of trials for each dataset size 182 
that were held-out for model evaluation. We decoded X and Y arm velocities from smoothed spikes, rates inferred by LFADS with 183 
manually-tuned hyperparameters (HPs), and rates inferred by AutoLFADS. Accuracy was quantified by VAF. Lines and shading 184 
denote mean +/- standard error across 7 models trained on randomly-drawn subsets of the full dataset. (e) Performance in replicating 185 
the empirical PSTHs computed on all trials using rates inferred from a 184-trial training set using AutoLFADS and LFADS with random 186 
HPs (100 models). (f) Hand velocity decoding performance for firing rates from a 184-trial training set (same models as in (e)). 187 

 188 

AutoLFADS outperforms original LFADS when applied on benchmark data from M1/PMd 189 

We first evaluated AutoLFADS on data from motor cortex during a highly stereotyped behavior, which was used to 190 

assess the original LFADS method (20). We used 202 neurons simultaneously recorded from M1 and PMd during a 191 

maze reaching task (see Methods) in which a monkey made a variety of straight and curved reaches after a delay period 192 

following target presentation (Fig. 2a; dataset consisted of 2296 individual reach trials spanning 108 reach types). 193 

Previous analyses of the delayed reaching paradigm demonstrated that activity during the movement period is well 194 

modeled as an autonomous dynamical system (10,20). In this abstract model, the temporal evolution of the neural 195 

population’s activity is predictable based on the state it reaches during the delay period. Therefore, previous work 196 

modeled these data with a simplified LFADS configuration which could only approximate autonomous dynamics (20). 197 

However, this simplified model is not applicable more broadly to situations in which both autonomous dynamics and 198 

external inputs might be needed to describe neural activity. Therefore, in this paper we do not constrain the network 199 

architecture to only model autonomous dynamics for any applications tested, to determine whether AutoLFADS can 200 

automatically adjust the degree to which autonomous dynamics and inputs are needed to model the data. 201 

 202 

AutoLFADS operates on unlabeled segments of binned spiking data and infers firing rates for each neuron in an 203 

unsupervised manner. Consistent with previous applications of LFADS on this dataset (20,26), the firing rates inferred 204 

by AutoLFADS for 2 ms bins exhibited clear and consistent structure on individual trials (Fig. 2b, bottom). We also 205 

verified that these firing rates captured features of the neural responses revealed by averaging across trials, a common 206 

method of de-noising neural activity (Fig. 2b, second row, and Fig. 2c).  207 

 208 
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A generalizable method should be able to perform well across the broad range of dataset sizes typical of neuroscience 209 

experiments. To test this, we compared AutoLFADS and manually-tuned LFADS models that were trained using either 210 

the full dataset (2296 trials), or randomly sampled subsets containing 5, 10, and 20% of the trials. We first tested the 211 

degree to which the representations produced by the models were informative about observable behavior, which we 212 

quantified by decoding the monkey’s hand velocity from the inferred rates using optimal linear estimation (Fig 2d). At 213 

the largest dataset size, decoding performance for AutoLFADS and manually-tuned LFADS was comparable. This result 214 

fits with standard intuition that performance is less sensitive to HPs when sufficient data are available. However, for all 215 

three reduced dataset sizes, the AutoLFADS outperformed the manually-tuned model (p<0.05 for all three sizes, paired, 216 

one-tailed Student’s t-test). 217 

 218 

While this result is promising, the difference in robustness to dataset size between AutoLFADS and LFADS could have 219 

resulted from a particularly poor selection of HPs during manual tuning. To control for this possibility, we chose one of 220 

the smaller data subsets (184 trials) and trained 100 additional LFADS models with randomly-selected HPs. We 221 

evaluated the models’ performance in two ways: how accurately the models replicated the empirical trial-averaged firing 222 

rates (PSTHs; Fig. 2e), and how accurately arm velocity could be decoded from inferred rates (Fig. 2f). While the LFADS 223 

models achieved a broad range of performance, models with better validation likelihoods did not achieve better inference 224 

of firing rates, mirroring our earlier findings with synthetic data (Fig. 1c). Thus it is unclear how one could select amongst 225 

the LFADS models with random HPs without some supervised intervention. In contrast, the single AutoLFADS model, 226 

chosen in a completely unsupervised fashion, outperformed all LFADS models for both performance metrics. 227 

 228 

Taken together, these results show that even if one performed a random search and then selected a model using a 229 

supervised approach (e.g., based on reconstruction of empirical PSTHs or decoding accuracy), its performance would 230 

still be substantially lower than that of AutoLFADS. Additionally, this validation - i.e., that the unsupervised approach 231 

produces high-performing models - provides evidence that even in cases where such supervision is unavailable (e.g., 232 

settings that lack clear task structure or measurement of behavioral variables), AutoLFADS models will still be high 233 

performing. 234 

 235 

AutoLFADS uncovers population dynamics without structured trials 236 

To-date, most efforts to tie dynamics to neural computations have used experiments where subjects perform constrained 237 

tasks with repeated, highly structured trials. For example, motor cortical dynamics are often framed as a computational 238 

engine to link the processes of motor preparation and execution (6–8). To interrogate these dynamics, most studies use 239 

a delayed-reaching paradigm that creates explicit pre-movement and movement periods. However, constrained 240 

behaviors may have multiple drawbacks in studying dynamics. First, it is unclear whether such artificial paradigms are 241 

good proxies for everyday behaviors. Second, highly constrained, repeated behaviors might impose artificial limits on 242 

the properties of the uncovered dynamics, such as the measured dimensionality of the neural population activity (30). 243 

Even outside of movement neuroscience, the requirement that we conduct many repetitions of constrained tasks 244 

significantly hinders our ability to study a rich sample of the dynamics of a given neural population. Accurate inference 245 

of neural dynamics without these constraints could facilitate dynamics-based analyses of richer datasets that are more 246 

reflective of the brain’s natural behavior. 247 
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 248 
Fig3 | Modeling neural activity in M1 without knowledge of trial or task information. (a) Top: Schematic of the random target 249 
task, which lacks stereotyped trial structure and delay periods. Bottom: Continuous neural activity (spiking data) recorded during back-250 
to-back reaching trials was divided into 600 ms segments with 200 ms of overlap between adjacent segments. After modeling by 251 
AutoLFADS, the inferred firing rates from different segments were merged together to create a continuous segment, using a weighted 252 
average of data at overlapping timepoints. (b) Distributions of trial lengths (time between onsets of successive targets) for 313 total 253 
trials. (c) Subspaces of neural activity extracted using PCA and colored by angle to the target. Left: 3D subspace that captures the 254 
most variance in smoothed spiking activity. Center: Subspace that captures the most variance in AutoLFADS rates. (d) Accuracy in 255 
decoding hand velocity from firing rates inferred by smoothing, 100 LFADS models with random HPs, and AutoLFADS. 256 
 257 

In order to provide access to a much broader range of experimental data, we tested whether AutoLFADS could model 258 

data without regard to trial structure. We applied AutoLFADS to neural activity from a monkey performing a continuous, 259 

self-paced random target reaching task (Fig. 3a, top) (31), in which each movement started and ended at a random 260 

position, and movements were highly variable in duration (Fig. 3b). Analysis of data without consistent temporal structure 261 

repeated across trials is challenging, as trial-averaging is not feasible. Even the available single-trial analytical methods 262 

have typically relied on strong simplifying assumptions that are not applicable to less-structured tasks. For example, 263 

previous efforts to uncover motor cortical dynamics during single reaches have been able to consider only brief data 264 

segments that begin with the arm at a consistent starting point, and relied on behavioral events such as target or 265 

movement onset to align trials before analysis (17,20,26,32–36). 266 

 267 

Like most machine learning algorithms, AutoLFADS operates on discrete, fixed-length segments of neural data. To 268 

create these segments from a task with highly variable timing, we chopped an approximately 9 minute window of 269 

continuous neural data into 600 ms segments with 200 ms of overlap (Fig. 3a, bottom) without regard to trial boundaries. 270 

After modeling with AutoLFADS, we merged inferred firing rates from individual segments, which yielded inferred rates 271 

for the original continuous window. We then analyzed the inferred rates by aligning the data to movement onset for each 272 

trial (see Methods). Even though the dataset was modeled without the use of trial information, inferred firing rates during 273 

the reconstructed trials exhibited consistent progression in an underlying state space, with clear structure that 274 

corresponded with the monkey’s reach direction on each trial (Fig. 3c, right). Further, the inferred firing rates were highly 275 

informative about moment-by-moment details of the measured reaching movements: AutoLFADS enabled decoding of 276 

continuous hand velocities with substantially higher accuracy than did smoothing (R2 of 0.76 for AutoLFADS v. 0.52 for 277 

smoothing), and it also outperformed all LFADS models with random HPs (Fig. 3d). 278 
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 279 
Fig4 | Inferred firing rates contain neural subspaces that are informative about movement kinematics and reach targets. (a) 280 
Kinematic and relative target variables and their corresponding neural representations, uncovered via linear regression. The quality 281 
of each projection is quantified by accuracy in decoding kinematic and target variables (R2). Plots are colored by x and y distance to 282 
target, except for speed which is colored by peak speed. Bottom row represents the normalized activation of movement (green) and 283 
relative target (red) subspaces, illustrating the more transient activation in the target subspace. (b) Movement and relative target 284 
subspaces plotted as 3D trajectories and colored by angle to target. 285 
 286 

In support of the hypothesis that AutoLFADS is picking up on meaningful dynamics that occurred throughout the session, 287 

we found that the firing rates inferred by AutoLFADS were informative of the previously-hypothesized computational role 288 

of motor cortical dynamics - i.e., linking the process of movement preparation and execution - despite the model being 289 

trained without information about the monkey’s behavior (Fig. 4). In particular, firing rates contained subspaces that 290 

were highly informative about hand position, hand velocity, and reach target on individual trials (Fig. 4a) and showed 291 

clear structure relative to the task (Fig. 4b). To find the subspaces, we used linear regression to project neural activity 292 

onto variables related to movement goals (reach target) and movement details (position, velocity and speed). Notably, 293 

the subspace reflecting reach target was transiently active around the time of movement execution, consistent with 294 

previous studies that have demonstrated the presence of preparatory activity in motor cortex, yet revealed without an 295 

explicit preparatory period. It is likely that the rates inferred by AutoLFADS also contain yet undiscovered subspaces 296 

and representations that can be explored in this same dataset without experiments explicitly designed to reveal them. 297 

Thus, AutoLFADS has the potential to greatly improve the utility and versatility of rich behavioral datasets via a unique 298 

unsupervised modeling process. 299 
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 300 
Fig5 | Application of AutoLFADS to data from somatosensory cortex area 2. (a) Schematic of the center-out, bump task showing 301 
passive and active conditions. (b) PSTHs and single-trial firing rates for a single neuron across 4 passive perturbation directions. 302 
Smoothing was performed using a Gaussian kernel with 10 ms s.d.. Dashed lines indicate movement onset. (c) Comparison of 303 
AutoLFADS vs. random search in matching empirical PSTHs. (d) PSTHs produced by smoothing spikes (top), AutoLFADS (middle), 304 
or GLM predictions (bottom) for 3 example neurons. (e) Comparison of spike count predictive performance for AutoLFADS and GLMs. 305 
Filled circles correspond to neurons for which AutoLFADS pR2 was significantly higher than GLM pR2, and open circles correspond 306 
to neurons for which there was no significant difference. Arrows (left) indicate neurons for which GLM pR2 was outside of the plot 307 
bounds. (f) Subspace representations of hand x-velocity during active and passive movements extracted from smoothed spikes and 308 
rates inferred by AutoLFADS. (g) Comparison of AutoLFADS vs. random search in decoding hand velocity during active trials. (h) 309 
Joint angular velocity decoding performance from firing rates inferred using smoothing, Gaussian process factor analysis (GPFA), 310 
and AutoLFADS. Error bars denote standard error of the mean. Joint abbreviations: shoulder adduction (SA), shoulder rotation (SR), 311 
shoulder flexion (SF), elbow flexion (EF), wrist radial pronation (RP), wrist flexion (WF), and wrist adduction (WA). 312 
 313 

  314 
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AutoLFADS accurately captures single-trial population dynamics in somatosensory cortex 315 

Results from the motor cortical datasets demonstrated that AutoLFADS could produce accurate dynamical models that 316 

were robust to training dataset size and generalized well across task conditions, without requiring highly constrained 317 

tasks or repeated trials. We next investigated whether AutoLFADS, without manual adjustment, could accurately model 318 

dynamics associated with sensory processes. Specifically, we modeled activity in somatosensory area 2 during a 319 

reaching task with mechanical perturbation. 320 

 321 

Area 2 provides a valuable test case for AutoLFADS generalization. As a sensory area, area 2 receives strong afferent 322 

input from cutaneous receptors and muscles and is robustly driven by mechanical perturbations to the arm (37–39). 323 

Functionally, area 2 is thought to serve a role in mediating reach-related proprioception (38–41), was recently shown to 324 

contain information about whole-arm kinematics (39), and may also receive efferent input from motor areas 325 

(38,39,42,43). 326 

 327 

In the area 2 experiment (Fig. 5a), a monkey used a manipulandum to control a cursor. The task began with a center-328 

hold period where the monkey held the cursor in the center of the screen. During half of the center-hold attempts, the 329 

manipulandum randomly perturbed the monkey’s arm in one of the eight directions, and the monkey had to re-acquire 330 

the central target (passive movement trials). Following the center-hold, the monkey moved to acquire one of eight 331 

peripheral targets (active movement trials). The single-trial rates inferred by AutoLFADS for passive trials exhibited clear 332 

and structured responses to the unpredictable perturbations (Fig. 5b), highlighting the model’s ability to approximate 333 

input-driven dynamics. 334 

 335 

As for M1/PMd, we verified that the rates inferred by AutoLFADS accurately reproduced empirical PSTHs and were 336 

informative of task variables. The inferred rates captured the distinct features of PSTHs during active and passive trials, 337 

even though no behavioral or task information was provided to the model (Fig. 5b; top, and Fig. 5c). The rates inferred 338 

by AutoLFADS also had a much closer correspondence to the empirical PSTHs during passive trials than LFADS models 339 

trained with random HPs (Fig. 5c). However, sensory brain regions like area 2 are typically characterized in terms of 340 

how neural activity encodes sensory stimuli (37–39). Thus, we examine whether rates inferred by AutoLFADS explain 341 

observed spikes better than a typical area 2 neural encoding model, in which neural activity is fit to some function of the 342 

state of the arm. We fit a generalized linear model (GLM) for each neuron over both active and passive movements, 343 

where the firing rate was solely a function of the position and velocity of the hand, as well as the contact forces with the 344 

manipulandum handle (39) (GLM predictions shown in Fig. 5d). We then compared the ability of the GLM and 345 

AutoLFADS to capture  each neuron’s observed response using pseudo-R2 (pR2), a metric similar to R2 but adapted for 346 

the Poisson statistics of neural firing (44). For the vast majority of neurons across two datasets, AutoLFADS predicted 347 

the observed activity significantly better than GLMs (p<0.05 for 110/121 neurons, bootstrap; see Methods), and there 348 

were no neurons for which the GLM produced better predictions than AutoLFADS (Fig. 5e). 349 

 350 

We used linear decoding to extract subspaces of neural activity that corresponded to x and y hand velocities for both 351 

smoothed spikes and rates inferred by AutoLFADS (Fig. 5f). The AutoLFADS rates contained subspaces that more 352 

clearly separated hand velocities for all active conditions and all passive conditions than smoothing, showing that they 353 

are better represented in the modeled dynamics of area 2. Further, single-trial hand velocity decoding from rates inferred 354 

by AutoLFADS for active trials was substantially more accurate than that of smoothing, and also more accurate than 355 

decoding from the output of any random search model (Fig. 5g). On a second dataset that included whole-arm motion 356 

tracking, the velocity of all joint angles was decoded from AutoLFADS rates with higher accuracy than from smoothing 357 

or GPFA (Fig. 5h, right; p<0.05 for all joints, paired, one-sided Student’s t-Test). 358 

 359 
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 360 

Fig6 | AutoLFADS-inferred inputs for area 2 neural activity. (a) Time-courses of the four inferred generator input dimensions for 361 
passive (top) and active (bottom) conditions. Thick line indicates average input trace for each direction, indicated by color, while thin 362 
colored lines show input traces for ten randomly chosen trials. Vertical scale bar is A.U. (b) Projection of four-dimensional inputs, from 363 
-100 ms to 200 ms around movement onset, into the top three principal components, with separate plots for each movement direction. 364 
Darker lines indicate active trials while lighter lines denote passive trials. Large dots indicate average initial input in PC space. Thick 365 
and thin lines follow conventions in (a). 366 

Since area 2 plays a significant role in processing sensory inputs, it stands to reason that the inputs inferred by 367 

AutoLFADS are important for successfully modeling the area’s activity as a dynamical system. If AutoLFADS is 368 

successfully modeling area 2 as an input-driven dynamical system, we should expect the inferred inputs to be consistent 369 

across trials with the same behavioral conditions. In these experiments, AutoLFADS models the data as fixed-length 370 

segments without regard to trial boundaries, so there is no guarantee of the consistency of the meaning of a given input 371 

between different trials of the same condition or even within a single trial. 372 

Despite the unsupervised modeling process, AutoLFADS inferred input trajectories that were consistent with the 373 

supervised notions of trials, directions, and perturbation types (Fig. 6a). Inputs were continuous over the course of a 374 

trial, implying that the model was able to pick up on statistical similarities between adjacent segments. The model also 375 

produced similar input patterns within a given condition, showing that it was able to detect the statistical patterns of a 376 

given condition from arbitrary segments of time during arbitrary trials. Finally, AutoLFADS produced distinct and logically 377 

consistent output patterns for active and passive trials. Inputs for abrupt passive movements generally had a much 378 

shorter time course that unfolded post-perturbation, while inputs for active trials began before movement and evolved 379 

more slowly. Visualization of these inputs highlights AutoLFADS’s ability to infer distinct inputs for distinct subsets of the 380 

data (Fig. 6b). 381 
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 382 

Fig7 | Application of AutoLFADS to data from dorsomedial frontal cortex (DMFC). (a) Top left: the time interval reproduction 383 
task. Bottom left: timing conditions used. Right: schematic illustrating the inverse correlation between neural speed and monkey’s 384 
produced time (tp). (b) PSTHs and single-trial firing rates for an example neuron during the Set-Go period of leftward saccade trials 385 
across 4 different values of ts (vertical scale bar: spikes/sec). Smoothing was performed using a Gaussian kernel with 25 ms s.d.. (c) 386 
PSTHs for 5 example neurons during the Set-Go period of rightward trials for two response modalities and two values of ts. (d) 387 
Performance in replicating the empirical PSTHs. (e) Visualization of low-dimensional trial-averaged and single-trial neural trajectories 388 
for the Ready-Set period for left and right joystick trials with ts of 1000 ms. 30 trials are shown for each condition. dPC: demixed 389 
principal component, CI: condition-independent, CD: condition-dependent. (f) Example plots showing correlations between neural 390 
speed and behavior (i.e., production time, tp) for individual trials across two timing intervals (red: 640 ms blue: 1000 ms). Neural speed 391 
was obtained based on the firing rates inferred from smoothing, GPFA, the LFADS model with best median speed-tp correlation across 392 
the 40 different task conditions (Best LFADS), and AutoLFADS. (g) Distributions of correlation coefficients across 40 different task 393 
conditions. Horizontal lines denote medians. For LFADS, the distribution includes correlation values for all 96 models with random 394 
HPs (40x96 values). 395 
 396 

  397 
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AutoLFADS accurately captures single-trial dynamics during cognition 398 

While activity in M1 and area 2 are largely driven by internal dynamics and inputs, respectively, many brain areas depend 399 

critically on the confluence of internal dynamics and inputs. To further test the generality of AutoLFADS to these 400 

situations, we applied it to data collected from dorsomedial frontal cortex (DMFC) during a cognitive time estimation task. 401 

DMFC comprises the supplementary eye field, dorsal supplementary motor area, and presupplementary motor area. It 402 

is often considered an intermediate region in the sensorimotor hierarchy (45), interfacing with both low-level sensory and 403 

motor (PMd/M1) areas. DMFC activity is less closely tied to the moment-by-moment details of movements than activity 404 

in M1 or area 2 - instead, its activity seems to relate to higher-level aspects of motor control, including motor timing 405 

(46,47), planning movement sequences (48), learning sensorimotor associations (49) and context-dependent reward 406 

modulation (50). However, population dynamics in DMFC are tied to behavioral correlates such as movement production 407 

time (15,47,51). This makes DMFC another excellent test case for unsupervised modeling with AutoLFADS. 408 

 409 

For this task, the monkey was presented with two visual stimuli (“Ready” and “Set”, respectively), separated by sample 410 

timing interval ts. After “Set”, the monkey attempted to reproduce the interval by waiting for the same amount of time (tp) 411 

before initiating a movement (“Go”) (Fig. 7a, left). The movement was either a saccade or joystick manipulation to the 412 

left or right depending on the location of a peripheral target. The two response modalities, combined with 10 timing 413 

conditions (ts) and two target locations, led to a total of 40 task conditions. 414 

 415 

Consistent with our observations on M1/PMd and area 2 data, AutoLFADS-inferred rates for this dataset showed 416 

consistent, denoised structure at the single-trial level (Fig. 7b, bottom) and recapitulated the features of neural responses 417 

uncovered by trial averaging (Fig. 7b, top; Fig. 7c). Quantitative comparison of the PSTHs shows that AutoLFADS-418 

inferred rates again achieved a better match to the empirical PSTHs than all of the random search models (Fig. 7d), 419 

providing further evidence that AutoLFADS can achieve superior models without expert tuning of regularization HPs or 420 

supervised model selection criteria. Additionally, when visualized in a low-dimensional space using demixed principal 421 

components analysis (dPCA), the AutoLFADS-inferred firing rates showed much greater consistency across trials of a 422 

given condition than firing rates computed by smoothing spikes (Fig. 7e). 423 

 424 

To evaluate the AutoLFADS model beyond its ability to capture trial-averaged responses, we sought to evaluate whether 425 

its predicted firing rates were more informative of trial-by-trial timing behaviors than other methods. Previous studies 426 

have shown that the monkey's produced time interval (tp) is negatively correlated to the speed at which the neural 427 

trajectories evolve during the Set-Go period (Fig. 7a, right) (15,51). To evaluate the correspondence between neural 428 

activity and behavior, we estimated neural speeds using representations produced by smoothing spikes, GPFA, principal 429 

component analysis (PCA), the best random search model (‘Best LFADS’, see Methods for details), and an AutoLFADS 430 

model, and measured the trial-by-trial correlation between the estimated speeds and tp. Note that selecting the best 431 

random search model again required a supervised calculation (tp correlation) for each model. If a given representation 432 

of neural activity is more informative about behavior, we expect a stronger (more negative) correlation between predicted 433 

and observed tp. 434 

 435 

We show correlation values for individual trials across two different values of ts (Fig. 7f), and summarize across all 40 436 

task conditions (Fig. 7g). We observed consistent negative correlations between tp and the estimated neural speed from 437 

rates obtained by different methods. Correlations from rates inferred by AutoLFADS were significantly better than all 438 

unsupervised approaches (p<0.001, Wilcoxon signed rank test), and comparable with the supervised selection approach 439 

(‘Best LFADS’, p=0.758, Wilcoxon signed rank test), despite using no task information. 440 

 441 

Taken together, the area 2 and DMFC results demonstrate that the out-of-the-box, automated inference of neural 442 

population dynamics provided by AutoLFADS allows modeling of diverse brain areas, with dynamics that span the 443 

continuum from autonomous to input-driven. AutoLFADS provides a powerful framework for generalized inference of 444 

input-driven dynamics and enables decoding of simultaneously monitored behavioral variables with unprecedented 445 

accuracy. Importantly, the unsupervised approach of AutoLFADS avoids the use of any behavioral data and optimizes 446 

only for neural modeling. This allows for modeling when behavioral data is not available and also prevents any behavioral 447 

biases from being introduced to the firing rates, resulting in better inference of the brain’s inherently generalized 448 
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representations. This is evident in the high performance of AutoLFADS rates in both PSTH reconstruction and various 449 

decoding tasks. 450 

 451 

Running AutoLFADS in the Cloud 452 

A key challenge with emerging, computationally-intensive data analysis methods is that the computational infrastructure 453 

and expertise necessary to make effective use of these tools is a significant barrier to widespread adoption (52). For 454 

example, many labs do not have the resources necessary to train dozens of models in parallel across many GPUs. To 455 

address this hurdle, we provide an open-source implementation of AutoLFADS designed to operate on Google Cloud 456 

Platform (GCP). Additionally, we provide a comprehensive tutorial to help novice users get started running AutoLFADS 457 

on GCP without expert knowledge of cloud computing or machine learning. The tutorial describes how to set up the 458 

framework, prepare input data, set up AutoLFADS runs, and load the final results. Users of AutoLFADS on GCP don’t 459 

need to worry about the upfront hardware and labor costs associated with maintaining a local computing cluster, yet 460 

have access to virtually unlimited computation on demand. This framework allows researchers to spend less time doing 461 

non-research tasks like dependency management and hyperparameter optimization, while giving them confidence that 462 

their models are performing well, regardless of brain area or task. We include links to the code and tutorial in Code 463 

Availability. 464 

 465 

Discussion 466 

The original LFADS work (20) provided a method for inferring latent dynamics, denoised firing rates, and external inputs 467 

from large populations of neurons, producing representations that were more informative of behavior than previous 468 

approaches (33). However, application of LFADS to neural populations with different dynamics, strong external inputs, 469 

or unconstrained behavior would have necessitated time-consuming and subjective manual tuning. In the current work, 470 

we show that with robust regularization and efficient hyperparameter tuning it is possible to train high-performing LFADS 471 

models for neural spiking datasets with arbitrary size, trial structure, and dynamical complexity. We demonstrated several 472 

properties of the AutoLFADS training approach which have broad implications. On the maze task, we showed that 473 

AutoLFADS models are more robust to dataset size, opening up new lines of inquiry on smaller datasets and reducing 474 

the number of trials that must be conducted in future experiments. Using the random target task, we demonstrated how 475 

AutoLFADS needs no task information in order to generate rich dynamical models of neural activity. This enables the 476 

study of dynamics during richer tasks and reuse of datasets collected for another purpose. With the perturbed reaching 477 

task, we demonstrated the first application of dynamical modeling, as opposed to encoder-based modeling, to the highly 478 

input-driven somatosensory area 2. Finally, in the timing task, we showed that AutoLFADS found the appropriate balance 479 

between inputs and internal dynamics for a cognitive area by modeling DMFC.  480 

 481 

AutoLFADS inherits some of the flaws of the LFADS model. For example, the linear-exponential-Poisson observation 482 

model is likely an oversimplification. However, we used this architecture as a starting point to show that a large-scale 483 

hyperparameter search is feasible and beneficial. By enabling large-scale searches,  we can be reasonably confident 484 

that any performance differences achieved by future architecture changes will be due to real differences in modeling 485 

capabilities rather than a simple lack of HP optimization.  486 

 487 

AutoLFADS performed well using a simple binary tournament exploitation and perturbation exploration strategies for 488 

PBT (25). Future work might investigate alternate exploitation or exploration strategies, or whether more powerful and 489 

efficient PBT variants (53) can increase speed and performance of AutoLFADS while lowering computational cost. A 490 

current limitation of AutoLFADS is its inability to explore hyperparameters that modify the underlying model architecture. 491 

Thus, another avenue for further work lies in combining AutoLFADS with the recent techniques for automated neural 492 

architecture search (54). 493 

 494 

Though AutoLFADS is much more efficient than previous approaches, it still requires substantial computational 495 

resources that may not be available for all potential users. Setting up the requisite software environments can be an 496 

additional hurdle. Our GCP implementation allows users to apply AutoLFADS without needing to purchase and maintain 497 

a local cluster. We estimate that the compute cost for a typical AutoLFADS run on GCP is between $5-25, depending 498 

on dataset and model sizes. We have created detailed tutorials to guide novice users through the setup, model training, 499 

and data retrieval processes, making AutoLFADS accessible to anyone who works with neural spiking data. 500 
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 501 

 502 

Taken together, AutoLFADS provides an accessible and extensible framework for generalized inference of single-trial 503 

neural dynamics that has the potential to unify the way we study computation through dynamics across brain areas and 504 

tasks.  505 

 506 

Code Availability 507 

AutoLFADS for GCP can be downloaded from GitHub at github.com/snel-repo/autolfads and the tutorial is 508 

available at snel-repo.github.io/autolfads. 509 

 510 

Data Availability 511 

Data will be made available upon reasonable request from the authors. The random target dataset is publicly available 512 

at http://doi.org/10.5281/zenodo.3854034. 513 
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 670 

Methods 671 

LFADS architecture and training 672 

A detailed overview of the LFADS model is given in (20). Briefly: at the input to the model, a pair of bidirectional RNN 673 

encoders read over the spike sequence and produce initial conditions for the generator RNN and time-varying inputs for 674 

the controller RNN. All RNNs were implemented using gated recurrent unit (GRU) cells. At each time step, the generator 675 

state evolves with input from the controller and the controller receives delayed feedback from the generator. The 676 

generator states are linearly mapped to factors, which are mapped to the firing rates of the original neurons using a 677 

linear mapping followed by an exponential. The optimization objective is to minimize the negative log-likelihood of the 678 

data given the inferred firing rates, and includes KL and L2 regularization penalties. 679 

 680 

Identical architecture and training hyperparameter values were used for most runs, with a few deviations. We used a 681 

generator dimension of 100, initial condition dimension of 100 (50 for area 2 runs), initial condition encoder dimension 682 

of 100, factor dimension of 40, controller and controller input encoder dimension of 80 (64 for DMFC runs), and controller 683 

output dimension of 4 (10 for overfitting runs).  684 

 685 

We used the Adam optimizer with an initial learning rate of 0.01 and, for non-AutoLFADS runs, decayed the learning 686 

rate by a factor of 0.95 after every 6 consecutive epochs with no improvement to the validation loss. Training was halted 687 

for these runs when the learning rate reached 1e-5. The loss was scaled by a factor of 1e4 immediately before 688 

optimization for numerical stability. GRU cell hidden states were clipped at 5 and the global gradient norm was clipped 689 

at 200 to avoid occasional pathological training. 690 

 691 

We used a trainable mean initialized to 0 and fixed variance of 0.1 for the Gaussian initial condition prior and set a 692 

minimum allowable variance of 1e-4 for the initial condition posterior. The controller output prior was autoregressive with 693 

a trainable autocorrelation tau and noise variance, initialized to 10 and 0.1, respectively. 694 

 695 
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Memory usage for RNNs is highly dependent on the sequence length, so batch size was varied accordingly (100 for 696 

maze and random target datasets, 500 for synthetic and area 2 datasets, and 300/400 for the DMFC dataset). KL and 697 

L2 regularization penalties were linearly ramped to their full weight during the first 80 epochs for most runs to avoid local 698 

minima induced by high initial regularization penalties. Exceptions were the runs on synthetic data, which were ramped 699 

over 70 epochs and random searches on area 2 and DMFC datasets, which used step-wise ramping over the first 400 700 

steps. 701 

 702 

Random searches and AutoLFADS runs used the architecture parameters described above, along with regularization 703 

HPs sampled from ranges (or initialized with constant values) given in Supp. Table 2. Most runs used a default set of 704 

ranges, with a few exceptions outlined in the table. Dropout was sampled from a uniform distribution and KL and L2 705 

weight HPs were sampled from log-uniform distributions. 706 

 707 

During PBT, weights were used to control maximum and minimum perturbation magnitudes for different HPs (e.g. a 708 

weight of 0.3 results in perturbation factors between 0.7 and 1.3). The dropout and CD HPs used a weight of 0.3 and KL 709 

and L2 penalty HPs used a weight of 0.8. CD rate, dropout rate, and learning rate were limited to their specified ranges, 710 

while the KL and L2 penalties could be perturbed outside of the initial ranges. Each generation of PBT consisted of 50 711 

training epochs. AutoLFADS training was stopped when the best smoothed validation NLL improved by less than 0.05% 712 

over the course of four generations. 713 

 714 

Validation NLL was exponentially smoothed with 𝛼 = 0.7 during training. For non-AutoLFADS runs, the model checkpoint 715 

with the lowest smoothed validation NLL was used for inference. For AutoLFADS runs, the checkpoint with the lowest 716 

smoothed validation NLL in the last epoch of any generation was used for inference. Firing rates were inferred 50 times 717 

for each model using different samples from initial condition and controller output posteriors. These estimates were then 718 

averaged, resulting in the final inferred rates for each model. 719 

 720 

Overfitting on synthetic data 721 

Synthetic data were generated using a 2-input chaotic vanilla RNN (𝛾 = 1.5) as described in the original LFADS work 722 

(20,22). The only modification was that the inputs were white Gaussian noise. In brief, the 50-unit RNN was run for 1 723 

second (100 time steps) starting from 400 different initial conditions to generate ground-truth Poisson rates for each 724 

condition. These distributions were sampled 10 times for each condition, resulting in 4000 spiking trials. Of these trials, 725 

80% (3200 trials) were used for LFADS training and the final 20% (800 trials) were used for validation. 726 

 727 

We sampled 200 HP combinations from the distributions specified in Supp. Table 2 and used them to train LFADS 728 

models on the synthetic dataset. We then trained 200 additional models with the same set of HPs using a CD rate of 0.3 729 

(i.e., using 70% of data as input and remaining 30% for likelihood evaluation) (26). The coefficient of determination 730 

between inferred and ground truth rates was computed across all samples and neurons on the 800-sample validation 731 

set. 732 

 733 

M1 maze task 734 

We used the previously-collected maze dataset (55) described in detail in the original LFADS work (20). Briefly, a male 735 

macaque monkey performed a two-dimensional center-out reaching task by guiding a cursor to a target without touching 736 

any virtual barriers while neural activity was recorded via two 92-electrode arrays implanted into M1 and dorsal PMd. 737 

The full dataset consisted of 2,296 trials, 108 reach conditions, and 202 single units. 738 

 739 

The spiking data were binned at 1 ms and smoothed by convolution with a Gaussian kernel (30 ms s.d.). Hand velocities 740 

were computed using second order accurate central differences from hand position at 1kHz. An antialiasing filter was 741 

applied to hand velocities and all data were then resampled to 2 ms. Trials were created by aligning the data to 250 ms 742 

before and 450 ms after movement onset, as calculated in the original paper.  743 

 744 

Datasets of varying sizes were created for LFADS by randomly selecting trials with 20, 10, and 5% of the original dataset 745 

using seven fixed seeds, and then splitting each of these into 80/20 training and validation sets for LFADS (22 total, 746 

including the full dataset). As a baseline for each data subset, we trained LFADS models with fixed HPs that had been 747 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426570doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426570


 

20 

previously found to result in high-performing models for this dataset, with the exception of controller input encoder and 748 

controller dimensionalities (see LFADS architecture and training and Supp. Table 2). We increased the dimensionality 749 

of these components to allow improved generalization to the datasets from more input-driven areas while keeping the 750 

architecture consistent across all datasets. We also trained AutoLFADS models (40 workers) on each subset using the 751 

search space given in Supp. Table 2. Additionally, we ran a random search using 100 HPs sampled from the AutoLFADS 752 

search space on one of the 230-trial datasets. 753 

 754 

We used rates from spike smoothing, manually tuned LFADS models, random search LFADS models, and AutoLFADS 755 

models to predict x and y hand velocity delayed by 90 ms using ridge regression with a regularization penalty of 𝜆 = 1. 756 

Each data subset was further split into 80/20 training and validation sets for decoding. To account for the difficulty of 757 

modeling the first few time points of each trial with LFADS, we discarded data from the first 50 ms of each trial and did 758 

not use that data for model evaluation. Decoding performance was evaluated by computing the coefficient of 759 

determination for predicted and true velocity across all trials for each velocity dimension. The result was then averaged 760 

across the two velocity dimensions. 761 

 762 

To evaluate PSTH reconstruction for random search and AutoLFADS models, we first computed the empirical PSTHs 763 

by averaging smoothed spikes from the full 2296-trial dataset across all 108 conditions. We then computed model PSTHs 764 

by averaging inferred rates across conditions for all trials in the 230-trial subset. We computed the coefficient of 765 

determination between model-inferred PSTHs and empirical PSTHs for each neuron across all conditions in the subset. 766 

We then averaged the result across all neurons. 767 

 768 

M1 random target task 769 

The random target dataset consists of neural recordings and hand position data recorded from macaque M1 during a 770 

self-paced, sequential reaching task between random elements of a grid (31). For our experiments, we used only the 771 

first 30% (approx. 9 minutes) of the dataset recorded from Indy on 04/26/2016. 772 

 773 

We started with sorted units obtained from M1 and binned their spike times at 1 ms. To avoid artifacts in which the same 774 

spikes appeared on multiple channels, we computed cross-correlations between all pairs of neurons over the first 10 sec 775 

and removed individual correlated neurons (𝑛 = 34) by highest firing rate until there were no pairs with correlation above 776 

0.0625, resulting in 181 uncorrelated neurons. The position data were provided at 250 Hz, so we upsampled these data 777 

to 1 kHz using cubic interpolation. We smoothed the spikes by convolving with a Gaussian kernel (50 ms s.d.), applied 778 

an antialiasing filter to hand velocities, and downsampled to 2 ms. The continuous neural spiking data were chopped 779 

into overlapping segments of length 600 ms, where each segment shared its last 200 ms with the first 200 ms of the 780 

next. The resulting 1321 segments were split into 80/20 training and validation sets for LFADS, where the validation 781 

segments were chosen in blocks of 3 to minimize the overlap between training and validation subsets. 782 

 783 

The chopped segments were used to train an AutoLFADS model and to run a random search using 100 HPs sampled 784 

from the AutoLFADS search space. After modeling, the chopped data were merged using a quadratic weighting of 785 

overlapping regions that placed more weight on the rates inferred at the ends of the segments. The merging technique 786 

weighted the ends of segments as 𝑤 = 1 − 𝑥! and the beginnings of segments as 1 − 𝑤, with x ranging from 0 to 1 787 

across the overlapping points. After weights were applied, overlapping points were summed, resulting in a continuous 788 

~9-minute stretch of modeled data. 789 

 790 

We computed hand velocity from position using second-order accurate central differences and introduced a 120 ms 791 

delay between neural data and kinematics. We used ridge regression (𝜆 = 1𝑒 − 5) to predict hand velocity across the 792 

continuous data using smoothed spikes, random search LFADS rates, and AutoLFADS rates. We computed coefficient 793 

of determination for each velocity dimension individually and then averaged the two velocity dimensions to compute 794 

decoding performance. 795 

 796 

To prepare the data for subspace visualization, the continuous activity for each neuron was soft-normalized by 797 

subtracting its mean and dividing by its 90th quantile plus an offset of 0.01. Trials were identified in the continuous data 798 

as the intervals over which target positions were constant (314 trials). To identify valid trials, we computed the normalized 799 
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distance from the final position. Trials were removed if the cursor exceeded 5% of this original distance or overshot by 800 

5%. Thresholds (𝑛 = 100) were also created between 25 and 95% of the distance and trials were removed if they crossed 801 

any of those thresholds more than once. We then computed an alignment point at 90% of the distance from the final 802 

position for the remaining trials and labeled it as movement onset (227 trials). For each of these trials, data were aligned 803 

to 400 ms before and 500 ms after movement onset. The first principal component of AutoLFADS rates during aligned 804 

trials was computed and activation during the first 100 ms of each trial was normalized to [0,1]. Trials were rejected if 805 

activation peaked after 100 ms or the starting activation was more than 3 standard deviations from the mean. The PC1 806 

onset alignment point was calculated as the first time that activity in the first principal component crossed 50% of its 807 

maximum in the first 100 ms (192 trials). This alignment point was used for all neural subspace analyses. 808 

 809 

Movement-relevant subspaces were extracted by ridge regression from neural activity onto x-velocity, y-velocity, and 810 

speed. Similarly, position-relevant subspaces involved regression from neural activity onto x-position and y-position. For 811 

movement and position subspaces, neural and behavioral data were aligned to 200 ms before and 1000 ms after PC1 812 

onset. Target subspaces were computed by regressing neural activity onto time series that represented relative target 813 

positions. As with the movement and position subspaces, the time series spanned 200 ms before to 1000 ms after PC1 814 

onset. A boxcar window was used to confine the relative target position information to the time period spanning 0 to 200 815 

ms after PC1 onset, and the rest of the window was zero-filled. For kinematic prediction from neural subspaces, we used 816 

a delay of 120 ms and 80/20 trial-wise training and validation split. For each behavioral variable and neural data type, a 817 

5-fold cross-validated grid search (𝑛 = 100) was used on training data to find the best-performing regularization across 818 

orders of magnitude between 1e-5 and 1e4. 819 

 820 

Single subspace dimensions were aligned to 200 ms before and 850 ms after PC1 onset for plotting. Subspace 821 

activations were calculated by computing the norm of activations across all dimensions of the subspace and then 822 

rescaling the min and max activations to 0 and 1, respectively. Multidimensional subspace plots for the movement 823 

subspace were aligned to 180 ms before and 620 ms after PC1 onset and for target subspace 180 ms before and 20 824 

ms after. 825 

 826 

Area 2 bump task 827 

The sensory dataset consisted of two recording sessions during which a monkey moved a manipulandum to direct a 828 

cursor towards one of eight targets (active trials). During passive trials, the manipulandum induced a mechanical 829 

perturbation to the monkey’s hand prior to the reach. Activity was recorded via an intracortical electrode array embedded 830 

in Brodmann’s area 2 of the somatosensory cortex. For the second session, joint angles were calculated from motion 831 

tracking data collected throughout the session. The first session was used for PSTH, GLM, subspace, and velocity 832 

decoding analyses and the second session was only used for pseudo-R2 comparison to GLM and joint angle decoding. 833 

More details on the task and dataset are given in the original paper (39).  834 

 835 

For both sessions, only sorted units were used. Spikes were binned at 1 ms and neurons that were correlated over the 836 

first 1000 sec were removed (𝑛 = 2 for each session) as described for the random target task, resulting in 53 and 68 837 

neurons in the first and second sessions, respectively. Spikes were then rebinned to 5 ms and the continuous data were 838 

chopped into 500 ms segments with 200 ms of overlap. Segments that did not include data from rewarded trials were 839 

discarded (kept 9,626 for the first session and 7,038 for the second session). A subset of the segments (30%) were 840 

further split into training and validation data (80/20) for LFADS. An AutoLFADS model (32 workers) was trained on each 841 

session and a random search (96 models) was performed on the first session. After modeling, LFADS rates were then 842 

reassembled into their continuous form, with linear merging of overlapping data points. 843 

 844 

Empirical PSTHs were computed by convolving spikes binned at 1 ms with a half-Gaussian (10 ms s.d.), rebinning to 5 845 

ms, and then averaging across all trials within a condition. LFADS PSTHs were computed by similarly averaging LFADS 846 

rates. Passive trials were aligned 100 ms before and 500 ms after the time of perturbation, and active trials were aligned 847 

to the same window around an acceleration-based movement onset (39). Neurons with firing rates lower than 1 Hz were 848 

excluded from the PSTH analysis. To quantitatively evaluate PSTH reconstruction, the coefficient of determination was 849 

computed for each neuron and passive condition in the four cardinal directions, and these numbers were averaged for 850 

each model. 851 
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 852 

As a baseline for how well AutoLFADS could reconstruct neural activity, we fit generalized linear models (GLMs) to each 853 

individual neuron’s firing rate, based on the position and velocity of and forces on the hand (see Chowdhury et al., 2020 854 

for details of the hand kinematic-force GLM). Notably, in addition to fitting GLMs using the concurrent behavioral 855 

covariates, we also added 10 bins of behavioral history (50 ms) to the GLM covariates, increasing the number of GLM 856 

parameters almost tenfold. Furthermore, because we wanted to find the performance ceiling of a behavioral-encoder-857 

based GLMs to compare with the dynamics-based AutoLFADS, we purposefully did not cross-validate the GLMs. 858 

Instead, we simply evaluated GLM fits on data used to train the model. 859 

 860 

To evaluate AutoLFADS and GLMs individually, we used the pseudo-R2 (pR2), a goodness-of-fit metric adapted for the 861 

Poisson-like statistics of neural activity. Like variance-accounted-for and R2, pR2 has a maximum value of 1 when a 862 

model perfectly predicts the data, and a value of 0 when a model predicts as well as a single parameter mean model. 863 

Negative values indicate predictions that are worse than a mean model. For each neuron, we compared the pR2 of the 864 

AutoLFADS model to that of the GLM (Fig 5e). To determine statistically whether AutoLFADS performed better than 865 

GLMs, we used the relative-pR2 (rpR2) metric, which compares the two models against each other, rather than to a mean 866 

model (see Perich et al., 2018 for full description of pR2 and rpR2). In this case, a rpR2 value above 0 indicated that 867 

AutoLFADS outperformed the GLM (indicated by filled circles in Fig 5e). We assessed significance using a bootstrapping 868 

procedure, after fitting both AutoLFADS and GLMs on the data. On each bootstrap iteration, we drew a number of trials 869 

from the session (with replacement) equal to the total number of trials in the session, evaluating the rpR2 on this set of 870 

trials as one bootstrap sample. We repeated this procedure 100 times. We defined neurons for which at least 95 of these 871 

rpR2 samples were greater than 0 as neurons that were predicted better by AutoLFADS than a GLM. Likewise, neurons 872 

for which at least 95 of these samples were below 0 would have been defined as neurons predicted better by GLM 873 

(though there were no neurons with this result). 874 

 875 

For the subspace analysis, spikes were smoothed by convolution with a Gaussian (50 ms s.d.) and then rebinned to 50 876 

ms. Neural activity was scaled using the same soft-normalization approach outlined for the random target task subspace 877 

analysis. Movement onset was calculated using the acceleration-based movement onset approach for both active and 878 

passive trials. For decoder training, trials were aligned to 100 ms before to 600 ms after movement onset. For plotting, 879 

trials were aligned to 50 ms before and 600 ms after movement onset. The data for successful reaches in the four 880 

cardinal directions was divided into 80/20 trial-wise training and validation partitions. Separate ridge regression models 881 

were trained to predict each hand velocity dimension for active and passive trials using neural activity delayed by 50 ms 882 

(total 4 decoders). The regularization penalty was determined through a 5-fold cross validated grid search of 25 values 883 

from the same range as the random target task subspace decoders. 884 

 885 

For hand velocity decoding, spikes during active trials were smoothed by convolution with a half-Gaussian (50 ms s.d.) 886 

and neural activity was delayed by 100 ms relative to kinematics. The data were aligned to 200 ms before and 1200 ms 887 

after movement onset and trials were split into 80/20 training and validation sets. Simple regression was used to estimate 888 

kinematics from neural activity and the coefficient of determination was computed and averaged across x- and y-velocity. 889 

 890 

GPFA was performed on segments from all rewarded trials using a latent dimension of 20 and Gaussian smoothing 891 

kernel (30 ms s.d.). Decoding data were extracted by aligning data from active trials to 200 ms before and 500 ms after 892 

movement onset. Data were split into 80/20 training and validation sets and neural activity was lagged 100 ms behind 893 

kinematics. Ridge regression (𝜆 = 0.001) was used to decode all joint angle velocities from smoothed spikes (half-894 

Gaussian, 50 ms kernel s.d.), rates inferred by GPFA, and rates inferred by AutoLFADS. 895 

 896 

DMFC timing task 897 

The cognitive dataset consisted of one session of recordings from the dorsomedial frontal cortex (DMFC) while a monkey 898 

performed a time interval reproduction task. The monkey was presented with a “Ready” visual stimulus to indicate the 899 

start of the interval and a second “Set” visual stimulus to indicate the end of the sample timing interval, ts. Following the 900 

Set stimulus, the monkey made a response (“Go”) so that the production interval (tp) between Set and Go matches the 901 

corresponding ts. The animal responded with either a saccadic eye movement or a joystick manipulation to the left or 902 

right depending on the location of a peripheral target. The two response modalities, combined with 10 timing conditions 903 
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(ts) and two target locations, led to a total of 40 task conditions. A more detailed description of the task is available in the 904 

original paper (57). 905 

 906 

To prepare the data for LFADS, the spikes from sorted units were binned at 20 ms. To avoid artifacts from correlated 907 

spiking activity, we computed cross-correlations between all pairs of neurons for the duration of the experiment and 908 

sequentially removed individual neurons (𝑛 = 8) by the number of above-threshold correlations until there were no pairs 909 

with correlation above 0.2, resulting in 45 uncorrelated neurons. Data between the “Ready” cue and the trial end was 910 

chopped into 2600 ms segments with no overlap. The first chop for each trial was randomly offset by between 0 and 100 911 

ms to break any link between trial start times and chop start times. The resulting neural data segments (1659 total) were 912 

split into 80/20 training and validation sets for LFADS. An AutoLFADS model (32 workers) and random search (96 913 

models) were trained on these segments (see Supp. Table 2).  914 

 915 

For all analyses of smoothed spikes, smoothing was performed by convolving with a Gaussian kernel (widths described 916 

below) at 1 ms resolution. 917 

 918 

Empirical PSTHs were computed by trial-averaging smoothed spikes (25 ms kernel s.d., 20 ms bins) within each of the 919 

40 conditions. LFADS PSTHs were computed by similarly averaging LFADS rates. The coefficient of determination was 920 

computed between inferred and empirical PSTHs across all neurons and time steps during the “Ready-Set” and “Set-921 

Go” periods for each condition and then averaged across periods and conditions. 922 

 923 

To visualize low-dimensional neural trajectories, demixed principal component analysis (dPCA; Kobak et al., 2016) was 924 

performed on smoothed spikes (40 ms kernel s.d., 20 ms bins) and AutoLFADS rates during the “Ready-Set” period. 925 

The two conditions used were rightward and leftward hand movements with 𝑡 " = 1000	𝑚𝑠.  926 

 927 

Besides LFADS/AutoLFADS, three alternate methods were applied for speed-tp correlation comparisons: spike 928 

smoothing, GPFA, and PCA. For spike smoothing, analyses were performed by smoothing with a 40 ms s.d.. For GPFA, 929 

a model was trained on the concatenated training and validation sets with a latent dimension of 9. Principal component 930 

analysis (PCA) was performed on smoothed spikes (40 ms kernel s.d., 20 ms bins) and 5-7 top PCs that explained more 931 

than 75% of data variance across conditions were included in the later analysis. 932 

 933 

Neural speed was calculated by computing distances between consecutive time bins in a multidimensional state space 934 

and then averaging the distances across the time bins for the production epoch. The number of dimensions used to 935 

compute the neural speed was 45, 5-7, 9, and 45 for smoothing, PCA, GPFA  and LFADS, respectively. The Pearson’s 936 

correlation coefficient between neural speed and the produced time interval was computed across trials within each 937 

condition. 938 
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