
A Large-Scale Study of the Evolution of Web Pages

Dennis Fetterly
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

dennis.fetterly@hp.com

Mark Manasse
Microsoft Research

1065 La Avenida
Mountain View, CA 94043

manasse@microsoft.com

Marc Najork
Microsoft Research

1065 La Avenida
Mountain View, CA 94043

najork@microsoft.com

Janet Wiener
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

janet.wiener@hp.com

ABSTRACT
How fast does the web change? Does most of the content remain
unchanged once it has been authored, or are the documents contin-
uously updated? Do pages change a little or a lot? Is the extent of
change correlated to any other property of the page? All of these
questions are of interest to those who mine the web, including all
the popular search engines, but few studies have been performed to
date to answer them.

One notable exception is a study by Cho and Garcia-Molina,
who crawled a set of 720,000 pages on a daily basis over four
months, and counted pages as having changed if their MD5 check-
sum changed. They found that 40% of all web pages in their set
changed within a week, and 23% of those pages that fell into the
.com domain changed daily.

This paper expands on Cho and Garcia-Molina’s study, both in
terms of coverage and in terms of sensitivity to change. We crawled
a set of 150,836,209 HTML pages once every week, over a span of
11 weeks. For each page, we recorded a checksum of the page, and
a feature vector of the words on the page, plus various other data
such as the page length, the HTTP status code, etc. Moreover, we
pseudo-randomly selected 0.1% of all of our URLs, and saved the
full text of each download of the corresponding pages.

After completion of the crawl, we analyzed the degree of change
of each page, and investigated which factors are correlated with
change intensity. We found that the average degree of change varies
widely across top-level domains, and that larger pages change more
often and more severely than smaller ones.

This paper describes the crawl and the data transformations we
performed on the logs, and presents some statistical observations
on the degree of change of different classes of pages.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hypertext/
Hypermedia; K.4.m [Computers and Society]: Miscellaneous;
H.4.m [Information Systems]: Miscellaneous

General Terms
Measurement, Experimentation, Algorithms

Keywords
Web characterization, web evolution, web pages, rate of change,
degree of change

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

1. INTRODUCTION
The searchable web and the search engines which survey it have

become indispensable tools for information discovery. From aca-
demic researchers to elementary-school students, from cancer pa-
tients to pensioners, from local high-school football fans to inter-
national travelers, the indexed content of the web is becoming the
primary research tool for many. With hundreds of millions of peo-
ple relying on these tools, one is led to ask if the tools provide
useful, up-to-date results. Ideally, one would like the entire index
of a search engine to befresh, that is, to contain the most up-to-date
version of a web page. The Google search engine attempts to main-
tain a fresh index by crawling over 3 billion pages once a month [7],
with more frequent crawls of hand-selected sites that are known to
change more often. In addition, it offers access to cached copies of
pages, to obviate problems arising from some of the crawled URLs
being out-of-date or having disappeared entirely.

To improve the freshness of results returned by search engines
and allow them to spend more of their efforts crawling and index-
ing pages which have changed, it is interesting and important to
answer some questions about the dynamic nature of the web. How
fast does the web change? Does most of the content remain un-
changed once it has been authored, or are the documents being
continuously updated? Do pages change a little or a lot? Is the
extent of change correlated to any other property of the page? Do
pages change and then change back? How consistent are mirrors
and near-mirrors of pages? Questions like these are of great rele-
vance to search engines, and more generally to any party trying to
maintain an up-to-date view of the web, but they are also interest-
ing in their own right, as they shed light on the evolution of a major
sociological phenomenon: the largest collectively constructed in-
formation repository known to man.

In this paper, we attempt to answer some of these questions.
We recount how we collected 151 million web pages eleven times
over, retaining salient information including a feature vector of
each page. We describe how we distilled the collected informa-
tion about each URL into a summary record, tabulating the feature
vectors. We sketch the framework we used to mine the distilled
data for statistical information. We present the most interesting re-
sults of this data mining. Finally, we draw some conclusions and
offer avenues of future work.

2. RELATED WORK
This paper expands on a study by Cho and Garcia-Molina [5].

The authors of that study downloaded 720,000 pages drawn from
270 “popular” web servers (not exceeding 3,000 pages per server)
on a daily basis over the course of four months, and retained the
MD5 checksum of the contents (including the HTML markup) of
each page. This allowed them to determine if a document had

changed, although it did not allow them to assess the degree of
change. Among other things, they found that pages drawn from
servers in the.com domain changed substantially faster than those
in other domains, while pages in the.gov domain changed sub-
stantially slower. Overall, they found that about 40% of all web
pages changed within a week, and that it took about 50 days for
half of all pages to have changed. They also found that almost 25%
of the pages in.com changed within a day, and that it took 11 days
for half of all.com pages to have changed. By contrast, it took four
months (the duration of their study) for half of the.gov pages to
have changed.

Sun et al. [11] studied the efficacy of web anonymizers. As part
of that study, they drew a set of 100,000 web pages from the Open
Directory listing, and crawled each page twice, with the second
retrieval immediately following the first one. Since they were in-
terested in the information leakage of encrypted channels, they did
not compare checksums of the returned pages; rather, they com-
pared the lengths of the pages and the number and lengths of their
embedded images and frames (which will appear to an eavesdrop-
per as temporally closely spaced TCP packets). They found that
40% of pages changed signatures, and that 14% of pages changed
by 30% or more, using a Jaccard-coefficient-based similarity met-
ric akin to the one we use, but based on the size of a document
including sizes of embedded images, not contents.

Douglis et al. [6] studied a web trace consisting of 950,000 en-
tries (each entry representing a web access) collected over 17 days
at the gateway between AT&T Labs–Research and the Internet.
They recorded the “last-modified” timestamp transmitted by the
web server (implicitly assuming that web servers transmit accu-
rate information). In addition, they mined each page for items
such as phone numbers using a domain-specific semantic analy-
sis technique called “grinking”, and measured the rate of change
of these items. They found that according to the last-modified met-
ric, 16.5% of the resources (including HTML pages as well as other
content, such as images) that were accessed multiple times changed
every time they were accessed. They also found that among the
HTML pages that were accessed more than once, almost 60% ex-
perienced a change in HREF links, and over 50% of them experi-
enced a change in IMG links.

Brewington and Cybenko built a web clipping service, which
they leveraged to study the change rate of web pages [1]. They did
so by recording the last-modified time stamp, the time of download,
and various stylistic attributes (number of images, links, tables, etc)
of each downloaded HTML page. Their service downloaded about
100,000 pages per day, selected based on their topical interest, re-
crawling no page more often than once every three days. They
evaluated data collected between March and November 1999. For
pages that were downloaded six times or more, 56% did not change
at all over the duration of the study (according to the features they
retained), while 4% changed every single time.

Our study differs from previous studies in several respects. First,
it covers a roughly 200 times larger portion of the web (although
the interval between revisits is seven times larger than, say, the one
used by Cho and Garcia-Molina). Second, we used a different and
more fine-grained similarity metric than any of the other studies,
based onsyntactic document sketches [4]. Third, we selected our
pages based on a breadth-first crawl, which removed some of the
bias inherent in the other studies (although breadth-first crawling is
known to be biased towards pages with high PageRank [9]). Fourth
and finally, we retained the full text of 0.1% of all downloaded
pages, a sample set that is comparable in size to the set of pages
summarized by other studies.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11

HTTP response 200
Any HTTP response
Tried to fetch

Figure 1: Successfully downloaded versions of URLs.

3. EXPERIMENTAL SETUP
Our experiment can be divided into three phases: Collecting the

data through repeated web crawls, distilling the data to make it
amenable to analysis, and mining the distillate. This section de-
scribes each of the phases in more detail.

3.1 Collecting the Data
Between 26 Nov. 2002 and 5 Dec. 2002, we performed a large

crawl (“crawl 1”) that downloaded 151 million HTML pages as
well as 62 million non-HTML pages, which we subsequently ig-
nored. We then attempted to fetch each of these 151 million HTML
pages ten more times over a span of ten weeks. Naturally, some of
these pages became either temporarily or permanently unavailable.
Moreover, we experienced a catastrophic disk failure during the
third crawl, causing us to lose a quarter of the logs of that crawl.
Figure 1 shows the distribution of successful downloads. As can be
seen, we succeeded in downloading 49.2% of the pages all eleven
times, and 33.6% ten times, leaving 17.2% of the pages that could
only be downloaded nine times or fewer.

Our hardware infrastructure consisted of a cluster of four Com-
paq DS20 servers, each one equipped with a 667 MHz Alpha pro-
cessor, 4 GB of RAM, 648 GB of disk, and a fast Ethernet network
connection. The machines were located at the Palo Alto Internet
Exchange, a peering point for 12 Telcos and 20 major and about
130 minor ISPs.

We conducted these crawls using the Mercator web crawler [8].
Mercator is both fast and highly configurable, making it a suitable
tool for our purposes.

We seeded crawl 1 with the Yahoo! home page. We restricted
ourselves to content retrievable using HTTP, ignoring HTTPS, FTP,
Gopher, and the like. Mercator crawled using its standard breadth-
first search web traversal strategy, which is biased towards pages
with high PageRank [9]. This crawl ran for 9 days, and downloaded
a total of 6.4 TB of data. As said earlier, it logged the URLs of
151 million HTML pages that were successfully retrieved, i.e. that
were returned with an HTTP status code of 200 and a content type
of text/html.

We used these 151 million URLs to seed the following ten crawls.
These crawls ran consecutively, starting on 5 Dec. 2002 and ending
on 12 Feb. 2003. We disabled link extraction and HTTP redirec-
tions; in other words, we configured Mercator to fetch only the
pages in its seed set. Every crawl slowed down by two orders of
magnitude once it had processed all but a million or so seeds, be-
cause the remaining URLs all referred to web servers that were
extremely slow to respond to us during that crawl, and because

Mercator’s politeness policies cause it to space out requests to the
same host proportional to the delay of the previous response from
that host. In order to keep the overall duration of each crawl within
reasonable bounds, we terminated the crawls after this happened,
typically on the sixth day of the crawl, and started the next crawl a
week after the start of the preceding one.

For all eleven crawls, we provided Mercator with two new pro-
cessing modules: a module that recorded a checksum and a fixed-
size feature vector plus some ancillary data for each page, and a
second module that selected 0.1% of all pages and saved them to
disk.

We computed the feature vectors using a modified version of the
document shingling technique due to Broder et al. [4], which uses
a metric of document similarity based on syntactic properties of the
document. This similarity metric is applicable to any kind of docu-
ment that consists of an ordered sequence of discrete features. The
following description assumes that the features are words, i.e. that
a document is an ordered sequence of words. In order to compare
two documents, we map each document into a set ofk-word subse-
quences (groups of adjacent words or “shingles”), wrapping at the
end of the document, so that every word in the document starts a
shingle.

Two documents are considered to be identical if they map to the
same set of shingles;1 they are considered to be similar if they map
to similar sets of shingles. Quantitatively, the similarity of two doc-
uments is defined to be the number of distinct shingles appearing
in both documents divided by the total number of distinct shingles.
This means that two identical documents have similarity 1, while
two documents that have no shingle in common have similarity 0.

Note that the value ofk parameterizes how sensitive this met-
ric is. Changing the word “kumquat” to “persimmon” in ann-
word document (assuming that “kumquat” and “persimmon” occur
nowhere else in the document) results in a similarity ofn�k

n+k
be-

tween the original and the modified document. This means that
one should not choosek to be too large, lest even small changes re-
sult in low similarity. On the other hand, neither should one choose
k to be too small. As an extreme example, settingk to 1 results in
a comparison of the lexicon of two documents, making the metric
completely insensitive to word ordering.

Our feature vector extraction module substitutes HTML markup
by whitespace, and then segments the document into 5-word shin-
gles, where each word is an uninterrupted sequence of alphanu-
meric characters. Next, it computes a 64-bit checksum of each
shingle, using Rabin’s fingerprinting algorithm [3, 10]. We call
these fingerprints the “pre-images”. Next, the module applies 84
different (randomly selected but fixed thereafter) one-to-one func-
tions to each pre-image. For each function, we retain the pre-image
which results in the numerically smallest image. This results in a
vector of 84 pre-images, which is the desired feature vector.

If the one-to-one functions are chosen randomly,2 then given the
feature vectors of two documents, two corresponding elements of
the vectors are identical with probability equal to the similarity of
the documents.

The feature vector extraction module logs the feature vector of

1This definition of identity differs from the standard definition. For
example, a documentA is considered identical toAA, the concate-
nation ofA to itself. Similarly, given two documentsA andB,
documentAB is identical to documentBA.
2We drew the 84 functions from a smaller space, which does not
seem to be a problem in practice. Also, because we fixed them at
the time when we wrote the feature vector extraction module, an
adversary who had the code of that module could produce docu-
ments that would fool our metric.

each document, together with a checksum of its raw content, the
start time and the duration of its retrieval, the HTTP status code (or
an error code indicating a TCP error or a robot exclusion), the doc-
ument’s length, the number of non-markup words, and the URL. If
the document cannot be downloaded successfully or does not result
in an HTML document,3 the module logs the URL and special val-
ues for everything else. URLs that were not downloaded because
the crawl was terminated before it was complete are treated in a
similar fashion.

The document sampling module saves those successfully down-
loaded documents whose URLs hash to 0 modulo 1000; in other
words, it saves 0.1% of all downloaded documents (assuming we
used a uniform hash function). The log contains the URL of each
document as well as the entire HTTP response to each request,
which includes the HTTP header as well as the document.

3.2 Distilling the Data
Crawling left us with 44 very large logs (produced by the eleven

crawls on the four crawlers), each spanning multiple files, one per
day. The logs totaled about 1,200 GB, whereas the sampled docu-
ments took up a mere 59 GB.

As they were, these logs were not suitable for analysis yet, be-
cause the URLs occurred in non-deterministic order in each log.
One way to rectify this would be to perform a merge-sort of the
logs based on their URL, in order to bring together the various oc-
currences of each URL. However, performing such a merge-sort
on 1,200 GB of data is prohibitively expensive. To overcome this
problem, webucketized each of the logs, dividing its contents over
1,000 buckets, using the same URL-based hash function as in the
document sampling module. This step produced 44,000 buckets
(1,000 buckets per crawler per crawl). While this might appear
to double the storage requirement, we could process an individual
daily log file, and then move it to near-line storage. As a result of
the bucketization, all the occurrences of a given URL appear in cor-
responding buckets across generations, and each bucket is less than
30 MB in size. This allowed us to then perform a fast in-memory
sort of each bucket, using the URL as the key, and replacing the
original bucket with a sorted one.

At the end of this process, the corresponding buckets of each
generation all contained exactly the same set of URLs, in sorted
order.

Finally, we merged the buckets across crawls, and distilled them
in the process. We did so by iterating on all four machines over
the 1,000 bucket classes, reading a record at a time from each of
the eleven corresponding buckets, and writing a combined record
to a distilled bucket. Each combined record contains the following
information:

� The URL.
� The start times of the eleven downloads.
� The duration of each download.
� The length of the document at each download.
� The number of non-markup words in the document at each

download.
� The HTTP status code (or error code) for each download.
� Six “supershingles” for each download.
� For each pair of downloads, an 84-bit vector indicating if the

84 corresponding pre-images matched.
� For each pair of downloads, a match count (see below).

3We actually did encounter several documents whose content type
changed during the time we observed them.

Note that the distilled record does not include the checksums or
the pre-images of each document. These values are subsumed by
the “supershingles”, the bit-vectors, and the match counts.

Each of the six “supershingles” represents the concatenation of
14 adjacent pre-images. Due to the independence of the one-to-one
functions used to select pre-images, if two documents have similar-
ity p, each of their supershingles matches with probabilityp14. For
two documents that are 95% similar, each supershingle matches its
counterpart with probability 49%. Given that we retain six super-
shingles, there is a probability of almost 90% that at least two of the
six supershingles will agree for documents that are 95% or more
similar. Retaining the supershingles will be useful in the future,
should we try to discover approximate mirrors [2] and investigate
their update frequency.

The match count, when non-negative, indicates how many of the
84 pre-image pairs matched between the two documents. If the
document fingerprint matches as well, the match count is set to
85. The match count is negative if either document was not down-
loaded successfully or contained no words at all (which caused the
pre-images to have a default value); its value indicates which con-
dition applied to which document, and whether the documents were
identical (i.e. their checksums matched).

3.3 Mining the Data
While the original logs were 1,200 GB in size, the distilled buck-

ets consume only about 222 GB. Even so, it still takes about 10
hours to read the distilled logs. In order to conduct the statisti-
cal experiments we report on below (as well as a number of others
which proved less informative), we needed to find a way to conduct
each experiment considerably faster. We achieve this by running
several experiments at once, thereby amortizing the cost of reading
the logs over multiple experiments.

Using this approach, we were no longer limited by our com-
puter’s ability to read the logs, but rather by our ability to decidea
priori which experiments would be interesting and relevant. Given
the trial-and-error character of any data mining activity, we still had
to do several passes over the data to construct all of the experiments
described below.

We built an analyzer harness that reads through the distilled buck-
ets one record at a time, expands each record into an easy-to-use
format, and presents it to each of a set of analyzer modules. Once
all buckets have been read, the harness invokes a “finish” method
on each of the analyzers, causing them to write out any aggregate
statistics they may have gathered. The analyzers as well as the
harness are written in Java; the harness uses Java’s dynamic class
loading capabilities to load the analyzers at run-time.

Examples of the analyzers we wrote include:

� StatusCodeAnalyzer, which produces a histogram of HTTP
status codes and TCP error conditions.

� FetchDurationAnalyzer, which produces a logarithmic his-
togram of document download durations.

� DocLengthAnalyzer, which produces a logarithmic histogram
of document lengths.

� NumVersionsAnalyzer, which produces a histogram of how
many versions of each URL we managed to download suc-
cessfully.

� TopLevelDomainAnalyzer, which produces a histogram of
top-level domains, and optionally counts the number of hosts
in that domain.

� ChangeAnalyzer, which produces a histogram of the number
of unchanged pre-images between two successive successful
downloads of a URL.

Analyzers can be nested into higher-level analyzers. For exam-
ple, it is possible to put aChangeAnalyzer into aTopLevelDomain-
Analyzer, producing a list of document change histograms, one for
each top-level domain. This is again implemented using Java’s dy-
namic class loading machinery. In order to keep the size of the
output manageable, we also provide ways to limit the number of
top-level domains considered (putting all unspecified domains into
a catch-all category), to group numbers of unchanged pre-images
into clusters, and the like.

For some of these higher-level analyzers, we need to aggregate
multiple values (for example, the sizes of the eleven versions of a
web page) into a single value, in order to decide what lower-level
analyzer to invoke. We currently provide three different ways to
aggregate values, namely minimum, maximum, and average. We
plan to add support for mode, median, and geometric average.

Recall that during the data collection phase, we saved the full text
of 0.1% of all successfully downloaded pages. We selected these
pages based on a hash of the URL, using the same hash function
as the bucketizer. In particular, we saved the full text of all pages
that went into bucket 0. This enables us to use the analyzer frame-
work to detect interesting patterns, to use a special analyzer (using
higher-level analyzers around a “DumpURLAnalyzer”) to get a list-
ing of all URLs in bucket 0 that fit this pattern, and then to examine
the full text of some of these documents.

We built some infrastructure to make this process easier. In par-
ticular, we prepend each file of sampled documents with an index of
URLs and document offsets, which allows us to retrieve any page in
constant time. Second, we implemented a web service that accepts
a URL, a version number, and whether to return the HTTP header
or the document, and returns the requested item for display in the
browser. Third, we implemented another web service that accepts
a list of analyses to run, executes them on a subset of the distilled
buckets, and returns the results as a web page. We hope to make
these services, as well as some of the distilled buckets, available to
the research community.

4. RESULTS
The results presented in this section are derived from analyzing

the 151 million distilled records in our collection, using the ana-
lyzer harness and many of the analyzers described above.

Figure 2 shows a histogram of document length, for all of the
1,482,416,213 documents that were successfully downloaded (i.e.
that had an HTTP status code of 200), as well as broken out by a
few selected top-level domains. Thex-axis denotes the document
size; a value ofn means that the size of the document was below
2n bytes, but not below2n�1 bytes (a value of 0 indicates that the
document had length 0).

The distribution we observed centers at 14 with standard devi-
ation 1; 66.3% of all observed HTML pages are between 4 KB
and 32 KB in length. Looking at selected top-level domains, pages
in .com, which represent 52.5% of all observed pages, largely re-
flect the overall distribution, but are biased slightly higher. Pages in
.org and.gov, which account for 8.0% and 1.1% of all observed
pages, respectively, are similar to the overall distribution, but are bi-
ased slightly lower. Pages in.edu tend to be smaller, with 64.9%
of the pages being between 2 KB and 16 KB.

Figure 3 is similar to Figure 2, but shows a histogram of the
number of words per document, instead of the number of bytes.
Note that the distribution of the.edu domain is closer to the overall
distribution when it comes to words, suggesting that pages in.edu
either have shorter words or less HTML markup.

Figures 4, 5, and 6 attempt to capture different aspects of the
permanence of web pages.

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

all % (1,482,416,213)
.com % (778,377,312)
.org % (117,950,145)
.edu % (58,960,876)
.gov % (15,998,155)

Figure 2: Distribution of documents lengths overall and for se-
lected top-level domains.

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

all % (1,482,416,213)
.com % (778,377,312)
.org % (117,950,145)
.edu % (58,960,876)
.gov % (15,998,155)

Figure 3: Distribution of words per documents overall and for
selected top-level domains.

Figure 4 shows for each crawl generation the percentage of page
retrievals resulting in different categories of status codes. The200
category (corresponding to the HTTP status code “200 OK”) shows
pages that were successfully downloaded. Note that they-axis
starts at 85%; in all generations, over 85% of the retrievals were
successful. The3xx category contains all those pages that return
an HTTP status code indicating that the page has moved. Since
all URLs in our set produced a status code of 200 during crawl
1, the page has moved since. The4xx category contains all client
errors. The most common one is 404 (“Not Found”), indicating
that the page has disappeared without leaving a forwarding address,
distantly followed by 403 (“Forbidden”). Theother category con-
tains all pages for which the web server returned a status code not
listed above. The various5xx return codes dominated; we also
found many web servers returning status codes not listed in the
HTTP RFC. Thenetwork category contains all retrieval attempts
that failed due to a network-related error, such as DNS lookup fail-
ure, refused connections, TCP timeouts, and the like (note that Mer-
cator makes five attempts to resolve a domain name, and three at-
tempts at retrievals that fail due to TCP errors). TheRobotExcl
category contains all those pages that were blocked by the web
server’srobots.txt file, and that we therefore refrained from
even attempting to download. Again, since these pages were not
excluded during crawl 1, the exclusion was imposed later. This ap-

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11

3xx
4xx
RobotExcl
Other
Network
200

Figure 4: Distribution of HTTP status codes over crawl gener-
ations.

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11

all
.com
.org
.net
.edu
.de
.jp

Figure 5: Distribution of successful downloads over crawl gen-
erations, broken down by selected top-level domains.

pears to be a form of the Heisenberg effect, where the existence of
an observer (a pesky web crawler that trots by every week) changes
the behavior of the observed.

As one might expect, Figure 4 bears out that the lifetime of a
URL is not unlimited. As the crawl generations increase, more and
more URLs move, become unreachable, or are blocked from us.
While one would expect a geometric progression of these trends,
we did not observe the web long enough to distinguish the trend
from a linear progression. The growth of these three categories
comes at the expense of the200 category; fluctuations in the share
of thenetwork category appear better correlated with network con-
ditions at the crawler side.

Figure 5 shows only the successful downloads as a percentage of
all download attempts (including non-attempts due to robot exclu-
sion rules), broken down by a few selected top-level domains. Note
that they-axis starts at 80%, reflecting the fact that all domains in
all generations had at least that level of success. In general, pages
in .jp, .de, and.edu were consistently more available than pages
in .net and.com. The decline in the curves bears out the limited
lifetime of web pages discussed above.

In Figure 6 we tried another approach for viewing the lifetime
of URLs from different domains. Each bar represents a top-level
domain (the leftmost bar represents the entire data set). We grouped
URLs by the crawl generation of their last successful retrieval, the

75%

80%

85%

90%

95%

100%

all .cn

nu
meri

c
oth

er .ne
t

.co
m .fr .kr .ca .us .or

g .ru .no .ed
u .au .it .de .es .jp .tw .uk .go

v .se .dk

OK at crawl 1
OK at crawl 2
OK at crawl 3
OK at crawl 4
OK at crawl 5
OK at crawl 6
OK at crawl 7
OK at crawl 8
OK at crawl 9
OK at crawl 10
OK at crawl 11

Figure 6: Breakdown showing in which crawl a web page was
last successfully downloaded, broken down by TLD.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0510152025303540455055606570758085

Figure 7: Distribution of change.

intuition being that a URL which could not be downloaded after
some point is likely to have expired. This approach partitions URLs
into 11 sets. Each shaded region of each bar represents the relative
size of one such set. The region at the top of a bar corresponds to
URLs that were consistently unreachable after crawl 1 (the crawl
that defined the set of URLs), while the region at the bottom of a
bar corresponds to URLs that were successfully downloaded during
the final crawl. Note that they-axis, which shows the percentage
breakdown of the total, starts at 75%, due to the fact that for all
domains considered here, more than 75% of all URLs were still
reachable during the final crawl. Looking at the “all domains” bar,
it can be seen that 88% of all URLs were still available during the
final crawl.

For most domains, the “OK at crawl 10” regions are larger than
regions for preceding crawls. This makes intuitive sense: it repre-
sents documents that could not be retrieved during the final crawl,
but might well come back to life in the future. Other than that, we
see no discernible patterns between the lengths of regions within a
bar.

Looking across domains, we observe that web pages in China
expire sooner than average, as do pages in.com and.net.

The remaining figures display information about the amount of
change in a document between two successive successful down-
loads. Figure 7 shows a fine-grained illustration of change amount,
independent of other factors. We partition the set of all pairs of
successive successfully retrieved pages into 85 subsets, based on

0%

1%

2%

0510152025303540455055606570758085

Figure 8: Distribution of change, scaled to show low-percentage
categories.

0%

1%

2%

0510152025303540455055606570758085

Figure 9: Distribution of change, scaled to show low-percentage
categories, after excluding automatically generated keyword-
spam documents.

how many pre-images the two documents in each pair share. Sub-
set 0 contains the pairs with no common pre-images, subset 84 the
ones with all common pre-images, and subset 85 the ones that also
agree in their document checksums (strongly suggesting that the
documents are identical as byte sequences).

Thex-axis shows the 85 subsets, and they-axis shows percent-
ages. The lower curve (visible only at the extreme left and right) de-
picts what percentage of all documents fall into a given subset. The
curve above shows the cumulative percentage distribution. Each
point (x; y) on the curve indicates thaty percent of all pairs had at
leastx pre-images in common.

As can be seen (if your eyes are sharp enough), 65.2% of all page
pairs don’t differ at all. Another 9.2% differ only in their check-
sum, but have all common pre-images (suggesting that only the
HTML markup, which was removed before computing pre-images,
has changed).

Figure 8 magnifies the lower curve from Figure 7, making it easy
to see that all other change buckets contain less than 2% of all page
pairs, and that all buckets with fewer than 79 common pre-images
(representing document pairs that are less than 94% similar) con-
tain less than 1%. For the most part, the curve is monotonically de-
creasing, but this pattern is broken as we get to the buckets contain-
ing documents that underwent extreme change. Bucket 0, which
represents complete dissimilarity, accounts for 0.8%, over ten times
the level of bucket 7, the smallest bucket. We will revisit this phe-
nomenon later on.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all .com .de .net .uk .jp .org .cn .gov .edu

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Figure 10: Clustered rates of change, broken down by selected
top-level domains.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all .com .de .net .uk .jp .org .cn .gov .edu

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Figure 11: Clustered rates of change, broken down by se-
lected top-level domains, after excluding automatically gener-
ated keyword-spam documents.

We next tried to determine if there are any attributes of a docu-
ment that help to predict its rate and degree of change. In Figure 10,
we examine the relation between top-level domain and change. The
figure shows a bar for all page pairs and several more for selected
domains. Each bar is divided into 6 regions, corresponding to the
following six change clusters:complete change (0 common pre-
images),large change (1-28 common pre-images),medium change
(29-56 common pre-images),small change (57-83 common pre-
images),no text change (84 common pre-images), andno change
(subset 85: 84 common pre-images and a common checksum).

The top region depicts thecomplete change cluster, the one at
the bottom theno change cluster. They-axis shows the percentage.

We observe significant differences between top-level domains,
confirming earlier observations by Cho and Garcia-Molina [5]. In
the.com domain, pages change more frequently than in the.gov
and.edu domains.

We were surprised to see that pages in.de, the German domain,
exhibit a significantly higher rate and degree of change than those
in any other domain. 27% of the pages we sampled from.de un-
derwent a large or complete change every week, compared with 3%
for the web as a whole. Even taking the fabled German industri-
ousness into account, these numbers were hard to explain.

In order to shed light on the issue, we turned to our sampled
documents, selecting documents from Germany with high change
rate. Careful examination of the first few pages revealed more than
we cared to see: of the first half dozen pages we examined, all

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all .com .de .net .uk .jp .org .cn .gov .edu

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)

Figure 12: Clustered rates of change, broken down by selected
top-level domains, and omitting the no change cluster.

but one contained disjoint, but perfectly grammatical phrases of an
adult nature together with a redirection to an adult web site. It soon
became clear that the phrases were automatically generated on the
fly, for the purpose of “stuffing” search engines such as Google with
topical keywords surrounded by sensible-looking context, in order
to draw visitors to the adult web site. Upon further investigation,
we discovered that our data set contained 1.03 million URLs drawn
from 116,654 hosts (4,745 of them being outside the.de domain),
which all resolved to a single IP address. This machine is serving
up over 15% of the.de URLs in our data set!

We speculate that the purpose of using that many distinct host
names as a front to a single server is to circumvent the politeness
policies that limit the number of pages a web crawler will attempt to
download from any given host in a given time interval, and also to
trick link-based ranking algorithms such as PageRank into believ-
ing that links to other pages on apparently different hosts are non-
nepotistic, thereby inflating the ranking of the pages in the clique.

After this discovery, we set out to explore if there were other
such servers in our data set. We resolved the symbolic host names
of all the URLs in our data set, and singled out each IP address with
more than a thousand symbolic host names mapping to it. There
were 213 such IP addresses, 78 of which proved to be of a similar
nature as the site that triggered our investigation. We excluded all
URLs on the 443,038 hosts that resolved to one of the 78 identified
IP addresses, and reran the analysis that produced Figure 10. This
eliminated about 60% of the excessive large and complete change
in .de. The adjusted distribution is shown in Figure 11. Continued
investigation of the excessive change found that automatically gen-
erated pornographic content accounts for much of the remainder.

In Figure 12, we look at the same data, but omit all pairs of doc-
uments with no change. Other than Germany (and to a lesser ex-
tent China and Japan), there is remarkably little difference between
the various top-level domains. Our conclusions are twofold: First,
pornography continues to skew our results. Second, our shingling
technique is not well adapted to writing systems like Chinese or
Kanji that do not employ inter-word spacing, which in turn causes
documents to have a very small number of shingles, which means
that any change is considered significant.

Figure 9 is similar to Figure 8, but excludes the same URLs that
were excluded in Figures 11 and 12. Note that most of the non-
monotonicity at the right end of the distribution has disappeared,
except for bucket 0, which nonetheless has been cut in half.

We next consider whether the length of pages impacts their rate
of change. In Figure 13, we use the samex-axis semantics as in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Figure 13: Clustered rates of change, broken down by docu-
ment size.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Figure 14: Clustered rates of change, broken down by number
of words per document.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)

Figure 15: Clustered rates of change, broken down by number
of words per document, and omitting the no change cluster.

Figure 2, and the samey-axis semantics and bar graph encodings
as in Figure 10. The most striking feature of this figure is that
document size is strongly related to amount and rate of change,
and counterintuitively so! One might think that small documents
are more likely to change, and if they do, change more severely
(since any change is a large change). However, we found that large
documents (32 KB and above) change much more frequently than
smaller ones (4 KB and below).

Figure 14 is similar in spirit, but examines the relationship be-
tween the number of words and the rate of change. In a way, this
metric is more straightforward, since the sensitivity of our shin-
gling techniques depends on the number of words in a document.
For documents with few words, our metric gives a relatively coarse,
“all-or-nothing” similarity metric. Nonetheless, this figure echoes
the observation of Figure 13, that large documents are more likely
to change than smaller ones.

In Figure 15, we examine the same information, excluding the
documents with no change. We observe that pages with differ-
ent numbers of words exhibit similar change behavior, except that
pages with just a few words cannot show an intermediate amount
of change, due to our sampling technique.

We further investigated whether there are any confounding rela-
tionships between document size and top-level domain. Figure 16
uses the same representation as Figure 13, but each chart consid-
ers only those URLs from a specific top-level domain. The distri-
butions for the.com and.net domains exhibit a much stronger
threshold effect for large documents than do.gov and.edu.

Figure 17 examines the correlation of successive changes to a
document. The figure shows a 3D histogram. Thex axis denotes
the number of pre-images in a document unchanged from week
n � 1 to n, they axis the number of pre-images unchanged from
weekn to n + 1, and thez axis shows the logarithm (base 2) of
the number of such documents. A data point(x; y; z) indicates that
there are2z document/week pairs(d; n) for which the versions of
documentd hadx pre-images in common between weeksn � 1
andn, andy pre-images in common between weeksn andn+ 1.

The spire surrounding the(x; y) coordinate(85; 85) represents
the vast majority of web pages that don’t change much over a three-
week interval. The tip of the spire is ten thousand times higher
than any other feature in the plot, except for the smaller spire at
the other end of the diagonal, which represents documents which
differ completely in every sample. Much of this second peak can be
attributed to machine-generated pornography, as described above.

The second-most prominent feature is the pronounced ridge along
the main diagonal of thexy plane. The crest of the ridge represents
a thousandfold higher number of instances per grid point than the
floor of the valley. This ridge suggests that changes are highly cor-
related; past changes to a document are an excellent predictor of
future changes.

The plumes at the far walls of the plot demonstrate that a sizable
fraction of documents don’t change in a given week, even if they
changed in the previous or following week.

Figure 18 modifies the previous figure in two ways: The view is
down thez axis, transforming the 3D plot into a 2D contour map,
where color/shading indicate the elevation of the terrain. In addi-
tion, rather than displaying absolute numbers of samples, we con-
sider each column as a probability distribution (meaning that every
data point is divided by the sum of the data points in its column).
Since these values range from 0 to 1, their logarithms are negative.
This normalization eliminates the spires that were so prominent in
the previous figure. The diagonal ridge, however, remains, indi-
cating once again that past change is a strong predictor of future
change. Likewise, the plume along the top remains clearly visible.

Change in .com pages broken down by word count
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in .org pages broken down by word count

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in .net pages broken down by word count
0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in .edu pages broken down by word count

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in .gov pages broken down by word count
0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in IP-address pages broken down by word count
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in .de pages broken down by word count
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Change in .jp pages broken down by word count
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

complete change (0)
large change (1-28)
medium change (29-56)
small change (57-83)
no text change (84)
no change (85)

Figure 16: Clustered rates of change, broken down by top-level domain and number of words per document.

5. CONCLUSIONS
This paper describes a large-scale experiment aimed at measur-

ing the rate and degree of web page changes over a significant pe-
riod of time. We crawled 151 million pages once a week for eleven
weeks, saving salient information about each downloaded docu-
ment, including a feature vector of the text without markup, plus
the full text of 0.1% of all downloaded pages. Subsequently, we
distilled the retained data to make it more amenable to statistical
analysis, and we performed a number of data mining operations on
the distilled data.

We found that web pages that change usually change only in
their markup or in trivial ways. Moreover, we found that there is a
strong relationship between the top-level domain and the frequency
of change of a document, whereas the relationship between top-
level domain and degree of change is much weaker.

To our great surprise, we found that document size is another
strong predictor of both frequency and degree of change. More-

over, one might expect that any change to a small document would
be a significant one, by virtue of small documents having fewer
words, so that any word change affects a significant fraction of the
shingles. Contrary to that intuition, we found that large documents
change more often and more extensively than smaller ones.

We investigated whether the two factors – top-level domain and
document size – were confounding, and discovered that for the
most part, the relationship of document size and rate and degree
of change are more pronounced for the.com and.net domains
than for, say, the.edu and.gov domains, suggesting that they are
not confounded.

We also found that past changes to a page are a good predictor
of future changes. This result has practical implications for incre-
mental web crawlers that seek to maximize the freshness of a web
page collection or index.

We have done some limited experiments with the sampled full
text documents to investigate some of our more perplexing results.
These experiments helped us in uncovering a source of pollution in

0

85

0

85

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3029-30
28-29
27-28
26-27
25-26
24-25
23-24
22-23
21-22
20-21
19-20
18-19
17-18
16-17
15-16
14-15
13-14
12-13
11-12
10-11
9-10
8-9

Figure 17: Logarithmic histogram of intra-document changes
over three successive weeks, showing absolute number of
changes.

our data set, namely machine-generated pages constructed for the
purpose of spamming search engines. We hope that future work us-
ing the sampled full text documents will provide us with additional
insights.

6. REFERENCES
[1] B. Brewington, G. Cybenko. How dynamic is the web? In

Proc. of the 9th International World Wide Web Conference,
May 2000.

[2] K. Bharat and A. Broder. Mirror, mirror on the web: a study
of host pairs with replicated content. InProc. of the 8th
International World Wide Web Conference, May 1999.

[3] A. Broder. Some applications of Rabin’s fingerprinting
method. In R. Capocelli, A. De Santis, and U. Vaccaro,
editors,Sequences II: Methods in Communications, Security,
and Computer Science, Springer-Verlag, 1993.

[4] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic
clustering of the web. InProc. of the 6th International World
Wide Web Conference, Apr. 1997.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

-1-0

-2--1

-3--2

-4--3
-5--4

-6--5

-7--6

-8--7

-9--8

-10--9

-11--10
-12--11

-13--12

-14--13

Figure 18: Logarithmic histogram of intra-document changes
over three successive weeks, normalized to show conditional
probabilities of changes.

[5] J. Cho and H. Garcia-Molina. The evolution of the web and
implications for an incremental crawler. InProc. of the 26th
International Conference on Very Large Databases, Sep.
2000.

[6] F. Douglis, A. Feldmann, B. Krishnamurthy, J. Mogul. Rate of
change and other metrics: a live study of the world wide web.
In USENIX Symposium on Internetworking Technologies and
Systems, Dec. 1997.

[7] Google Information for Webmasters.
http://www.google.com/webmasters/2.html

[8] M. Najork and A. Heydon. High-performance web crawling.
SRC Research Report 173, Compaq Systems Research Center,
Palo Alto, CA, Sep. 2001.

[9] M. Najork and J. Wiener. Breadth-first search crawling yields
high-quality pages. InProc. of the 10th International World
Wide Web Conference, May 2001.

[10] M. Rabin. Fingerprinting by random polynomials. Report
TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

[11] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanabhan,
and L. Qiu. Statistical identification of encrypted web
browsing traffic. InProc. of the IEEE Symposium on Security
and Privacy, May 2002.

