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The design and optimization of propagation impairment techniques for space telecommunication systems operating at frequencies
above 20 GHz require a precise knowledge of the propagation channel both in space and time. For that purpose, space-time channel
models have to be developed. In this paper the description of a model for the simulation of long-term rain attenuation time series
correlated both in space and time is described. It relies on the definition of a stochastic rain field simulator constrained by the
rain amount outputs of the ERA-40 reanalysis meteorological database. With this methodology, realistic propagation conditions
can be generated at the scale of satellite coverage (i.e., over Europe or USA) for many years. To increase the temporal resolution, a
stochastic interpolation algorithm is used to generate spatially correlated time series sampled at 1 Hz, providing that way valuable
inputs for the study of the performances of propagation impairment techniques required for adaptive SatCom systems operating
at Ka band and above.

1. Introduction

With the congestion of conventional frequency bands such
as C (4–6 GHz) or Ku (11–14 GHz) band and the need
to convey higher data rates for multimedia services, new
SatCom systems are progressively pushed towards the use
of higher-frequency bands such as Ka (20–30 GHz) or Q/V
band (40–50 GHz) where larger bandwidth is available. How-
ever, at those frequencies, strong tropospheric impairments
occur on Earth-space links with a significant impact on
the system quality of service. The latter are due to rain,
clouds, water vapor, and oxygen. The resulting attenuation
cannot be mitigated simply acting on the static margin
taken on the overall link budget as it will result in a
major loss of efficiency. In order to perform a good trade-
off between quality of service, system capacity, and link
availability, adaptive resource allocation mechanisms using

Fade Mitigation Techniques (FMTs) have to be implemented
[1].

FMT implementation leads also to consider the system
resource allocation and therefore upper layer issues that can
be studied through protocol simulations. Network simula-
tions for SatCom systems operating at Ka and Q/V bands
have to take into account the influence of the propagation
channel, not only in terms of dynamics but also in terms of
the spatial variations [2]. Therefore, in order to assess FMT
efficiency or the resulting system availability, the propagation
channel has to be simulated both from a temporal and from
a spatial point of view.

To emulate channel dynamic, attenuation time series
synthesizers [3–7] have been developed. They are crucial to
design and optimize Uplink Power Control (ULPC) systems
or data rate reduction mechanisms [8]. Nevertheless, the
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knowledge of the temporal dynamic of the propagation
channel is not sufficient to implement all the FMTs. For
instance, the optimization of site diversity systems [9] or
adaptive TDMA (Time Division Multiple Access) satellite
systems requires also the knowledge of the spatial variability
of the propagation impairments.

Several models and methods exist to depict the spa-
tial variability of tropospheric impairments, especially the
attenuation due to rain. Indeed, attenuation fields and the
underlying rain fields can be modeled by rain cells [10–
16], by fractals [17] or random fields [5, 18]. Even if the
spatiotemporal description of the propagation channel is
of great interest for the design and optimization of the
previously mentioned FMTs, it is not adapted to solve
the issues raised by onboard radio resource management
for which a description both in space and in time of the
propagation channel over the whole satellite coverage is
required.

Up to now, few models exist to combine the temporal and
the spatial description of the propagation channel. Authors
in [5] have adapted the model of rain fields correlated in
space and in time developed by [19], while those in [20] have
proposed to correlate scaled time series from measurements
made during the ITALSAT campaign. The main limitation
of these models lies in their temporal or spatial range
of validity. Indeed, the model proposed by [5] is realistic
for short durations (some hours) and small areas (less
than ∼300 × 300 km2) due to the stationarity assumption
necessary to construct the random field in the Fourier
plane. Nevertheless, this approach is unable to reproduce the
alternation of clear sky and rainy periods, preventing that
way the long-term simulation of propagation conditions.
As for the model of correlated time series presented in
[19], it is limited to duration of one hour. However, to be
statistically reliable, network simulations require attenuation
data continuously acquired during several years and over
the whole satellite coverage. Therefore, propagation inputs
correlated in space and in time for large areas and long
durations are needed.

The aim of this paper is to extend the range of validity
of the stochastic rainfall field simulator described in [19]
and adapted for rain attenuation in [5] from the midscale
(∼300 × 300 km2) to the continental scale (Europe, USA)
and from some hours to many years. To do it, rain amount
time series provided by general circulation models are used.
Particularly, a methodology to constrain the model with
inputs from the low-resolution reanalysis database ERA-40
(ECMWF reanalysis for 40 years) provided by the ECMWF
(European Centre for Medium-range Weather Forecast) is
presented. The use of ERA-40 data ensures a realistic long
term evolution of the rain fields as they reproduce large-scale
conditions from past meteorological situations.

The basics and limitations of the stochastic modelling
of rain rate field presented in [19] are recalled in the first
part of the paper. A set of parameters more suitable for
temperate areas is then determined from a radar dataset
acquired by the meteorological radar of Bordeaux (South-
Western France, midlatitude oceanic climate). In a second
part of the paper, a methodology to parameterize the model

with inputs from the ECMWF ERA-40 reanalysis database
is developed. Some statistical properties of the simulations
are lastly compared to statistics derived from weather radar
datasets, ITU-R (International Telecommunication Union
section Radiocommunications) Recommendations and to
statistics obtained from beacon measurements.

2. Spatiotemporal Modelling of Rain Fields

In this section, the basics of the rain field space-time stochas-
tic modelling firstly presented in [19] are detailed. This
approach was originally developed to study the performances
of satellite rainfall sensors (such as the precipitation radar
of the Tropical Rainfall Measuring Mission TRMM) from
simulated rain fields at midscale (∼300 × 300 km2) in
which statistical characteristics (spatiotemporal correlation
structure, local climatologic Complementary Cumulative
Distribution Function (CCDF) of rain rates) must be as close
as possible to the ones of real rain fields.

The rain fields R(x, t) are generated on a domain with
size N × N (grid step ∆x) during a time interval T (time
step ∆t), where x = (x1, x2) is the spatial index and t the
temporal one. It is assumed that for each spatial location and
each time index, the rain rate R (i.e., the amount of water
in mm crossing a horizontal cross section of unit area over 1
hour) is the realization of a random variable. The simulation
is then conducted in three main steps. First, at time t, a
centered, reduced, stationary Gaussian random field G(x, t)
with spatial correlation structure cG(x, y) = 〈G(x)G(y)〉
where x and y are spatial indexes and 〈·〉 the expectancy
operator is constructed in the Fourier plane. Second, to
account for the temporal evolution that defines G(x, t + ∆t),
it is assumed that each spatial frequency k = (k1, k2) of
the Fourier transform a(k, t) of G(x, t) follows a first-order
Markov process in which innovation depends on the spatial
frequency. Lastly, the field advection between G(x, t) and
G(x, t + ∆t) is introduced by a phase shift in the frequency
domain.

Then, the Gaussian fields G(x, t) are turned into rainfall
fields R(x, t). For that purpose, the rainfall rate distribution
is assumed to be zero with probability 1− P0 and log normal
with probability P0, where P0 denotes the local probability of
rain.

The different steps of this modelling are detailed in
this section. Then, a methodology to derive the correlation
parameters from weather radar observations is presented. It
is later applied to the radar observations of Bordeaux.

2.1. Generation of Correlated Gaussian Random Field. A
convenient framework to simulate a correlated stationary
random field R(x, t) that has an arbitrary Probability
Distribution Function (PDF) is to define a monotonic
transformation ψ that converts a Gaussian field G(x, t) into
R(x, t) = ψ[G(x, t)] [19, 21]. If the rain spatiotemporal
correlation function cR(x, y, t) is estimated from realizations
(radar observations for example) of the rain field R(x, t), a
methodology described in Sections 2.3.3 and 2.3.4 allows to
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define a correlation cG(x, y, t) such that R(x, t) = ψ[G(x, t)]
has the expected correlation cR(x, y, t).

2.1.1. Generation of the Gaussian Field in Space. A Gaussian
random field G(x) can be interpreted as a collection of Gaus-
sian random variables correlated the ones with each other.
G(x) is stationary in space whenever its correlation function
cG(x, y) between two points x = (x1, x2) and y = (y1, y2)

depends only on the distance d =
√

(x1 − y1)2, (x2 − y2)2:

cG
(

x, y
)
= cG(d). (1)

The stationarity assumption is essential from a computa-
tional point of view. Indeed, it allows reducing the size of the
correlation matrix from N2 × N2 to N × N to use efficient
algorithms such as turning band methods [22] or circular
embedded correlation matrices [23].

Another convenient methodology to generate a station-
ary Gaussian field G(x) is to start from its spatial spectrum
s(k) = sk that is linked to the spatial correlation function
cG(d) [19] by Fourier transform. The N × N stationary
Gaussian random field G(x), can then be expressed for each
point x = (x1, x2) of the simulation grid by its Fourier
expansion:

G(x) =
N−1∑

k1=0

N−1∑

k2=0

ak exp

(
i2πkTx

N

)
, (2)

where k = (k1, k2) is the spatial frequency, ak = a(k) is
the Fourier transform of G(x) and T is the transposition
operator. Coefficients ak are shown to be equal to [19]:

ak =
√
skek, (3)

where ek are independent standard centered complex Gaus-
sian random variables. According to (2) and (3), the
definition of the Gaussian field spatial spectrum sk—or
reciprocally the correlation function cG(d)—is enough to
generate a spatially correlated Gaussian field.

2.1.2. Addition of the Temporal Dimension. The rain field
temporal evolution can be decomposed into two compo-
nents. The first one is related to the rain field advection due
to air streams. The second one corresponds to the rain cell
evolution along their path. In [19], both terms are taken
into account separately in the simulation algorithm. The rain
field temporal evolution is introduced in the Fourier domain.
Considering that each spatial frequency evolves according to
a first-order Markov process, the temporal evolution between
time t and time t + ∆t of the spatial spectral components ak

(3) of the underlying Gaussian field is driven by [19]

ak,t+∆t = ak,t exp
(
−ikTV∆t

)
βk +

√(
1− β2

k

)√
skek,t+∆t, (4)

where V is the advection vector and βk the autocorrelation
lag of the Markov process in the Fourier domain. In (4), the
term ak,t exp(−ikTV∆t) defines the field spectral component
at spatial frequency k and time t with a phase shift that

corresponds to the rain advection between t and t + ∆t. The
term

√
skek,t+∆t corresponds to the process innovation. The

variance of ak,t is assumed to be constant in time, preserving
that way the spatial correlation of the Gaussian field when
performing the Fourier expansion (2). The parameterization
proposed in [19]

βk = exp

(−∆t
τk

)
, (5)

where τk is the correlation time in the Fourier plane, com-
plies with the definition of a Markov process. Equation (5)
induces a non-separable spatiotemporal correlation function
as the latter cannot be expressed as the product of a spatial
correlation function by a temporal one [24]. The choice and
parameterization of (5) is discussed in Section 2.3.4 from the
radar data of Bordeaux.

2.2. Conversion into Rain Rate Fields. In order to convert
the Gaussian random fields G(x, t) obtained from (2), (3),
(4), and (5) into rain fields R(x, t), the local statistical
distribution of rain rate R has to be known. The latter is
highly dependent on the geographical area. For that purpose,
Rec. ITU-R P.837, 2007 [25] gives the probability of rain
P0 and the empirical rainfall rate Cumulative Distribution
Function (CCDF) P(R ≥ R∗) all over the world [26, 27].
In other respects, many authors ([28] or [29]) have shown
that the rain rate conditional CCDF P(R ≥ R∗/R > 0) is log
normal (mean µR, standard deviation σR) so that the absolute
CCDF P(R ≥ R∗) can be modelled by:

P(R ≥ R∗) = P0

∫ +∞

R∗

1√
2πσ2

Rr
exp

[
−
(
ln r − µR

)2

2σ2
R

]
dr

if R∗ > 0,

P(R ≥ 0) = 1,

(6)

where the probability of rain P0 is given by Rec. ITU-R P.837,
2007 [25] and (µR, σR) are derived by least square fitting with
Rec. ITU-R P.837, 2007 [25] using the procedure given in
Rec. ITU-R P.1057. The result is shown in Figure 1. A good
agreement can be observed between (6) and the absolute
CCDF derived from Rec. ITU-R P.837, 2007 [25], at least for
the temperate and terrestrial areas considered.

From (6), [19] proposes a transformation ψ that turns
the Gaussian fields G(x, t) into rainfall rate fields R(x, t):

R(x) = ψ[G(x)] = 0 if G(x) < α,

R(x) = ψ[G(x)]

= exp

[
µR +

√
2σRerfc−1

(
erfc

[
G(x)/

√
2
]

P0

)]

if G(x) ≥ α,

(7)

where α =
√

2σRerfc−1(2P0), erfc is the complementary error
function and erfc−1 its inverse.

Equation (7) converts the Gaussian random variables
G(x, t) into random variables R(x, t) that follow the CCDF
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Figure 1: Rain rate absolute CCDF P(R ≥ R∗) derived from ITU-R
Rec P.837-5 [25] (crosses) and log normal regression (6) (solid line).

defined by (6). However, from the radar data of Bordeaux,
it is shown in Section 2.3.2 that (7) introduces a numerical
artifact that needs to be corrected.

2.3. Parameterization and Refinement of the Modeling. The
spatial and temporal parameters cG(d), βk, and τk in the
model proposed by [19] are the key parameters that need
to be accurately assessed in order to obtain a realistic
description of the statistical dependence of rain rates in space
and in time. In [19], the model parameterization derives
from radar data sets collected over tropical oceans during
the experimental campaign GATE (GARP Atlantic Tropical
Experiment) from the GARP (Global Atmospheric Research
Program) [30]. As the spatial and temporal characteristics
of the rain fields over oceanic tropical areas are likely to be
different from the ones over temperate areas, a parameter
retrieval specific to midlatitude areas is undertaken. For that
purpose, the spatial correlation function cG(d)—that is, the
spatial spectrum sk in (3)—and the parameters βk and τk that
drive the temporal evolution in (4) and (5) are determined
from a meteorological radar dataset collected over Bordeaux
(France) that is first presented. The latter is also used to
illustrate the necessity of a slight modification of (7) to match
features observed on the radar data.

2.3.1. Description of the Dataset. The data come from the
weather radar located at Bordeaux (44.5◦N, −0.5◦E), south
western France, in the vicinity of the Atlantic Ocean, in
a very flat region. The radar is an S-band radar which
is part of the French operational radar network managed
by Météo France. The polar scans acquired each 5 mn are
projected into a Cartesian grid with a pixel size of 1 × 1 km2.
The dataset contains 35286 scans acquired from January to
December 1996. Images including ground clutter or melting
layer echoes were removed from the data set so that the used

radar data only refer to rain fields [12–14]. The conversion of
the reflectivity into rain rate is made using the standard Z-R
relation for midlatitudes Z = 300× R1.5 [31], where Z is the
radar reflectivity factor in mm6 m−3 and R the rainfall rate in
mm h−1.

2.3.2. Refinement of the Conversion of Gaussian Fields into
Rain Fields. Transformation (7) proposed by [19] to convert
Gaussian fields G(x, t) into rain fields R(x, t) aims at
preserving the rain rate local distribution. Nevertheless, it
introduces an unrealistic feature on the generated rain fields.
Particularly, (7) introduces on R(x, t) an unrealistic link
between the spatial fraction fR of R(x, t) that is affected by
rain and the spatial average of the strictly positive rain rates
values 〈R | R > 0〉. This point is illustrated in Figure 2, where
(7) defines 〈R | R > 0〉 as a growing function of fR. This
is in contradiction with the ergodicity assumption of rain
rate fields [26, 32, 33] that implies that 〈R | R > 0〉 does
not change with respect to the fractional area fR affected
by rain. This point is confirmed in Figure 2 by the radar
observations of Bordeaux. The artifact introduced by (7) is
purely numerical: whenever the size N of the simulation area
reduces with respect to the decorrelation distance driven by
cG(d), the random variables R(x, t) start to deviate from a
log normal distribution with parameters µR and σR in (6).
Therefore, (7) has to be corrected, introducing the correction
terms µoff and σoff :

R(x) = ψ[G(x)] = 0 if G(x) < α,

R(x) = ψ[G(x)]

= exp

[
µR −

µoff

σoff

+
√

2
σR
σoff

erfc−1

(
erfc

(
G(x)/

√
2
)

P0

)]

if G(x) ≥ α,

(8)

The values of the numerical correction terms µoff and σoff

must be determined from simulations of R(x, t): they are
adjusted to insure that the random variables R(x, t) that
compose the N×N rain field are log normal, with parameters
µR and σR. This leads to assume that considering a sufficiently
large area the spatial CCDF can be approximated by the
temporal one as already underlined by [21, 28]. Therefore,
their values are specific to the simulation area considered and
to the definition of cG(d): they must be evaluated once for
all whenever the simulation configuration has been defined.
That is the reason why their values are not specified in the
present paper.

Finally, (8) guarantees the statistical independence be-
tween the fraction of the simulation area fR that is affected
by rain and the conditional mean rain rate 〈R | R > 0〉 as
illustrated on Figure 2 where 〈R | R > 0〉 is constant whatever
fR in compliance with the radar observations.

2.3.3. Parameterization of the Spatial Correlation. The spatial
correlation of the Gaussian field can be determined from
the analysis of radar data. As part of a stochastic approach,
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Figure 2: Relation between the fraction of the area fR that is
affected by rain and the conditional mean rain rate 〈R | R > 0〉
computed from 35 000 radar scans and from 35 000 simulations
using transformation ψ defined by (7) [19] and the correction (8).

each radar image is a realization of the random process
R(x, t). In such conditions, (8) implicitly relates the spatial
correlation cG(d) of the underlying Gaussian field G(x, t)
to the spatial correlation cR(d) of R(x, t). Particularly, let r1

and r2 be random variables representing rainfall rates that
are separated by a distance d. Assuming that r1 = ψ(g1)
and r2 = ψ(g2), where ψ is given by (8) and g1 and g2 are
standard centered variable with spatial correlation cG(d), the
joint Probability Density Function (PDF) p(g1, g2) is given by

p
(
g1, g2

)
= 1

2π
√

1− c2
G(d)

exp

[
−1

2

g2
1 + g2

2 − 2cG(d)g1g2

1− c2
G(d)

]
.

(9)

From (7), α =
√

2 erfc−1(2P0) and the rain rate cross expec-
tation 〈r1r2〉 can be related to cG(d) by

〈r1r2〉 =
〈
ψ
(
g1

)
ψ
(
g2

)〉

=
∫∫ +∞

−∞
ψ
(
g1

)
ψ
(
g2

)
p
(
g1, g2

)
dg1dg2

=
∫∫ +∞

α
ψ
(
g1

)
ψ
(
g2

) 1

2π
√

1− c2
G(d)

× exp

[
−1

2

g2
1 + g2

2 − 2cG(d)g1g2

1− c2
G(d)

]
dg1dg2.

(10)

As the numerical integration of (10) is inaccurate and
requires a significant computation time, the rain field
covariance 〈r1r2〉 − 〈r1〉〈r2〉 is related to the Gaussian field

correlation function cG(d) through a method based on
Hermit polynomials [21, 34]:

〈r1r2〉 − 〈r1〉〈r2〉 =
+∞∑

k=1

ψ2
k

k!
cG(d)k, (11)

where ψk are the coefficients of the Hermit polynomial
expansion of ψ. To reduce inaccuracies due to the finite
number of terms in the sum (11) and the slow convergence
rate [21], it is preferable to evaluate the covariance of the

truncated field G̃(x, t) = ψ̃−1[R(x, t)] = Ω[G(x, t)], defined
from the analytical inversion ψ−1 of (8):

G̃(x, t) = ψ−1[R(x, t)] = G(x, t) if R(x, t) > 0,

G̃(x, t) = α if R(x, t) = 0.
(12)

The main advantage of this transformation is that the terms
of the Hermite expansion of transformation Ω are bounded
so that (13) converges rapidly, allowing a fast numerical
computation:

〈
g̃1g̃2

〉
−
〈
g̃1

〉〈
g̃2

〉
=

+∞∑

k=1

Ω
2
k

k!
cG(d)k, (13)

where g̃1, g̃2, Ωk are as in (11) but now refer to G̃(x, t) and
transformation Ω.

From a practical point of view, that is, to estimate
cG(d) from radar observations of rain field, ψ̃−1 is first
applied to the radar data. From (12) and (8), the rain fields

R(x, t) are thus turned into truncated Gaussian field G̃(x, t).
Afterwards, the covariance of the truncated Gaussian field
G̃(x, t) is computed for each radar map performing the
inverse Fourier transform of the spatial power spectrum

of G̃(x, t). Finally, cG(d) is computed inverting numerically

(13), from the average covariance function of G̃(x, t) over all
the radar maps. A two-dimensional representation of cG(d)
(not shown) suggests slightly larger correlation values along
a north south axis indicating a possible local anisotropy.
Nevertheless, this trend is weak, probably due to the flatness
of the region of Bordeaux, where orographic forcing is almost
absent. Therefore, the correlation is assumed to be isotropic
in what follows, so that cG(d) reduces to cG(d). The isotropic
correlation function cG(d) finally obtained from the radar of
Bordeaux is presented in Figure 3.

A regression process concludes that cG(d) can be appro-
priately approximated by

cG(d) = 0.59 exp

(−d
31

)
+ 0.41 exp

(−d
800

)
. (14)

Equation (14) indicates a slowly decaying part, denoting the
existence of a possible long range dependence of rain rates.
Obviously, (14) is specific to the region of Bordeaux since
it is derived from local radar observations. Nevertheless,
(14) is very close to the formulation proposed by Barbaliscia
et al. in [35] from rain gauge measurement across Italy.
Therefore, (14) should be appropriated to model rain fields
in midlatitude areas.
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field G(x, t) derived from the radar observations of Bordeaux and
analytical regression (14).

2.3.4. Parameterization of the Temporal Evolution. The rain
field temporal evolution is decomposed into one term related
to the advection and the other related to the rain rate field
dynamics along their tracks. Bell in [19] introduces the
temporal evolution of the underlying Gaussian field G(x, t)
through (4) and (5). Here, the definition of the correlation
time τk in (5) is required. From radar observations of rain
fields in tropical areas, Bell [19] proposes the formulation:

τk = 0.24×
(

π

|k|

)2/3

. (15)

Equation (15) corresponds to the rain field correlation
time and does not refer to the temporal evolution of the
underlying Gaussian fields in (4) or (5). Moreover, the
effect of the advection was not isolated, biasing the analysis.
Lastly, a parameterization for midlatitude areas is required.
Consequently, an attempt toward a more rigorous derivation
of the temporal evolution of the Gaussian field G(x, t) from
(4) is conducted from the midlatitude radar dataset of
Bordeaux.

First, the rain fields are corrected for advection. To do it,
the average advection vector is computed from two successive
radar observations of the rain field, by maximizing their
spatial cross-correlation [36]. Proceeding that way, successive

rain fields R̂(x, t) = ψ⌊Ĝ(x, t)⌋ which average motion is
null are defined. This advection correction allows getting rid
of the shift phase exp(−ikTV∆t) in (4). Now, the temporal

evolution of the underlying Gaussian fields Ĝ(x, t) reduces to

ak,t+∆t = ak,tβk +
√(

1− β2
k

)√
skek,t+∆t, (16)

where ak,t are the coefficients of the spatial Fourier expansion

of Ĝ(x, t)—that is, of G(x, t)—and where βk is given by

(5). Recalling that ek,t is normal, standard, centered, and
uncorrelated, it follows from (16) that

〈
ak,t+∆ta

∗
k,t

〉
=
〈
ak,ta

∗
k,t

〉
βk, (17)

where ∗ is the complex conjugate. Considering (5), the cor-
relation time τk is finally given by:

τk = −
∆t

ln
(
βk

) = − ∆t

ln
(〈

ak,t+∆ta
∗
k,t

〉)
− ln

(〈
ak,ta

∗
k,t

〉) . (18)

The term 〈ak,t+∆ta
∗
k,t〉 is the spatial cross-spectral density of

the spatial processes Ĝ(x, t) and Ĝ(x, t + ∆t). It is linked by
Fourier transform to the spatiotemporal correlation function

cĜ(d,∆t) of Ĝ(x, t). The latter is inferred from the method-
ology developed in Section 2.3.3. Particularly, the rain fields

R̂(x, t) corrected for advection are first transformed into
truncated Gaussian fields ĜT(x, t) = ψ̃−1[R̂(x, t)] with ψ̃−1

defined in (12). From fields ĜT(x, t), the spatiotemporal
power spectrum is computed, and, by inverse Fourier
transform, the space-time correlation function cĜT

(d,∆t)
is obtained. Equation (13) then allows the derivation of
cĜ(d,∆t) and, finally, 〈ak,t+∆ta

∗
k,t〉 is obtained by Fourier

transform.
To evaluate the value of τk in (18) from the radar data

of Bordeaux (∆t = 5 mn), successive rainy maps corrected
for advection have been used. As the radar spatial coverage is
limited, the correction for advection on the successive radar
maps has been restricted to areas of 100× 100 km2 while only
durations less than 2 hours have been considered. Finally, 25

rainy events R̂(x, t) of 2 hours corrected for advection have
been selected in the database. For each event, the value of τk

has been computed according to the methodology described
above. As shown in Figure 4, the average dependency of τk

with respect to the spatial frequency k can be approximated
by

τk = 0.06

(
1

|k|

)0.94

. (19)

Equation (19) was found assuming that τk follows a power-
law function of the spatial frequency |k|. Equation (19) is
thus an adjustment of (13) [15] for midlatitude areas. As
shown in Figure 4, the dependency of τk with respect to
|k| suggests, as expected, that the evolution of large features
(rain field stratiform component associated to small values
of |k|) is slower (higher correlation time τk) than the one
of smaller features (rain field convective components with
limited spatial extent, associated to highest |k| values).

2.4. Limitations of the Presented Methodology. Several hy-
potheses limit the validity range of the space-time modeling
developed above. The most significant one is the stationarity
assumption of the random field. Even if Ferraris et al. [37]
have shown that the rain field stationarity is realistic for areas
∼200 × 200 km2, this assumption is not likely to hold for
larger areas where orography or climatology related effects
may introduce unstationarity in the rain field. For that rea-
son, the model presented above should be limited to midscale
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Figure 4: Evolution of parameter τk as a function of the spatial
frequency |k|.

areas (∼200 × 200 km2). Therefore, its use for areas of the
size of a typical satellite regional coverage (such as Europe
or USA) is not appropriate. The same kind of restriction
applies for the simulation duration. Indeed, considering (5)
and (19), the 0 frequency term of the temporal evolution
coefficient β0 is equal to 1. Consequently, (4) indicates that
the spatial average of the Gaussian field MG = a0 remains
constant, preventing that way the temporal evolution of
integrated values during the simulation process such as the
average rain amount or the fractional area affected by rain.
Particularly, the alternation of clear sky and rainy periods
cannot be reproduced by the simulated rain fields, the rain
amount being approximately constant during the simulation
process. In order to overcome these limitations, a coupling
with a meteorological reanalysis database is investigated.
It is described in Section 3. It allows benefiting from the
statistical robustness of the stochastic model for midscale
features while ensuring a realistic repartition of the generated
rain amount over large areas (continental scale) and long
durations (many years).

3. Extension of the Model Using Inputs from
Meteorological Reanalysis Database

To cope with the problem of the temporal evolution of
the fractional area affected by rain and hence being able to
generate realistic long-term correlated time series of rain rate
or rain attenuation, the use of GCM (General Circulation
Model) outputs is proposed. For that purpose, the ECMWF
ERA-40 reanalysis database [38] is chosen as it offers a
worldwide estimation of rainfall amounts for durations long
enough to be statistically representative. We underline that
the purpose of this work is not to forecast propagation
conditions from outputs of numerical weather prediction
as proposed in [39] but rather to generate long term
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Figure 5: Area averaged rain rate 〈R〉 as a function of the fractional
area fR above 0.5 mm·h−1 from the radar data set of Bordeaux.
Each cross derives from one radar observation. The correlation
coefficient with the linear regression (red line) is 0.85.
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black dashed line results from the rain fractional area computed
from rain field spatiotemporal simulations with high-resolution
parameters (i.e., ∆t = 6 mn).

propagation scenarios with high spatiotemporal resolutions
from realistic past meteorological situations.

3.1. Description of the ECMWF ERA-40 Dataset. The dataset
used in this study is a subset from the ECMWF ERA-
40 reanalysis database freely available on the ECMWF
website. This database strives at reproducing the state of the
atmosphere in the past (the considered period ranges from
1957 to 2002), constraining a numerical weather forecast
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Figure 7: Conversion of the rain amount time series given by ERA-40 into rain fractional area fLR(t) and into spatial average of the Gaussian
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Figure 8: Spatial extension of the modelling to several resolution
cells of the ERA-40 reanalysis database. Each gray square figures an
ERA-40 resolution cell. The interpolation procedure (27) is applied
inside the white square.

model with observations. The model internal variables are
pressure, temperature, wind, and humidity profiles from
which several other parameters such as rain amounts are
deduced. This database is provided with a coarse spatial
resolution of 2.5◦× 2.5◦ (i.e., ∼250 × 250 km2), with one
sample each 6 hours.

3.2. Rain Amount Parameterization. A relation between the
rain amount of one ERA-40 resolution cell with the fraction
of this resolution cell that is affected by rain is presented
in Section 3.2.1. Then, this information related to the rain

fractional area is introduced in the stochastic approach
developed in Section 2. Proceeding that way, a realistic (since
driven by ERA-40 outputs) spatiotemporal evolution of the
simulated rain fields is insured at large-scale (continental
scale) and for long durations (several years).

3.2.1. Link between the Rain Amount from a GCM and the
Fractional Area Affected by Rain. Many studies on rainfall
remote sensing have put forward that if a sufficiently large
number of rain cells at different stages of their life cycle are
observed over an area (∼200 × 200 km2), a tight link exists
between the fractional area fR that is affected by rain above
a given threshold and the (unconditional) area-averaged rain
rate 〈R〉 [40, 41]. As an example, Figure 5 shows the linear
dependency of 〈R〉 with respect to the fractional area fR
deduced from the radar data of Bordeaux.

This relation is all the more tight because a large number
of rain cells are observed simultaneously in the rain field,
giving an exhaustive representation (in a statistical sense) of
the climatological rain rate distribution [42].

Besides, Eltahir and Bras [32] have shown that consid-
ering rainfall outputs from low-resolution GCM, the same
kind of relation holds between the average rain accumulation
(equivalent height of water) VR which corresponds to a
spatially averaged rainfall rate integrated during a duration
∆T and the fraction of the GCM pixel that is under rain fR:

fR =
VR

r∆T
, (20)
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(∆t = 6 mn).

where r = 〈R | R > 0〉 is the conditional mean rain rate
(i.e., knowing that it is raining) on the GCM considered area.
From (6), the conditional mean rain rate r can be obtained
considering the log normal local distribution of rainfall rates
[28, 32]:

r = 〈R | R > 0〉 ≥ exp

(
µR +

σ2
R

2

)
. (21)

Therefore, from the rain amount time series VR given by
ERA-40, the associated time series of the fractional area fR
can be inferred worldwide from (20) and (21), every ∆T = 6
hours, over cells with size 2.5◦× 2.5◦.

3.2.2. Parameterization of the Mean Value of the Gaussian
Field. In order to include the information derived from the
reanalysis database in the high-resolution stochastic rain
model, a link has to be found between the rain fractional
area fR and the simulation parameters. Recently, Authors
in [43] have proposed a model to link the fraction fG of
one Gaussian field realization that is above a given threshold
with the Gaussian field average value MG. Under some
assumptions on the shape of the correlation function, the
authors have shown that the spatial distribution of the
samples of one Gaussian field realization simulated on a
finite grid with size N × N is normal, with mean MG and
standard deviation 1 − σ2

G, where σ2
G is the spatial average

of the Gaussian field correlation function over the N × N
simulation grid. In such conditions, Authors in [43] have
shown that the fraction fG of a simulated Gaussian field that
is over a preset threshold αG is given by

fG =
1

2
erfc

⎛
⎝ αG −MG√

2
(
1− σ2

G

)

⎞
⎠. (22)

From the Gaussian modeling of rain fields developed in
Section 2, αG is linked to the rain no-rain threshold through
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from 6 mn rain field spatiotemporal simulations (b).

the equation αG =
√

2 erfc−1(2P0), where P0 is the probability
of rain. Obviously fG = fR so that the mean value MG of the
Gaussian field can be related to the rain fractional area fR by

MG =
√

2 erfc−1(2P0)−
√

2
(
1− σ2

G

)
× erfc−1(2 fR

)
. (23)

By definition of the Fourier transform, the 0 frequency term
a0 of the Fourier expansion of the Gaussian field G(x, t) is
equal to its mean value MG. Therefore, whenever a0 is set to
MG, the fraction of the simulation area that undergoes rain is
fR, as expected.

In the foregoing, the spatiotemporal evolution of the
simulated rain fields is derived from ERA-40 rain amount
time series which temporal resolution ∆T is 6 hours. It is
thus mandatory to find an interpolation scheme to get values
of the rain fractional area fR at a finer time resolution. This
high-resolution time series of rain fractional area denoted by
fHR(t) and sampled at ∆t (∆t < ∆T) must be continuous
and, obviously, its average value over ∆T = 6 hours
must be equal to the low-resolution rain fractional area
derived each 6 hours from ERA-40 and denoted by fLR(t)
hereinafter. Therefore, considering that fLR(t) holds in the
temporal interval [−T/2;T/2], fHR(t) is arbitrarily defined
as a piecewise linear function such as

fHR(t) = a′t + b, t ∈
[
−T

2
; 0

]
,

fHR(t) = a′′t + b, t ∈
[

0;
T

2

]
.

(24)

To ensure the continuity at the edges of the interval, we set

fHR

(
−T

2

)
=
√
fLR(−T) fLR(0),

fHR

(
T

2

)
=
√
fLR(T) fLR(0),

(25)

combined with the constraint on the average value on
[−T/2;T/2]:

1

T

∫ T/2

−T/2
fHR(t)dt = 1

T

∫ 0

−T/2
(a′t + b)dt +

1

T

∫ T/2

0
(a′′t + b)dt

= fLR(0).

(26)

Equations (24), (25), and (26) define a set of three equations
with three unknown coefficients a′, a′′, and b. The effect
of this interpolation procedure is illustrated in Figure 6,
where it is shown to reproduce accurately the rain fractional
area derived from ERA-40. Nevertheless, the effect on the
simulations of this piecewise linear interpolation is not well
assessed and constitute. It will be shown further that it has
not a significant impact on the realism of the simulations in
terms of temporal correlation.

Figure 7 sums up the step-by-step methodology devel-
oped to parameterize the stochastic model from ERA-40
rain amount time series. Particularly, from the ERA-40 low-
resolution (∆T = 6 hours) time series of rain amount, a
low-resolution (∆T = 6 hours) time series of rain fractional
area is deduced from (20). The latter is interpolated at
∆t = 6 mn (i.e., the radar observation frequency) from
the piecewise approach defined above. At this stage, a time
series of Gaussian field mean values MG(t) is derived from
(23). It is injected in the spatiotemporal model through
the Fourier coefficient a0(t) = MG(t). Finally, the model
generates realistic rain fields with long-term evolution at the
scale of one ERA-40 resolution cell (2.5◦× 2.5◦, i.e., ∼250 ×
250 km2) with a spatial resolution of 1 × 1 km2 and with a
temporal resolution of 6 mn.

3.2.3. Extension to Several Cells of the GCM. The extension
of the simulation domain to areas larger than 2.5◦× 2.5◦

requires taking into account more than one ERA-40 cell.
It is not possible to juxtapose directly the 2.5◦× 2.5◦ rain
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fields obtained from the methodology described above for
one ERA-40 resolution cell because the rain field continuity
between two adjoining cells is not ensured. For that purpose,
an interpolation procedure that preserves the statistical
features of each 2.5◦× 2.5◦ subfield while ensuring the
continuity of the global rain field has been developed.
Particularly, for each ERA-40 cell contained in the simulation

area, a Gaussian field with size 2N × 2N is simulated
according to the methodology described in Section 2. Then,
for each point x = (x1, x2) of the simulation area, the value
of the global Gaussian field G results from the weighted sum
of the Gaussian fields G1, G2, G3, G4 generated for each of the
ERA-40 adjacent resolution cells:

G(x1, x2) =
√

(d − x1)(d − x2)G1(x1, x2) +
√
x1(d − x2)G2(x1, x2) +

√
(d − x1)x2G3(x1, x2) +

√
x1x2G4(x1, x2)

d
, (27)

where d is the distance between two ERA-40 resolution cells
(d = N). Figure 8 gives an overview of the interpolation
scheme.

Common interpolation methodologies such as bilinear
or cubic spline interpolation are not suitable in our case
because they do not preserve the Gaussian field statistical fea-
tures in terms of variance and correlation. On the contrary,
(27) does not change the variance and the correlation of the
Gaussian subfields Gi. Moreover, by construction, the model
reproduces both the rain amount given by ERA-40 for each
resolution cell (as a laplacian filtering is applied to the coeffi-
cient a0 of each subfield) and the local rain rate CCDF given
as input parameters. Figure 9 gives an example of rain rate
field simulated at large-scale, over Europe, on 24/02/1999 at
19:30 UTC from the concurrent ERA-40 rain amount data.

3.3. Advection. Whenever the rain field spatiotemporal sim-
ulation lasts a few hours, a common and practical approach
is to consider the advection vector as constant both in speed
and direction. However, this frozen storm hypothesis is not
satisfying if long-durations or large-scale simulations are
considered. Indeed, the wind field and the resulting rain
field motion may evolve considerably with distance or time.
In such conditions, wind data from the ERA-40 database
can provide realistic inputs for this parameter. Indeed,
comparing radar-derived advection with wind outputs from
meteorological model [36, 44], have shown that the rain field
motion can be accurately derived from the ERA-40 wind data
at the 700 hPa pressure level. Consequently, for each ERA-
40 resolution cell making part of the large-scale simulation
area, the advection vector V defined in (4) is driven by the
ERA-40 concurrent wind data at a pressure level of 700 hPa.
Lastly, in order to get a smooth temporal evolution of the rain
advection, both components of the winds are interpolated by
cubic splines with a time step ∆t of 6 mn.

4. Conversion into Attenuation

4.1. Conversion of Rain Rate Fields into Attenuation Fields.
Rain field simulations are converted into attenuation by
integration of the specific attenuation along the link path.
The attenuation (dB) endured by the electromagnetic wave
during its propagation through rain is given by

A =
∫ Ls

0
kRα(x)dx, (28)

where R(x) is the rain rate intensity (mm h−1) at x and Ls
is the slant path (km) through rain. k and α are coefficients,
function of the elevation angle, the frequency, and the polar-
ization of the electromagnetic wave. Their values are given
by Rec. ITU-R P.838 [45]. The definition of the geometric
(latitude, longitude, altitude of the satellite) and radiowave
(frequency, polarization) characteristics of the telecommuni-
cation link allows the conversion of the rainfall field into an
attenuation field. Here, the altitude of the N×N points com-
posing the simulation grid is derived from Rec. ITU-R P.1511
[46]. The rain height is 0.36 km above the 0◦C isotherm
height given by the ERA-40 temperature profiles. The use
of ERA-40 data, sampled each 6 hours, to define the 0◦C
isotherm height allows a better description of the rain height
with respect to Rec. ITU-R P.839 [47] that provides only the
yearly average of the rain height as shown in Figure 10.

4.2. Over-Sampling of the Attenuation Time Series. For Sat-
Com systems using adaptive coding, adaptive modulation, or
other FMTs, it is crucial to get an estimate of the propagation
channel evolution with a temporal resolution of about 1
second. However, the temporal resolution of the model
developed in Section 3 is 6 mn. Therefore, it is mandatory
to simulate the fast dynamic fluctuations of the propagation
channel to increase the model temporal resolution. For that
purpose, the on-demand time series synthesizer described in
[6] is used. The latter makes a 1 s stochastic interpolation of
the 6 mn attenuation time series extracted from the space-
time model, generating that way high-frequency (1 Hz)
attenuation time series as illustrated in Figure 11.

The high-resolution interpolation [6] holds whenever
the attenuation time series are Markov and follow a log
normal distribution which parameters can be derived from
ITU-R P.618 [48]. The parameter β describing the dynamic
fluctuations in [6] is taken equal to the advocated value
of 2.10−4 s−1. Coupled with the spatiotemporal model, the
stochastic interpolation enables to simulate 1 Hz spatially
correlated attenuation time series for thousands of links
disposed across the satellite coverage, for long durations
(several years).

5. Preliminary Validations, Limitations

5.1. First-Order Statistics. Preliminary analysis shows that
the rain amount from the reanalysis database is reproduced
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Figure 13: Rain attenuation CCDF and attenuation CCDF at 20 GHz computed from one year of simulations compared to ITU-R P. Rec
837-5 and ITU-R P. Rec 618-10.

by the simulations for each 6 h period with an RMS error of
about 15% as illustrated in Figure 12.

By construction, the model reproduces the rain rate log
normal approximation (6) of Rec. ITU-R P.837 [25] on each
point of the simulation grid. In other respects, long-term
attenuation time series reproduce the attenuation CCDFs
given by ITU-R P.618 [48], as illustrated in Figure 13.

In addition, from OLYMPUS satellite measurements at
20 GHz led in 1992 near Paris (France), the model ability
to reproduce attenuation statistics derived from beacon

measurements has been investigated. Here, high-resolution
(1 Hz) attenuation time series have been synthesised from
ERA-40 data concurrent to OLYMPUS measurement period,
assuming a link with the OLYMPUS geostationary satellite
(19◦W) at 20 GHz [49]. Figure 14 shows the results in terms
of attenuation CCDF derived from simulations and from
OLYMPUS experiment.

According to Figure 14, statistics derived from spatiotem-
poral simulations of attenuation fields compare satisfactorily
with the experimental ones up to small time percentages.
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OLYMPUS campaign (1992) in two sites near Paris (La-Folie-Bessin
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Nevertheless, it is noticeable that the variability of the
experimental statistics is higher than the one derived from
the simulations.

5.2. Second-Order Statistics. In order to assess the model
ability to reproduce the spatial variability of the attenuation
due to rain, the diversity gain has been computed first
from the radar data of Bordeaux collected in 1996 every
5 mn [36]. As the latter refer to rain fields, the radar
data have been converted to attenuation fields assuming
a 30 GHz link with OLYMPUS. On the other hand, the
same exercise has been conducted from the rain fields
simulated by the spatiotemporal model each 6 mn using
ERA-40 data of 1996. The results are presented in Figure 15,
for single site attenuation values ranging from 4 dB to 32 dB.
Figure 15 shows that the spatiotemporal model reproduces
satisfactorily the diversity gain derived from radar data, even
if a slight trend toward underestimation for the highest single
site attenuation values and for low distances can be observed.

A similar test has been carried out with the 1 Hz over-
sampled time series. Indeed, the joint attenuation CCDF has
been computed first from OLYMPUS [49] measurements
at La-Folie-Bessin and Gometz-La-Ville that are 7 km apart
and, second, from the 1 Hz time series derived at both
locations from the spatiotemporal model. According to
Figure 16, the experimental and model-based distributions
match satisfactorily, showing thus the model ability to
account for the rain attenuation spatial variability.

To evaluate the relevance of the model temporal param-
eterization, the temporal correlation function of attenuation
time series has been evaluated first from yearly attenuation
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Figure 15: Diversity gain as a function of distance for different
single site attenuation values derived from radar data (blue curves)
and derived from simulations (red curves).
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Figure 16: Joint attenuation CCDF derived from simulations and
derived from OLYMPUS measurements at 20 GHz, at La-Folie-
Bessin and Gometz-La-Ville (7 km apart).

time series extracted from the radar observations of Bor-
deaux in 1996 and, second, from the 6 mn attenuation time
series simulated over Bordeaux in 1996.

The results, reported in Figure 17, show that the temporal
correlation function computed from simulations is close
to the one derived from radar. Nevertheless, the temporal
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validation of the model has to be deepened, notably to
assess the ability of the simulated time series to reproduce
fade slopes, fade duration, or interfade durations statistics
derived from beacon measurements. The autocorrelation
from function from time series simulated at one should also
be compared with autocorrelation from measurements made
during ITALSAT or OLYMPUS campaigns.

6. Conclusion

A model to generate spatially and temporally correlated rain
fields or rain attenuation fields for propagation studies has
been presented. It lies on a nonlinear transformation of
random Gaussian fields constructed in the Fourier plane.

After a description of the mathematical framework, a
method to derive the spatiotemporal correlation parameters
from radar data has been proposed. It has been applied to the
meteorological radar data of Bordeaux (France, midlatitude
area). As the initial approach proposed by Bell in [19] was not
intended to model rain rate fields at large-scale and for long
durations, a theoretical framework to enlarge the validity
domain of the model has been developed. A methodology
to constrain the model with rain outputs from the ERA-
40 reanalysis database has then been presented. Particularly,
the rain amount generated each 6 h by the spatiotemporal
model is constrained to be the one given by ERA-40. The rain
advection is also modelled using ERA-40 wind data. Coupled
with a large-scale interpolation scheme, the spatiotemporal
model is thus able to generate realistic rain fields for long
durations (several years) and large areas (i.e., over Europe or
USA, the size of a typical SatCom system coverage) with a
spatial resolution of 1 × 1 km2 and a temporal resolution of
6 mn.

Then, defining the geometric and radio electric char-
acteristics of a link, the rain rate fields are turned into
attenuation fields considering the wave path through rain.
Here, the stochastic interpolation scheme described in [6]
allows reducing the temporal resolution up to 1 s. The model
then shows its ability to reproduce several statistical char-
acteristics observed on different and independent sources
of data. In addition to the first-order statistics of rain and
rain attenuation, the model is able to reproduce the spatial
repartition of rain attenuation in terms of diversity gain or
joint attenuation CDF. From the temporal point of view,
first validations in terms of temporal correlation function are
promising but further enquiries are needed to consolidate the
results.

Reliable inputs for FMTs and RRM (Radio Resource
Management) design and optimization may be obtained
from the presented model, for several configurations, since
the simulation area can reach the size of a typical satellite
coverage with a temporal resolution that can be reduced
down to 1 s for several years. Particularly, considering
complex network simulations that involve thousands of links
dispersed over the whole coverage, the spatiotemporal model
is able to provide realistic propagation conditions, both
correlated in space and in time.

However, the use of the ERA-40 reanalysis database may
lead to some bias in the simulations, especially in coastal
or mountainous areas, that is, in places where the quality
of the reanalysis database is questionable. Nevertheless, the
use of reanalysis data turns out to be promising as it allows
simulating test cases from specific past weather conditions.
For instance, this can provide a good opportunity to study
diurnal cycles, seasonal cycles, or interannual variability but
also worst cases identified on the reanalysis data.

A logical following to this work is the inclusion, using the
same approach, of the gaseous and liquid water attenuation
as they become critical for SatCom system operating at Q
or V band or even at Ka band for other applications such
as radar altimetry.
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