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Summary 26 

To understand how the brain processes sensory information to guide behavior, we 27 
must know how stimulus representations are transformed throughout the visual cortex.  28 
Here we report an open, large-scale physiological survey of neural activity in the awake 29 
mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly 30 
available dataset includes cortical activity from nearly 60,000 neurons collected from 6 31 
visual areas, 4 layers, and 12 transgenic mouse lines from 221 adult mice, in response to 32 
a systematic set of visual stimuli. Using this dataset, we reveal functional differences 33 
across these dimensions and show that visual cortical responses are sparse but 34 
correlated. Surprisingly, responses to different stimuli are largely independent, e.g. 35 
whether a neuron responds to natural scenes provides no information about whether it 36 
responds to natural movies or to gratings. We show that these phenomena cannot be 37 
explained by standard local filter-based models, but are consistent with multi-layer 38 
hierarchical computation, as found in deeper layers of standard convolutional neural 39 
networks.  40 
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Introduction 41 

Traditional understanding, based on several decades of research, suggests that 42 
neurons early in the visual pathway are broadly responsive and become more selective 43 
and specialized through a series of hierarchical processing stages1–4. However, the 44 
computations and mechanisms required for such transformations remain unclear. A key 45 
challenge results from the fact that our understanding of the mammalian visual system is 46 
the result of many small studies, recording responses from different stages in the circuit, 47 
using different stimuli and different analyses.5 The inherent experimental selection biases 48 
and lack of standardization of this approach introduce additional obstacles to creating a 49 
cohesive understanding of cortical function. To address these differences, we conducted a 50 
survey of visual responses across multiple layers and areas in the mouse visual cortex, 51 
using a diverse set of visual stimuli. This survey was executed in pipeline fashion, with 52 
standardized equipment and protocols and with strict quality control measures not 53 
dependent upon stimulus-driven activity (see Methods, Supplemental Figures 1-8).  54 

Previous work in mouse has revealed functional differences among cortical areas in 55 
layer 2/3 in terms of the spatial and temporal frequency tuning of the neurons in each 56 
area.6,7 However, it is not clear how these differences extend across layers and across 57 
diverse neuron populations. Here we extend such functional studies to include 12 Cre-58 
defined neuron populations, including excitatory populations across 4 cortical layers (from 59 
layer 2/3 to layer 6), and two inhibitory populations (Vip and Sst). Further, it is known that 60 
stimulus statistics affect visual responses, such that responses to natural scenes cannot 61 
be well predicted by responses to noise or grating stimuli8–11.To examine the extent of this 62 
discrepancy in the mouse visual cortex, and whether it varied across areas and layers, we 63 
designed a stimulus set that included both artificial (gratings and noise) and natural 64 
(scenes and movies) stimuli. While artificial stimuli can be easily parameterized and 65 
interpreted, natural stimuli are likely to be closer to what is ethologically relevant to the 66 
mouse. Finally, as recording modalities have enabled recordings of larger and larger 67 
populations of neurons, it has become clear that populations might code visual and 68 
behavioral activity in a way that is not apparent by considering single neurons alone.12 69 
Here we imaged populations of neurons (mean 118 ± 82, st. dev, for excitatory 70 
populations) to explore both single neuron and population coding properties. 71 

We find that 74% of neurons in the mouse visual cortex respond to at least one of 72 
these visual stimuli, many showing classical tuning properties, such as orientation and 73 
direction selective responses to gratings. These tuning properties reveal functional 74 
differences across cortical areas and Cre lines. The responses to all stimuli are highly 75 
sparse, both in terms of lifetime and population sparseness. We demonstrate that for all 76 
cells the visual responses are better fit by a quadratic “complex cell” model than by a 77 
linear-nonlinear “simple cell” model. Importantly, we find that the responsiveness to 78 
different stimuli is largely independent, i.e. cells that respond to natural movies do not 79 
necessarily respond to natural scenes. These properties are not consistent with a 80 
traditional Gabor-style spatio-temporal wavelet basis, but rather are to be expected in 81 
deeper layers of a multi-layer hierarchical network. 82 

 83 
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Results 84 

Using adult C57BL/6 mice (mean age 108 ± 17 days st. dev) that expressed a 85 
genetically encoded Ca2+ sensor (GCaMP6f) under the control of specific Cre-line drivers 86 
(10 excitatory lines, 2 inhibitory lines, Supplemental Figure 7), we imaged the activity of 87 
neurons in response to a battery of diverse visual stimuli. Data was collected from 6 88 
different cortical visual areas (V1, LM, AL, PM, AM, and RL) and 4 different cortical layers. 89 
Visual responses of neurons at the retinotopic center of gaze were recorded in response 90 
to drifting gratings, flashed static gratings, locally sparse noise, natural scenes and natural 91 
movies (Figure 1f), while the mouse was awake and free to run on a rotating disc. In total, 92 
59,526 neurons were imaged from 410 experiments, each consisting of three one-hour 93 
imaging sessions (Table 1). 94 

In order to systematically collect physiological data on this scale, we built data 95 
collection and processing pipelines (Figure 1, Supplemental Figures 1-5). The data 96 
collection workflow progressed from surgical headpost implantation and craniotomy to 97 
retinotopic mapping of cortical areas using intrinsic signal imaging, in vivo two-photon 98 
calcium imaging of neuronal activity, brain fixation, and histology using serial two-photon 99 
tomography (Figure 1a,b,c). To maximize data standardization across experiments, we 100 
developed multiple hardware and software tools to regulate systematic data collection 101 
(Figure 1d). One of the key components was the development of a registered coordinate 102 
system that allowed an animal to move from one data collection step to the next, on 103 
different experimental platforms, and maintain the same experimental and brain coordinate 104 
geometry (see Methods, Supplemental Figure 1). In addition to such hardware 105 
instrumentation, formalized standard operating procedures and quality control metrics 106 
were crucial for the collection of these data (Figure 1e). 107 

 Following data collection, movies of fluorescence associated with calcium influx 108 
were motion corrected, normalized, and regions of interest (ROIs) were segmented using 109 
automated algorithms (see Methods, Supplemental Figure 9). Signals from overlapping 110 
ROIs were demixed, and contamination from surrounding neuropil was subtracted 111 
(Supplemental Figure 10). Segmented ROIs were matched across imaging sessions and 112 
ROIs were filtered to remove apical dendrites and other processes, with the aim of only 113 
including somatic ROIs. For each ROI, events were detected from ∆F/F using an L0 114 
regularized deconvolution algorithm (see Methods, Supplemental Figure 11), which 115 
deconvolves pointwise events assuming a linear calcium response for each event and 116 
penalizes the total number of events included in the trace. 117 

 For each neuron, we computed the mean response to each stimulus condition 118 
using the detected events, and parameterized its tuning properties. Many neurons showed 119 
robust responses, exhibiting orientation-selective responses to gratings, localized spatial 120 
receptive fields, and reliable responses to natural scenes and movies (Figure 2a-f, 121 
Supplemental Figure 13). For each neuron and each categorical stimulus (i.e. drifting 122 
gratings, static gratings, and natural scenes), the preferred stimulus condition was 123 
identified as the condition that evoked the largest mean response for that stimulus (e.g. 124 
the orientation and temporal frequency with the largest mean response for drifting 125 
gratings). For each trial of the stimulus, the neural activity of the neuron was compared to 126 
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a distribution of activity for that neuron taken during the epoch of spontaneous activity, and 127 
a p-value was computed. If at least 25% of the trials of the neuron’s preferred condition 128 
had a significant difference from the distribution of spontaneous activities (p<0.05), the 129 
neuron was deemed to be responsive to that stimulus (see Methods for responsiveness 130 
criteria for locally sparse noise and natural movies). 131 

In total, 74% of neurons were responsive to at least one of the visual stimuli 132 
presented (Figure 2g). The percent of responsive neurons depended on area and 133 
stimulus, such that V1 and LM showed the highest number of visually responsive neurons. 134 
This dropped in other higher visual areas and was lowest in RL where only 31% of 135 
neurons responded to any of the visual stimuli. Natural movies elicited responses from the 136 
most neurons, while static gratings elicited responses from the fewest (Figure 2h). In 137 
addition to varying by area, the percent of responsive neurons was also specific to Cre 138 
lines and layers, suggesting functional differences across these dimensions 139 
(Supplemental Figures 14-18). Note that the retinotopic location of the center of gaze is 140 
close the border of RL and somatosensory cortex, which could result in the imaging of 141 
non-visual neurons and cause the low rate of responsiveness in this area. 142 

For responsive neurons, visual responses were parameterized by computing several 143 
metrics, including preferred spatial frequency, preferred temporal frequency, direction 144 
selectivity, and receptive field size (see Methods). Comparing these metrics across these 145 
areas, layers, and Cre lines, we find evidence of functional differences across these 146 
dimensions (Figure 3, Supplemental Figures 19, 20).  147 

We included several Cre lines that label specific sub-populations of neurons. For 148 
instance, Rorb, Scnn1a-Tg3, and Nr5a1 label distinct layer 4 populations, and exhibit 149 
distinct tuning properties. For all the computed parameters, Rorb and Scnn1a-Tg3 show 150 
significant differences (KS test, Supplemental Figure 20) suggesting distinct channels of 151 
feedforward information. In layer 5, on the other hand, Tlx3 and Fezf2, which label cortico-152 
cortico and cortico-thalamic projecting neurons respectively, do not show significant 153 
differences, implying more homogenous feedback signals. These data also provide the 154 
first broad survey of visually evoked responses of both Vip and Sst inhibitory neurons. 155 
Responses to drifting gratings support the model of mutual inhibition between these 156 
inhibitory populations13,14, wherein nearly all Sst cells respond reliably to the grating 157 
stimulus while the Vip cells are nearly all unresponsive, and possibly even suppressed 158 
(Supplemental Figure 14). Interestingly, receptive fields mapped using locally sparse 159 
noise reveal that Vip neurons have remarkably large receptive field areas, larger than both 160 
Sst and excitatory neurons in V1 (Figure 3f). The visual responses of these two 161 
populations add important details to the inhibitory cortical circuit. 162 

Comparisons across areas and layers reveal that direction selectivity is highest in 163 
layer 4 of V1 (Figure 3b). In superficial layers, the differences across areas indicate that 164 
V1, LM, and AL show significantly higher direction selectivity than PM, AM, and RL 165 
(Supplemental Figure 19). This pattern in single neuron selectivity was reflected in our 166 
ability to decode the visual stimulus from single-trial population vector responses, using all 167 
cells, responsive and unresponsive. We used a K-nearest-neighbors classifier to predict 168 
the grating direction. Matching the tuning properties, areas V1, AL, and LM showed higher 169 
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decoding performance than AM, PM, and RL, and these differences were more 170 
pronounced in superficial layers than in deeper layer (Figure 3c). However, there are 171 
cases where this relationship between population decoding and direction selectivity is 172 
broken. For example, Nr5a1 neurons in V1 show the highest median direction selectivity, 173 
but the lowest population decoding performance of excitatory neurons. Even matching 174 
population size, Nr5a1 continues to show lower decoding performance than other Cre 175 
lines (Supplemental Figure 21). Destroying trial-to-trial correlations by shuffling trials, we 176 
found a slight increase in decoding performance, indicating that noise correlations do not 177 
improve the discriminability of population responses to different stimuli (Supplemental 178 
Figure 21). This result is in contrast to the impact of noise correlations on population 179 
coding in the mammalian retina15,16, suggesting a transformation of population coding 180 
strategies across the visual pathway. 181 

Across all areas, layers, and stimuli, visual responses in mouse cortex were highly 182 
sparse. Among responses to natural scenes, we found that most neurons responded to a 183 
very small number of scenes. The sparseness of individual neurons was measured using 184 
lifetime sparseness, which captures the selectivity of a neuron’s mean response to 185 
different stimulus conditions17,18 (see Methods). A neuron that responds strongly to only a 186 
few scenes will have a lifetime sparseness close to 1, whereas a neuron that responds 187 
broadly to many scenes will have a lower lifetime sparseness  (Figure 4a). Excitatory 188 
neurons had a median lifetime sparseness of 0.71 in response to natural scenes. While 189 
Sst neurons were comparable to excitatory neurons (median 0.78), Vip neurons exhibited 190 
low selectivity (median 0.35). Lifetime sparseness did not increase outside of V1; 191 
Responses did not become more selective in the higher visual areas. (Figure 4b, 192 
Supplemental Figures 22,23). Lifetime sparseness is high for all stimuli (data not shown). 193 
A complement to the sparseness of an individual neuron is the population sparseness - a 194 
measurement of how many neurons respond to each stimulus condition. Like lifetime 195 
sparseness, population sparseness is also high in these data for excitatory and Sst 196 
neurons (Figure 4c), across all areas.  197 

Such sparse activity could underlie a form of sparse coding to reduce redundancy 198 
and increase efficiency, such that neurons with similar tuning preferences do not respond 199 
at the same time.19,20 This makes a specific prediction: Similarly tuned neurons should 200 
have negatively correlated trial-by-trial activity. Contrary to this prediction of “explaining 201 
away,” we found that similarly tuned neurons exhibited positively correlated trial-by-trial 202 
fluctuations in almost all experiments in this dataset (Figure 4e,f, Supplemental Figure 203 
24). This result is consistent with reports in other sensory systems and recording 204 
methods,21 suggesting that sparse single-neuron responses underlying dense population 205 
codes are a common feature of cortical representations at the level of rates. 206 

In addition to sparsity in responses across stimulus conditions, the visually evoked 207 
responses throughout the mouse cortex showed a large amount of trial-to-trial variability. 208 
Indeed, the percent of responsive trials for most neurons at their preferred conditions was 209 
low — the median is less than 50% (Figure 5a, Supplemental Figure 25). This means 210 
that the majority of neurons in the mouse visual cortex are usually unresponsive, even 211 
when presented with the stimulus condition that elicits their largest average response. We 212 
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also calculated a more complete measurement of response reliability, defined as the 213 
square of the expected correlation between the trial averaged response to the true, 214 
unmeasured, mean response22 (see Methods). A neuron that responds precisely the 215 
same way on each trial to a set of stimuli will have a reliability of 1, while a completely 216 
random neuron will have a reliability of 0.  We find that neurons had higher reliability for 217 
natural stimuli than for the artificial stimuli across all areas and layers (Figure 5b,c, 218 
Supplemental Figure 25). Altogether, responsive neurons had a mean reliability of 0.62 ± 219 
0.2 (st. dev) for natural scenes and 0.46 ± 0.2 (st. dev) for drifting gratings. 220 

One possible source of trial-to-trial variability could be the locomotor activity of the 221 
mouse. Previous studies have shown that visual responses in the mouse cortex are 222 
modulated by the animal’s running activity.23–27 The mice in our experiments were free to 223 
run on a disc during the experiment and animals showed a range of running behaviors 224 
(Supplemental Figure 26). For experiments in which the animals spent enough time 225 
running such that there were sufficient stimulus trials when the mouse was both stationary 226 
and running (at least 10% of trials for each), we compared the responses in these two 227 
states. Consistent with previous reports, many neurons show modulated response (Figure 228 
5d,e). While most neurons show enhanced responses when running, for many neurons 229 
the difference between stationary and running is not significant (only 13% and 37% of 230 
neurons show significant modulation of their responses to drifting gratings and natural 231 
scenes respectively, using a KS test).  232 

To examine whether the locomotor activity could be a source of trial-to-trial 233 
variability, we compared the reliability of neurons’ visual responses to the fraction of time 234 
the animal spent running. We found that reliability is higher when the mouse runs 235 
consistently, but this increase is modest from a baseline of reliability when the mouse is 236 
either completely stationary or shows mixed running behavior (Figure 5f). This effect on 237 
stimulus response reliability is consistent across different stimuli, both natural and artificial. 238 
Thus locomotor activity does contribute to the variability of visual responses, but is unlikely 239 
to fully explain the amount of variability found in these data. 240 

We asked whether a standard modeling approach could capture the observed 241 
stimulus responses and variability. We used a generalized linear model (GLM) to predict 242 
extracted events, smoothed with a Gaussian window, from time series input of the stimuli 243 
along with the binary running state of the mouse (Figure 6a, see Methods). Only neurons 244 
that were matched in all three imaging sessions were used for modeling (~19,000 245 
neurons), and all neurons were modeled regardless of whether they met our 246 
responsiveness criteria. The basis functions for the GLM are two spatiotemporal wavelet 247 
pyramids: one a standard linear basis and another that squares the basis functions before 248 
summation, approximating a “complex” neuron receptive field. While the model captures 249 
the activity of some neurons very well (Figure 6b), the median prediction, r, for natural 250 
stimuli is ~0.2-0.3 across areas (Figure 6c,d), suggesting a large amount of variation 251 
unaccounted for by the stimulus with this model. We computed a complexity ratio by 252 
comparing the total weight of the quadratic basis functions to the total weights for each 253 
model, and found that almost all neurons are mostly complex, with complexity ratios near 254 
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1 (Figure 6e). This means that no neuron is better described by a "simple" linear-nonlinear 255 
model than the "complex" quadratic model.   256 

For each neuron, we trained the model separately using natural stimuli (natural 257 
scenes and natural movies) and artificial stimuli (drifting gratings, static gratings and 258 
locally sparse noise). Comparing the models’ performances, we found that the overall 259 
distribution of performance for models trained and tested with natural stimuli was much 260 
higher than the corresponding models for artificial stimuli (Figure 6c). This was true even 261 
for neurons that met our responsiveness criteria for gratings but not natural scenes. 262 
Further, models trained on natural stimuli predicted responses to artificial stimuli better 263 
than vice versa, although the cross-stimulus prediction was worse than the within-stimulus 264 
prediction, consistent with previous reports9–11. 265 

Surprisingly, whether a neuron responded to one stimulus (e.g. natural scenes, 266 
drifting gratings, etc.) was largely, though not completely, independent of whether it 267 
responded to another stimulus. Unlike the examples shown in Figure 2, which were 268 
chosen to highlight responses to all stimuli, most neurons were responsive to only a 269 
subset of the stimuli presented (Figure 7a). The overlap of the set of neurons that 270 
responds to each pairwise combination of stimuli was computed for each experiment and 271 
compared to the maximum and minimum amount of overlap possible given the fraction of 272 
responsive neurons to each stimulus (Figure 7b, Supplemental Figure 28). There is 273 
above chance overlap for all presentations of natural movies — particularly for natural 274 
movie one, whichis repeated in each imaging session (Figure 7c). There is also above 275 
chance overlap for responses to static gratings and natural scenes. However, natural 276 
movies and all other stimuli showed overlap close to the level of chance. That is, whether 277 
a neuron responded to natural scenes is independent of whether it responded to natural 278 
movies. Notably, locally sparse noise showed the least amount of overlap with other 279 
stimuli, and even below chance overlap with some, such as static gratings. These results 280 
are consistent across all visual areas.  281 

 The independence of whether a neuron responded to two stimuli is also reflected 282 
in the correlation between the reliability of neurons’ responses to those two stimuli (Figure 283 
7d,e). For neurons that responded to two stimuli, we computed the Pearson correlation 284 
between the reliability of responses to each stimulus. We found the same structure in 285 
cross-stimulus comparisons such that the reliabilities of natural movie responses were 286 
highly correlated, but most stimulus pairs had low correlations. Thus, whether a neuron 287 
responds to two stimuli is largely independent, and even when it does respond to both, the 288 
reliability of those responses remains largely independent. 289 

Independence between responses to ostensibly similar stimuli is a striking feature of 290 
the data and one not predicted by the classical model of the early visual system (namely 291 
spatiotemporal Gabor-type wavelets). This observation, together with the fact that neural 292 
activity is sparse in both a lifetime and population sense, and finally that the “simple” 293 
linear-nonlinear wavelet based GLM accounted for so little of the explainable variance, all 294 
point to the idea that much of the neural activity is driven by relatively higher order 295 
features. We quantified this by comparing the population level neural responses to 296 
standard deep convolutional networks (CNNs; Figure 8). This is an interesting comparison 297 
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because the original inspiration for these model architectures was the important and early 298 
set of results describing “simple” and “complex” neurons in Area 17 of anesthetized cat 299 
visual cortex1.  300 

Units in CNN models (such as VGG1628) are optimally driven by progressively higher 301 
order features in deeper layers of the model (Figure 8a). The first pooling layer contains 302 
many units that appear as coarse edge detectors, while the second pooling layer contains 303 
more complex features, with a small subset consisting of oriented gratings similar to 304 
traditional V1 receptive fields. By the third pooling layer, there are no such simple looking 305 
features, but even more complex shapes and textured patterns. As a natural consequence 306 
of this increasing specificity, we see the lifetime and population sparsity in response to 307 
natural scenes increase through the pooling layers (Figure 8b). This trend is consistent 308 
across multiple CNNs; It is not specific to VGG16 (not shown).   309 

Units in VGG16 also display the independence of stimuli observed in the data 310 
(Figure 8c). We compared the units that respond to each of the flashed stimuli (locally 311 
sparse noise, static gratings and natural scenes) for each pooling layer of VGG16.  For the 312 
lower layers, as expected, there is a high degree of overlap in populations that respond to 313 
different stimuli. Moving through deeper layers of the network, the degree of independence 314 
increases. The last pooling layer shows nearly complete independence of stimuli. 315 

We used similarity-of-similarity matrix (SSM) analysis29 to compare the neural 316 
responses with responses at different pooling layers of VGG16 in order to quantify how 317 
similar the two representations are (Figure 8d). A similarity matrix is constructed by 318 
computing the correlation of the trials average population responses to pairs of scenes. 319 
We then computed the correlation of similarity matrices between each pooling layer of 320 
VGG16 and each cortical area, layer and Cre line in these data. Because the network has 321 
a degree of similarity to itself, we only compare pooling layers as the model layers 322 
between pooling layers are highly correlated (see Methods).  323 

The highest correlations are for pooling layer 3 of VGG16 for most cortical areas and 324 
layers (Figure 8d). Superficial layers in V1 map to the middle layers most strongly 325 
whereas LM, PM, and AL in those layers tend to map to slightly higher layers, suggesting 326 
a potential hierarchy, albeit a shallow one30. As a comparative baseline, we compute the 327 
SSM metric for a linear Gabor wavelet basis (Figure 8d), which is highest in the input 328 
layer and falls deeper into the network. These results support the view that throughout the 329 
mouse visual cortex, neurons exhibit responses to more complex and sophisticated stimuli 330 
than the classical model suggests.5,31  331 

Discussion 332 

Data standardization and experimental reproducibility is both a challenge and an 333 
opportunity for the field of systems neuroscience. In vivo neuronal recordings are 334 
notoriously difficult experiments that require an in-depth expertise in many scientific fields 335 
and multiple years of training. As such, these experiments are difficult to scale up.  Despite 336 
these challenges, large cohesive datasets for systems neuroscience offer an opportunity 337 
to address fundamental issues of standardization and reproducibility. Here we combined 338 
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standardized operating procedures with integrated engineering tools to address these 339 
long-standing difficulties. We demonstrated data collection in over an order of magnitude 340 
more animals (221 mice) than is typically performed in the field and maintained tight 341 
standardization across three years of continuous data collection.  342 

We have reduced critical experimental biases by separating quality control of data 343 
collection from response characterization. Historically, the field has been dominated by 344 
single-neuron electrophysiological recordings in which electrodes were advanced until a 345 
neuron was found that responded to a test stimulus. The stimulus was then optimized to 346 
elicit the strongest reliable response from that neuron. The experiment proceeded using 347 
manipulations around this stimulus condition that had been tuned to drive the strongest 348 
response. Such studies have discovered many characteristic response properties, but may 349 
fail to capture the variability of responses, the breadth of features that elicit a neural 350 
response, and the breadth of features that do not elicit a response. Recently, calcium 351 
imaging and denser electrophysiological recordings have enabled large populations of 352 
neurons to be recorded simultaneously. By combining calcium imaging with strong quality 353 
control and standardization, we have created an unprecedented survey of mouse visual 354 
cortex using a standard and well-studied but diverse set of stimuli while limiting the 355 
selection bias towards those stimuli.   356 

Under the canonical model, V1 sits at the initial stages of a processing hierarchy 357 
where neurons respond to low-level features, specifically with spatially localized receptive 358 
fields with spatial and temporal frequency preferences.1–4 Neural responses become 359 
increasing specialized in the higher areas moving away from V1, reaching extremes in 360 
which cells show very selective responses to specific objects and even faces.4,32  361 

The field has a growing body of evidence showing that the canonical model needs to 362 
be enhanced to support more sophisticated visual computation.5,31 For instance, neurons 363 
in mouse V1 show complex visual responses previously associated with higher cortical 364 
areas, including pattern selectivity for plaid stimuli33  Furthermore, the emergence of the 365 
rodent as a prominent model of the visual system in recent years has revealed evidence of 366 
non-visual computation, including behavioral responses such as reward timing and 367 
sequence learning34, as well as modulation by multimodal sensory stimuli35,36 and motor 368 
signals.23,24,37–39 369 

 We expected this survey to provide strong evidence for low-level responses that 370 
become progressively higher order throughout the higher visual areas of mouse cortex. 371 
Instead, neurons throughout the mouse cortex show highly variable, sparse responses, 372 
best fit by “complex” models. Further, responsiveness to different stimuli is largely 373 
independent. Rather than support the canonical model, these results provide evidence of 374 
higher order coding wherein neurons exhibit specialized responses to a set of sparse and 375 
higher level features of the visual field. 376 

Neurons tuned to low-level features will not, as a whole, show the property of 377 
independence that we observe in these data. Such neurons should be, by and large, 378 
equally mappable using noise stimuli, grating stimuli, and natural stimuli – with some 379 
stimulus specific modifications in the resulting receptive field.8,9,11 While we observe 380 
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individual examples of neurons that behave exactly this way, this is not a general feature 381 
of the population of responses (Figure 7, Supplemental Figure 28). Computationally, we 382 
can consider how a system that responds to low-order features will behave by examining 383 
either the early layers of a CNN (Figure 8c,d) or a wavelet basis (not shown), where we 384 
see strong dependence and correlation of responses across stimuli, contrary to what is 385 
observed in the dataset. Strikingly, the fact that none of the neurons in the dataset are 386 
better fit by the “simple” model in our GLM wavelet basis model (Figure 6) further supports 387 
our finding that neurons are not tuned to low-level features. 388 

Neurons that respond to higher-order features, on the other hand, result in 389 
responses that are sparse in both a population and lifetime sense, as we observe here.  In 390 
a CNN, the network develops features during training that allow it to correctly classify 391 
images. Whereas the early units of these networks tend to be more general and low-order, 392 
as described above, the intermediate units become increasingly specialized for features 393 
that are necessary for the trained task. As a result, the CNN shows a greater degree of 394 
stimulus independence with depth (Figure 8c). Our data, throughout the mouse visual 395 
cortex, shows a degree of independence that is similar to that observed in the third pooling 396 
layer of VGG16 (Figure 8c). This is consistent with a comparison of sparsity, both lifetime 397 
and population, between the dataset and VGG16, as well as the representation mapping 398 
using SSM-analysis that shows most layers and areas are more similar to the middle 399 
pooling layers, while a wavelet basis is most similar to the input and early layers (Figure 400 
8b,d). These results are also consistent with an alternative methodology, SVCCA40 (not 401 
shown). Taken together, these results reveal that neurons throughout the mouse visual 402 
cortex exhibit higher order coding, revealing that they are specialized for high-level 403 
features. 404 

This is not to say that there are not plenty of cells in the early visual cortical areas 405 
that show Gabor-type receptive fields. VGG16, at the second pooling layer, for example, 406 
has units with optimal stimuli that closely resemble Gabors, but they are the minority. 407 
Additionally, probing such networks with stimuli such as linear gratings or noise stimuli, or 408 
with approaches such as spike triggered averaging, will result in responses that can be 409 
characterized with Gabor-type receptive fields even though this is not the optimal stimulus 410 
condition that drives such units.  We posit that the same phenomenon is almost certainly 411 
at play in the mouse visual cortex. Specialized, higher-order visual neurons have been 412 
known to exist, either high in the visual hierarchy or as particular exceptions (e.g. loom 413 
detectors, motion pattern cells). By including a broad range of stimuli and reducing 414 
stimulus bias in our data collection and analysis, we have revealed that such higher order 415 
cells are closer to the rule than the exception in the mouse visual cortex. Given that much 416 
of the existing literature describes the visual system of cat and primate, it is interesting to 417 
speculate as to whether these results might generalize to other species. 418 

 Identifying the exact response characteristics of the population of cells remains an 419 
open problem. The optimal stimuli of units in a CNN are the result of optimization for an 420 
object recognition task on natural stimuli. Such a “task” appropriate to define the response 421 
characteristics of the mouse visual system remains unclear. Understanding the 422 
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computation of the mouse visual circuit will require identifying the features and stimuli that 423 
are ethologically relevant to the mouse. 424 

The Allen Brain Observatory Visual Coding dataset is an openly available dataset, 425 
accessible via a dedicated web portal (http://observatory.brain-map.org/visualcoding), with 426 
a custom Python-based Application Programming Interface, the AllenSDK 427 
(http://alleninstitute.github.io/AllenSDK/). We believe these data will be a valuable 428 
resource to the systems neuroscience community as a testbed for theories of cortical 429 
computation and a benchmark for experimental results. Already, these data have been 430 
used by other researchers to develop image processing methods,41,42 to examine stimulus 431 
encoding and decoding,43–47 and to test models of cortical computations.48 Ultimately, we 432 
expect these data will seed as many questions as they answer, fueling others to pursue 433 
both new analyses and further experiments to unravel how cortical circuits represent and 434 
transform sensory information.  435 

  436 
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Figure 1: A standardized systems neuroscience data pipeline to map 575 

visual responses 576 

(a) Schematic describing the experimental workflow followed by each mouse going 577 
through a large scale data pipeline. (b) Example intrinsic imaging map labelling individual 578 
visual brain areas. Scale bar = 1mm. (c) Example averaged two photon imaging field of 579 
view (400 µm x 400 µm) showcasing neurons labeled with Gcamp6f. Scale bar = 100 µm. 580 
(d) Custom design apparatus to standardize the handling of mice in two photon imaging. 581 
We engineered all steps of the pipeline to co-register data and tools, enabling reproducible 582 
data collection and a standardized experimental process (see Supplementary Figure 1-4). 583 
(e) Number of mice passing Quality Control (QC) criteria established by Standardized 584 
Operating Procedures (SOPs) at each step of the data collection pipeline with their 585 
recorded failure reason. The data collection pipeline is closely monitored to maintain 586 
consistently high data quality. (f) Standardized experimental design of sensory visual 587 
stimuli to map responses properties of neurons across the visual cortex. 6 blocks of 588 
different stimuli were presented to mice (left) and were distributed into 3 separate imaging 589 
session called session A, session B and session C (right).   590 
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Table 1: Visual coding dataset.  591 

The number of cells (and experiments) imaged for each Cre line in each cortical visual 592 
area. In total, 59,526 cells imaged in 410 experiments in 221 mice are included in this 593 
dataset.  594 
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Figure 2: Visual responses to diverse visual stimuli. 595 

(a) Activity for four example neurons, two excitatory neurons (Rorb, layer 4, Rbp4, layer 5) 596 
and two inhibitory neurons (Sst layer 4, and Vip layer 2/3). ∆F/F (top, blue) and extracted 597 
events (bottom, black) for each cell. (b) Star plot summarizing orientation and temporal 598 
frequency tuning for responses to the drifting gratings stimulus (For details on response 599 
visualizations see Supplemental Figure 13). (c) Fan plot summarizing orientation and 600 
spatial frequency tuning for responses to static gratings. (d) Corona plot summarizing 601 
responses to natural scenes. (e) Track plot summarizing responses to natural movies. (f) 602 
Receptive field subunits mapped using locally sparse noise. (g) Percent of neurons that 603 
responded to at least one stimulus across cortical areas. (h) Percent of neurons that 604 
responded to each stimulus across cortical areas. Colors correspond to the labels at the 605 
top of the figure.  606 
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Figure 3: Tuning properties reveal functional differences across areas 607 

and Cre lines. 608 

(a) Pawplot visualization summarizes median value of a tuning metric across visual areas. 609 
Top, each visual area is represented as a circle, with V1 in the center and the higher visual 610 
areas surrounding it according to their location on the surface of the cortex. Center, each 611 
paw-pad (visual area) has two concentric circles. The area of the larger circle represents 612 
the number of cells imaged at that layer and area. The area of the inner, colored, circle 613 
represents the number of responsive cells for that layer and area. The color of the inner 614 
circle reflects the median value of the metric for the responsive cells, indicated by the 615 
colorscale at the bottom of the plot. Bottom, scale of circle area for single cell metrics and 616 
for population metrics. In contrast to single-cell metrics, for population metrics (e.g. Fig 3c) 617 
each paw-pad (visual area) has only one circle, and the area represents the number of 618 
datasets. For a metric’s summary plot, four pawplots are shown, one for each layer. Only 619 
data from one Cre line is shown for each layer. For each panel, a pawplot is paired with a 620 
box plot or a strip plot (for single cell and population metrics respectively) showing the full 621 
distribution for each Cre line and layer in V1. Data is assigned to cortical layers based on 622 
both the Cre line and the imaging depth. Data collected above 275um from the surface is 623 
considered to be in layer 2/3. Data collected between 275µm and 375µm is considered to 624 
be in layer 4. Data collected between 375µm and 500µm is considered to be in layer 5. 625 
Data collected at 550µm in considered to be in layer 6. The box shows the quartiles of the 626 
data, and the whiskers extend to 1.5 times the interquartile range. Points outside this 627 
range are shown as outliers. For other cortical areas, see Supplemental Figure 19. (b) 628 
Pawplot and box plot summarizing direction selectivity. (c) Pawplot and strip plot 629 
summarizing decoding performance for drifting grating direction using K-nearest 630 
neighbors. Each dot represents the mean five-fold cross-validated decoding performance 631 
of a single experiment, with the median performance for a Cre-line/layer represented by 632 
bar. (d) Pawplot and box plot summarizing preferred temporal frequencies. (e) Pawplot 633 
and box plot summarizing preferred spatial frequencies. (f) Pawplot and box plot 634 
summarizing receptive field area.  635 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359513doi: bioRxiv preprint 

https://doi.org/10.1101/359513
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.7 0.8 0.9 0.0 0.2 0.4 0.6 0.8 1.0

Emx1

Slc17a7

Cux2

Vip

Emx1

Slc17a7

Cux2

Rorb

Scnn1a

Nr5a1

Sst

Vip

Emx1

Slc17a7

Rbp4

Fezf2

Tlx3

Sst

Ntsr1

V1

0.1 0.2 0.3 −1.0 −0.5 0.0 0.5 1.0

Emx1

Slc17a7

Cux2

Vip

Emx1

Slc17a7

Cux2

Rorb

Scnn1a

Nr5a1

Sst

Vip

Emx1

Slc17a7

Rbp4

Fezf2

Tlx3

Sst

Ntsr1

V1

0.008 0.012 0.016 0.0 0.1 0.2

Emx1

Slc17a7

Cux2

Vip

Emx1

Slc17a7

Cux2

Rorb

Scnn1a

Nr5a1

Sst

Vip

Emx1

Slc17a7

Rbp4

Fezf2

Tlx3

Sst

Ntsr1

V1

0.00 0.02 0.04 0.06
Response magnitude

0

5

10

15

Nu
m

be
r o

f o
cc

ur
re

nc
es lifetime sparseness=0.41

0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.2 0.4 0.6 0.8 1.0

Emx1

Slc17a7

Cux2

Vip

Emx1

Slc17a7

Cux2

Rorb

Scnn1a

Nr5a1

Sst

Vip

Emx1

Slc17a7

Rbp4

Fezf2

Tlx3

Sst

Ntsr1

V1

Figure 4

a  b  c  

d  
Noise Correlations Correlation of signal and noise correlations

f

Population sparseness

e  

LM

AL

RL AM

PM

La
ye

r 2
/3

Cu
x2

La
ye

r 4
Ro

rb
La

ye
r 5

Rb
p4

La
ye

r 6
N

ts
r1

V1

Lifetime sparseness Population sparseness

Noise correlations Correlation of signal and noise correlations

Slc17a7; V1; layer 2/3

0.00 0.01 0.02 0.03
Response magnitude

0

20

40

60

80

Nu
m

be
r o

f o
cc

ur
re

nc
es

lifetime sparseness=0.87

Lifetime sparseness

la
ye

r
2/

3
la

ye
r

4
la

ye
r

5
la

ye
r

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359513doi: bioRxiv preprint 

https://doi.org/10.1101/359513
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 21 

Figure 4: Visual responses are sparse, but coding is dense. 636 

(a) Distribution of evoked responses for two example cells showing either high lifetime 637 
sparseness (top) and low lifetime sparseness (bottom). The corona plot for each cell is 638 
inset in the plot. (b) Pawplot and box plots summarizing lifetime sparseness of the 639 
responses to natural scenes. (c) Pawplot and strip plot summarizing the population 640 
sparseness of responses to natural scenes. (d) Pawplot and strip plot summarizing the 641 
mean noise correlation of responses to natural scenes. (e) Correlation (spearman’s rho) 642 
between noise correlations and signal correlations for one experiment (Slc17a7, layer 2/3 643 
of V1). (f) Pawplot and strip plot summarizing the correlation of signal correlations and 644 
noise correlations.  645 
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Figure 5: Neural variability is only weakly explained by locomotor 646 

activity. 647 

(a) Paw plot and box plot summarizing the percent of responsive trials for drifting gratings, 648 
the percent of trials that have a significant response for each neurons preferred grating 649 
condition. The responsiveness criteria is that a neuron responded to 25% of the trials, 650 
hence the low end is capped at 25%. (b) Paw plot and box plot summarizing the reliability 651 
of responses for drifting gratings. (c) Paw plot and box plot summarizing the reliability of 652 
responses for natural scenes. (d) Evoked response to a neuron’s preferred drifting grating 653 
condition when the mouse is running (running speed > 1 cm/s) compared to when it is 654 
stationary, shown as a density plot. (e) Evoked response to a neuron’s preferred natural 655 
scene when the mouse is running (running speed > 1 cm/s) compared to when it is 656 
stationary, shown as a density plot. (f) Reliability as a function of running fraction, data 657 
binned into equally sized bins, for drifting gratings and natural scenes.  658 
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Figure 6:  All cells show a high degree of complexity and are better fit 659 

with natural stimuli 660 

(a) Schematic for the GLM.  The models are trained on either natural or artificial stimuli, 661 
converted into a 30Hz time series and spatially downsampled. The time series input is 662 
filtered with spatio-temporal Gabor wavelet pyramids, one of which is linearly combined, 663 
the other of which is squared before components are combined. These weighted sums are 664 
passed through a soft-rectification to predict the detected calcium events, which have 665 
been smoothed with a Gaussian filter. (b) (left) Example filters for two cells from the 666 
dataset, showing the linear filter as well as two (of many) quadratic components. (right) 667 
Predicted response compared with smoothed calcium events for those example cells.  (c) 668 
Density plot comparing the mean r values for models trained on natural vs. artificial stimuli 669 
for all modeled cells (top). Density plot showing cross stimulus performance of models 670 
trained on one stimulus type and tested on the other (bottom).  (d) Pawplot and box plot 671 
summarizing the r values for the dataset.  (e) Pawplot and box plot summarizing the 672 
complexity across the dataset.    673 
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Figure 7: Responses to different stimuli are largely independent. 674 

(a) Responses of 50 neurons during one imaging session (Cux2, V1, layer 2/3) with 675 
stimulus epochs shaded using stimulus colors from Figure 1. (b) Schematic of overlap 676 
analysis. If 50% of cells in an experiment respond to stimulus A and 70% of the cells 677 
response to stimulus B, chance overlap would be 35%. Maximum overlap would be 50%, 678 
and minimum overlap would be 20%. The overlap between each pair of stimuli was 679 
computed, and z-scored. (c) Median overlap z-score for each pair of stimuli for all 680 
experiments. (d) The correlation of response reliability for cells responses to each pair of 681 
stimuli. White dots indicate the combinations that are shown in panel d (e) Comparison of 682 
the reliability of responses for natural scenes with locally sparse noise, static gratings, 683 
drifting gratings and natural movie three (left to right).   684 
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Figure 8: Mouse visual cortex maps to mid-to-high levels of a 685 

Convolutional Neural Network. 686 

(a) Schematic of VGG16 showing convolutional (black) and pooling (red) layers. Above, 687 
example optimal stimuli for sample units found at the first three pooling layers. (b) Median 688 
lifetime and population sparseness for each pooling layer of VGG16 in response to the 689 
natural scenes stimulus used for this dataset. Dashed lines indicate the limits of median 690 
lifetime sparseness for natural scenes found in V1 (see Figure 4b). (c) Stimulus overlap 691 
(for the flashed stimuli from the data set) for the pooling layers of VGG16.  (d) Similarity of 692 
similarity matrix correlation between neural data from each Cre line, area, layer and each 693 
pooling layer of VGG16 (see Methods). Shaded region is the null distribution for 694 
significance at one standard deviation. Dashed line indicates the SSM correlation with a 695 
spatial wavelet pyramid.   696 
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