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Abstract

We present a large-scale study on unsupervised spatiotem-

poral representation learning from videos. With a unified per-

spective on four recent image-based frameworks, we study

a simple objective that can easily generalize all these meth-

ods to space-time. Our objective encourages temporally-

persistent features in the same video, and in spite of its

simplicity, it works surprisingly well across: (i) different

unsupervised frameworks, (ii) pre-training datasets, (iii)

downstream datasets, and (iv) backbone architectures. We

draw a series of intriguing observations from this study,

e.g., we discover that encouraging long-spanned persis-

tency can be effective even if the timespan is 60 seconds.

In addition to state-of-the-art results in multiple bench-

marks, we report a few promising cases in which unsuper-

vised pre-training can outperform its supervised counterpart.

Code will be made available at https://github.com/

facebookresearch/SlowFast.

1. Introduction

A series of recent methods on unsupervised representation

learning from images [36, 12, 32, 9] are based on maximiz-

ing a similarity objective for different views of the same

image under data augmentations [18, 90]. In addition to

the artificial augmentations on images, videos can provide

natural augmentations of visual content under various chang-

ing factors, such as motion, deformation, occlusion, and illu-

mination. This work aims to generalize these image-based

methods [36, 12, 32, 9] into space-time.

We study a simple objective that can be easily incorpo-

rated into these image-based methods. Our hypothesis is

that the visual content is often temporally-persistent along

a timespan in the video. This persistency may involve an

action (e.g., a person dancing), an object (e.g., an individ-

ual person, who transitions from running to walking), and

a scene (e.g., a room with people moving), covering short

to long spans, with different levels of visual invariance (ac-

tion, object, scene). Our objective simply encourages the

visual representations in different clips of the same video

35

45

55

65

75

1 2 3

K
in

et
ic

s 
li

n
ea

r 
ac

c
u

ra
cy

Number of temporal clips 

MoCo BYOL SimCLR SwAV

ρ

…

Time

θθ θ

k 2k 1 q

t 2t 1

θ

…

Figure 1. Learning to maximize the similarity between differ-

ent temporal clips of the same video encourages feature persis-

tency over time. A query clip (q) is matched to multiple key clips

(k1, k2, . . .) that are temporally shifted. This method can be incor-

porated into several unsupervised learning frameworks (MoCo [36],

SimCLR [12], BYOL [32], SwAV [9]). The figure on the top shows

that increasing the number (ρ) of temporal clips improves represen-

tation quality for all these frameworks.

to be similar. We empirically find that this objective works

well across different unsupervised frameworks (MoCo [36],

SimCLR [12], BYOL [32], SwAV [9]), either with or without

using dissimilar (negative) samples.

Our objective is a natural generalization of crops in im-

ages [18, 90] to clips in videos. This allows us to make

use of the recent unsupervised learning frameworks with

minimal modifications. We aim to learn a high-level repre-

sentation of the categorical semantics present in a video by

enforcing persistency of the representation over space-time.

We investigate factors such as the effective timespan, t, be-

tween positives, and number of temporal clips, ρ, to find that

longer timespans (up to a minute) and multiple samples are

beneficial for downstream performance (Fig. 1).

Our unsupervised training is performed on large-scale

data, including Kinetics [47] (240k videos) and three ver-

sions of million-scale Instagram sets. In addition to standard

linear probing, we evaluate representation quality on mul-

tiple classification and detection downstream datasets, e.g.,

Charades [76], Something-Something [31], and AVA [33].
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Our results suggest that unsupervised pre-training can

achieve competitive performance in videos, and it can sur-

pass the supervised pre-training counterparts in a few cases.

Finally, our study also reveals room for improvement along

multiple directions.

In summary, our large-scale study involves the following

five aspects:

(i) Four unsupervised learning frameworks (MoCo [36],

SimCLR [12], BYOL [32], SwAV [9]) viewed from a uni-

fied perspective, and incorporated with a simple temporal

persistency objective;

(ii) Three pre-training datasets, including the relatively

well-controlled Kinetics [47] and the relatively “in-the-wild”

Instagram sets at million-scale;

(iii) Six downstream datasets/tasks for evaluating repre-

sentation quality;

(iv) Ablation experiments on different factors, such as

temporal samples, contrastive objective, momentum en-

coders, training duration, backbones, data augmentation,

curated vs. uncurated, trimmed vs. untrimmed, etc.; and

(v) State-of-the-art results of unsupervised video represen-

tation learning on established benchmarks, UCF-101 [78],

HMDB51 [50] and Kinetics-400 [47] .

2. Related Work

Unsupervised learning in images has been actively re-

searched recently with approaches focusing on various

pretext tasks related to color- or patch-based processing

[68, 96, 17, 65], instance discrimination with contrastive ob-

jectives [18, 90, 84, 40, 41, 46, 36, 97, 12, 82] and ones that

focus on positive pairs [8, 9, 32].

Unsupervised learning in videos has followed a similar

trajectory with earlier methods focusing on predictive tasks

based on motion, color and spatiotemporal ordering [29,43,1,

44,79,86,61,85,59,58,21,51,87,67,22,48,93,16,88,71,45],

and contrastive objectives with visual [75, 80, 34, 53, 28, 94]

and audio-visual input [66, 4, 5, 49, 3, 69, 70].

Several recent ones [28, 35, 3, 69, 2, 72, 94, 63] relate to

image-based approaches [36, 8, 12, 90]. With some of them

using additional modalities of optical-flow [82,35], audio [3,

69, 2, 63] and text [80, 2] to transfer supervision from one

modality to another.

In relation to these previous efforts, our work studies

purely visual unsupervised learning from video and tries to

compare the meta-methodologies on common ground.

Evaluation protocols and backbones in most image-

based approaches have converged to ResNet-50 [39] en-

coders with ImageNet linear-classification protocol, and sev-

eral smaller downstream tasks [36, 12, 32, 9] for evaluation.

In video understanding research, the field has not yet con-

verged and is using different backbones with focus on fine-

tuning performance on two relatively small datasets [78, 50].

We investigate this aspect by looking at different encoders

and 6 different downstream benchmarks for evaluation.

3. Approach

The objective of this work is to study several recent un-

supervised representation learning methodologies to train

a spatiotemporal encoder fθ, exploring implementation de-

tails and comparing them on a common ground to measure

their efficacy in video understanding. We focus on two

contrastive approaches using positive and negative samples:

SimCLR [12] and MoCo [36], as well as two approaches that

solely rely on positives, BYOL [32] and SwAV [9] (Sec. 3.2).

These approaches were originally presented for learn-

ing image representations, and they all share the objec-

tive of learning invariant features across different views

(crops/augmentations) of the spatial image input. In this

paper, this idea is extended to the temporal domain. Our

core idea is to learn an encoder fθ that produces embeddings

which are persistent in space-time, over multiple (ρ) tempo-

rally distant clips of the same video. This is related to Slow

Feature Analysis [89] where the objective is to minimize the

representations’ temporal derivative over the input. The gen-

eral idea of learning temporally persistent features is not new

and has been proposed in the past with similar motivation

e.g., [6, 62, 29].

3.1. Persistent temporal feature learning

Our framework takes different augmented clips x of

an unlabeled video and passes them through an encoder

fθ with weights θ to obtain corresponding embeddings

q = fθ(x). The encoder is spatiotemporal ConvNet, by

default a ResNet-50 (R-50) [39], Slow-only pathway of

SlowFast Networks [20], which is a 3D ResNet-50 [39]

without temporal pooling in convolutional feature maps, fol-

lowed by an MLP projection head, that produces and output

of dimension d.

The input clips are stacks of RGB frames of size

3× T × S2 for temporal × spatial dimensions, which are

sampled with temporal stride τ , i.e., the encoder processes

only one out of τ frames of the raw video. Therefore, T × τ
define the timespan and resolution of the encoder.

Given a minibatch of B videos, our framework creates

a set of ρB positive examples by sampling ρ clips from the

videos. The learning methodologies studied in this section

maximize similarity of a “query” sample q with a set of

positive “key” samples {k+} that are encoded versions of

different clips of the same video as q is computed from.

Fig. 1 illustrates an example where ρ=3 clips are used.

The next section describes how the contrastive and non-

contrastive unsupervised representation learning methodolo-

gies are exemplified.
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Figure 2. Conceptual comparison of four unsupervised learning mechanisms applied to video. The inputs consist of ρ=2 clips from

B videos. Each clip is a stack of T frames with temporal stride τ and spatial resolution S2. Each method trains encoder weights θ by

computing a positive loss component w.r.t. to the other clips of the same video. SimCLR (a) and MoCo (b) use a contrastive loss with

negatives coming from different videos in the batch or a a queue. respectively. MoCo (b) and BYOL (c) use extra momentum encoders with

weights θm being moving averages of the trained θ. SwAV (d) uses a Sinkhorn-Knop (SK) transform to generate the positive targets.

3.2. Unsupervised learning frameworks

Contrastive learning maximizes the similarity of a sample

q with positive ones {k+} and minimizes similarity to neg-

ative ones {k−}. The contrastive approaches in this paper

use the InfoNCE [84] objective,

Lq = − log

∑
k∈{k+} exp (sim(q, k)/α)

∑
k∈{k+,k−}exp (sim(q, k)/α)

, (1)

with α being a temperature hyper-parameter for scaling and

{k+} are embedded clips of the same video as q. All the

embeddings are ℓ2 normalized and dot product (cosine) sim-

ilarity is used to compare them sim(q, k) = q⊤k/‖q‖‖k‖.

SimCLR [12] (Fig. 2a) uses the embeddings of clips of

other videos in the minibatch as negatives {k−}.

MoCo [36] (Fig. 2b) is a method that uses an explicit mo-

mentum encoder which parameters, θm, are a moving aver-

age θm ← mθk + (1−m)θ with m a momentum parameter.

In eq. (1) MoCo uses this encoder to compute the positive

embeddings {k+} from clips of the same video as q, and neg-

ative embeddings {k−} are taken from a queue that stores

embeddings of clips from previous iterations. There is no

backpropagation into the momentum-encoder weights θm.

BYOL [32] (Fig. 2c) can be viewed as a form of MoCo that

does not use negative samples, but an extra predictor MLP

with weights θp, which is stacked on top of fθ’s MLP head.

For a sample q = fθp(fθ(x)), BYOL minimizes negative

cosine similarity,

Lq = −
∑

k∈{k+}

sim(q, k) = −
∑

k∈{k+}

q⊤k+/‖q‖‖k‖, (2)

with {k+ =fθm(x+)} being embedded clips x+ from the

same video as q, encoded with momentum weights θm.

SwAV [9] (Fig. 2d) can be viewed as a form of SimCLR

that does not use negative samples. SwAV first performs a

linear mapping of the positive embeddings q, k+ to learned

prototypes q̃, k̃+ and then transforms the targets with an

extra Sinkhorn-Knopp (SK) step. Then the SwAV loss is

Lq = DKL(q̃‖SK(k̃+)), (3)

where DKL is the The Kullback-Leibler divergence and gra-

dients are not back-propagated through the SK operation.

Compared to SimCLR and MoCo, in BYOL and SwAV, q
and k are not typical “query” and “key” samples (but rather

“source” and “target” samples); however, for consistency we

use q, k terminology in notation for all methods.

Implementation specifics. We implement the methods

with a symmetric loss, as in original SimCLR, BYOL and

SwAV, where every input clip is used to produce a loss (and

gradient) signal. For each of the ρ ≥ 2 clips, we compute

q, while all other ρ−1 clips of the same video are used as

{k+} to evaluate sub-loss Lq and the symmetric loss is the

average over all ρ sub-losses. Thus, for MoCo and BYOL,

every input clip is processed by both encoders.

For MoCo and BYOL, our symmetric loss is aggregated

sequentially which implies that memory consumption for

ρ > 2 equals to a single clips’ forward and backward pass,

since these methods do not backpropagate through the mo-

mentum encoder. For SimCLR and SwAV the overall loss is

evaluated in parallel across all clips and therefore memory

consumption grows linearly with the number of clips used.

All details on implementation and pre-training are in

§B.1.

4. Experiments

Datasets. Unless otherwise noted, we perform unsupervised

pre-training on Kinetics-400 [47] (K400) with ∼240k train-

ing videos in 400 human action categories.
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data #videos tmedian tmean tstd tmin tmax

Kinetics-400 (K400) [47] 240K 10.0 9.3 1.7 1.0 10.0

IG-Curated [24] 1M 18.9 26.3 19.8 1.5 60.0

IG-Uncurated 1M 29.4 35.3 38.4 0.5 600.0

IG-Uncurated-Short 1M 13.0 13.1 1.6 10.0 15.9

Table 1. Pre-training data statistics with timings in seconds.

To study learning from “in-the-wild” videos from the

web, we pre-train the methods on Instagram videos:

IG-Curated [24], a dataset with hashtags similar to K400

classes; IG-Uncurated which has videos taken randomly

from Instagram; and IG-Uncurated-Short which is similar,

but has constrained duration. Each dataset has 1M videos.

Table 1 shows dataset statistics of all datasets used for

unsupervised pre-training. Most of Kinetics videos are of 10

seconds in duration. IG-Curated is a dataset with Instagram

videos that have an average duration tmean of 26.3 seconds

and a standard deviation tstd of 29.8 seconds. The maximum

duration tmax is 60s. IG-Uncurated contains videos taken

randomly from Instagram, with larger deviation in length

and maximum duration of 10 minutes (600s). IG-Uncurated-

Short is a dataset consisting of random Instagram videos

that have a duration between 10 and 16 seconds, to study

the effect of a fixed duration and the assumption that short

videos may hold more useful information for pre-training.

Evaluation protocols. For evaluation we use two protocols.

The first one is common to evaluate unsupervised image

representations [36, 12]. It validates the linear classifier per-

formance based on frozen encoder features that are taken

from the global average pooling layer. We report top-1 clas-

sification accuracy (%) on the K400 validation set.

The second protocol reports finetuning accuracy on the

first split of the UCF101 dataset [78] which contains 13k

videos in 101 human action classes; this is a common pro-

cedure used to evaluate unsupervised video representations.

Finally, we also report finetuning accuracy on AVA [33], Cha-

rades [76], Something-Something [31] and HMDB51 [50].

Architecture. By default, we use a R-50 [39] following the

Slow pathway in [20] with clips of T=8 frames sampled with

stride τ=8 from 64 raw-frames of video. The supervised

performance for training 200, 400, 800 epochs on K400 is

74.7%, 74.3% and 72.7%, respectively, and does not improve

for training longer due to overfitting.

Implementation details. We follow default settings in

video classification [20]. Specifics on the approaches, their

training and evaluation and the impact of implementation on

performance are provided in §B and §A.3, respectively.

4.1. Persistent temporal learning

Here, we investigate the impact of learning spatiotempo-

ral vs. only spatial persistent features. Table 2 shows the

accuracy of the four methods when trained for 200 epochs

on K400, and evaluated on K400 (linear) and UCF101 (fine-

tuned), i.e. our default setting.

MoCo BYOL SimCLR SwAV

ρ K400 UCF101 K400 UCF101 K400 UCF101 K400 UCF101

1 61.0 90.8 60.6 91.2 36.1 84.2 38.6 74.7

2 65.8 91.0 65.8 92.7 60.5 88.9 61.6 87.3

3 67.3 92.8 68.3 93.8 62.0 87.9 62.7 89.4

4 67.8 93.5 68.9 93.8 out of memory

Table 2. Number of temporal clips ρ. Data: K400, 200 epochs.

Learning temporally persistent features (ρ ≥ 2) is effective.

MoCo BYOL SimCLR SwAV

ep K400 UCF101 K400 UCF101 K400 UCF101 K400 UCF101

50 52.6 84.6 30.2 78.5 45.7 79.7 55.9 81.4

100 60.5 89.5 47.6 88.6 57.3 85.6 59.4 85.5

200 65.8 91.0 65.8 92.7 60.5 88.9 61.6 87.3

400 67.4 92.5 66.9 92.8 62.0 87.9 62.9 88.3

800 67.4 93.2 66.2 93.6 61.8 88.4 63.2 89.5

Table 3. Training duration in epochs (ep): Dataset: K400, ρ=2.

Training longer brings consistent gains for all methods up to 400

epochs and saturates for K400 but not for UCF101 at 800ep. SwAV

is the strongest performer for short training (50ep).

Temporal augmentation. The first row in Table 2, ρ=1,

uses two spatial crops at the same temporal instance, while

the ρ=2 row uses clips at different temporal locations as

positives; therefore, learns persistent features in time. This

difference has a large impact on performance, especially for

SimCLR (60.5 → 36.1) and SwAV (61.6 → 38.6) perfor-

mance degrades significantly when sampling positives from

the same temporal instance (ρ=1).

More clips are beneficial. The remaining rows in Table 2

show that accuracy is further increasing with the number of

temporal samples per video, e.g. at ρ=4 the best accuracy is

achieved with BYOL at 68.9% K400 and 93.8% UCF101.

Negatives do not help but momentum encoders do.

When comparing the methods in Table 2, we see that:

(i) There is no clear performance difference between

contrastive/non-contrastive methods. This indicates that

learning space-time persistence within a video is key for

the methods, but learning in-persistence across videos is not.

(ii) There is a clear difference of ∼4% on K400 between

methods that employ momentum encoders (MoCo, BYOL),

vs. these that do not (SimCLR, SwAV).

Increasing the number of clips per training iteration in-

creases training cost, so it is reasonable to compare it to

training more epochs. Table 3 is studying the base case ρ=2

for various number of epochs (ep).

Overall, the results show that there is a clear gain for train-

ing longer which has been also observed in image-related

tasks [12,36,32,9]. BYOL performs the worst when training

short durations. This might be related to hyper-parameter

settings which we do not adjust for this experiment (the orig-

inal implementation [32] uses different hyper-parameters for

different number of training epochs).
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4.2. Timespan between positives

All experiments with ρ≥2 so far were using global tempo-

ral sampling of positives, which means that the clips can be

sampled at unconstrained temporal locations from the input

video. This might be counter-productive because if there is

a long duration that has passed between a pair of positive

clips they might no longer share the same semantic context

for learning high-level features corresponding in time.

tmax in seconds 0 2 3 4 5 8 10

K400 acc in % 60.6 65.2 65.7 65.8 65.8 65.6 65.8

(a) Dataset: K400, 200 epochs training.

tmax in seconds 4 8 16 32 60

K400 acc in % 62.7 63.1 63.1 63.9 64.1

(b) Dataset: IG-Curated-1M, 50 epochs training.

tmax in seconds 12s 24 36 48 600

K400 acc in % 59.3 59.2 59.9 59.6 58.9

(c) Dataset: IG-Uncurated-1M, 50 epochs training.

Table 4. Maximum frame distance for positives. Method:

BYOL, ρ = 2. Training is surprisingly robust with increasing

accuracy for increased distance between samples. Accuracy only

(mildly) degrades when sampling positives that are more than 36

seconds apart when using uncurated (random) videos.

This experiment is concerned with the maximum distance

between the positive training samples. We use BYOL pre-

training on K400, IG-Curated-1M and IG-Uncurated-1M

and report 400 linear readout accuracy in Table 4.

Table 4a shows performance for increasing the maximum

temporal distance between positives in K400 pre-training. It

can be seen that using positives from the same time (tmax=0)

degrades perforance b ∼5% but other than that performance

is relatively robust up to global sampling of positive clips

from the whole video (tmax=10s). This is interesting as it

seems that a long-temporal correspondence objectives does

not hurt performance (but also does not boost it).

Table 4b shows performance for increasing the temporal

distance between positive samples on IG-Curated-1M. This

dataset has a maximum duration of 60 seconds; statistics are

in Table 1. Table 4b shows that increasing the maximum

duration between positive pairs is beneficial for performance

and unrestricted sampling of positives is the best with 64.1%

top-1 accuracy for evaluation on K400. This is especially

interesting, as it shows that even longer videos benefit from

global sampling. There is no benefit from restricting the time

window of positives, which can be interpreted as the objective

of learning extremely-slow features [89] that do not change

over 60 seconds of video. Long-temporal-distance samples

might also increase robustness of the model by providing

“hard-positive” samples for learning. Note that here the

videos are still sampled according to hashtags related to

K400 classes [24]; therefore, the conjecture might be biased.

Finally, we are looking at the IG-Uncurated-1M dataset

which consists of a random sampling of 1M videos from In-

stagram. These videos can be between 0.5s and 10 minutes

of duration. Most of the videos however are much shorter

than 10 minutes, with a mean duration of 35.3 seconds and

a standard deviation of 38.4 seconds (Table 1). For this

data, Table 4c shows the results of progressively increasing

the maximum timespan between positive samples. It can

be observed that increasing the maximum distance between

positives up to 36 seconds is beneficial and beyond that per-

formance decreases, but only slightly, even when performing

global sampling of positives (the default).

4.3. Backbone architectures

So far all experiments were using a R-50, 8×8 Slow

pathway [39, 20] as backbone. The next set of ablations

studies different architectures for the spatiotemporal encoder.

training sup. MoCo (ρ=2)

backbone T × τ FLOPs Param s/iter K400 K400 UCF101

R-50 8×8 41.7G 31.8M 1.6s 74.7 65.8 91.0

R-18 8×8 20.0G 20.2M 1.2s 68.9 56.2 87.1

R-101 8×8 93.3G 51.4M 2.1s 75.8 67.7 92.4

R-50 16×4 83.5G 31.8M 2.5s 76.1 67.6 93.3

R-50 32×2 167.0G 31.8M 4.6s 76.3 67.8 94.2

R2+1D-18 32×2 48.5G 15.4M 4.0s 71.7 57.2 93.7

S3D-G 32×2 36.0G 9.1M 4.1s 74.7 63.2 94.5

Table 5. Backbone comparison. The ResNet [39] backbone (Slow

pathway [20]) is used with different depth (R-18, R-50, R-101),

input frames T and stride τ . R2+1D [83] and S3D-G [91] are

commonly used backbones for unsupervised video representation

learning with downstream evaluation on UCF101.

Table 5 compares different backbones for usage with

MoCo in our default setting (ρ=2, 200 epoch pre-training

on K400). From left to right, the table shows the input

duration T , sampling-rate τ , FLOPs (at 2242 spatial reso-

lution) and parameters of these backbones, as well as the

average duration for training one iteration of the MoCo algo-

rithm (measured on a single machine with 8 V100 GPUs in

PySlowFast [19] and torchvision decoder), the su-

pervised performance on K400 and UCF101 (finetuned from

K400), as well as the downstream performance for K400

linear evaluation and UCF101 finetuning.

The first observation in Table 5 is that for the Slow ar-

chitecture [20], using shallower (R-18) or deeper (R-101)

networks can influence supervised and downstream perfor-

mance in a sizable manner, with MoCo, K400 evaluation

benefiting from more parameters. Doubling the input frame-

rate (8×8→ 16×4) boosts accuracy on UCF101.

The second observation is that R2+1D [83] has a large

gap on Kinetics (71.7% supervised vs. 57.2% unsupervised),

while being remarkably strong on UCF101 (93.7%). This

gap is also observed for S3D-G [91]. The reason for this

might be that UCF101 is a small dataset which is easy to

overfit and can benefit from fewer parameters.
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MoCo BYOL SimCLR SwAV

ep K400 UCF101 K400 UCF101 K400 UCF101 K400 UCF101

50 64.8 91.1 64.1 93.5 55.5 86.4 61.0 89.0

200 69.0 93.4 60.2 92.7 56.9 86.6 64.3 91.2

(a) Training on IG-Curated-1M.

MoCo BYOL SimCLR SwAV

ep K400 UCF101 K400 UCF101 K400 UCF101 K400 UCF101

50 61.8 90.9 58.9 90.1 52.1 85.1 56.0 86.7

200 65.4 91.9 57.9 91.6 51.9 85.3 58.8 87.8

(b) Training on IG-Uncurated-1M.

MoCo BYOL SimCLR SwAV

ep K400 UCF101 K400 UCF101 K400 UCF101 K400 UCF101

50 61.0 89.6 62.3 91.4 53.61 86.4 55.0 86.2

200 64.5 91.0 57.0 90.9 55.97 86.9 58.4 87.2

(c) Training on IG-Uncurated-Short-1M.

Table 6. Training on curated (a), uncurated (b) and short duration

video (c) data from the web. Longer training degrades performance

for BYOL, possibly due to suboptimal hyper-parameters. ρ=2.

4.4. Uncurated data and video duration

In Table 6 we show the performance of all four method-

ologies on IG-Curated-1M (a), IG-Uncurated-1M (b) and

IG-Uncurated-Short-1M (c) for pre-training with 50 and 200

epochs. We make the following observations:

(i) Among the methods MoCo performs the best with e.g.

69.0% vs. second-best 64.3% of SwAV on curated data (a).

(ii) MoCo and SwAV scale the best for training longer,

gaining roughly 3-4% for 200ep vs. 50ep.

(iii) On uncurated data, MoCo and SwAV perform ∼1%

better on the unconstrained duration videos in Table 6b.

(iv) BYOL and SimCLR show better performance on

IG-Uncurated-Short (10-16s videos) in Table 6c, seemingly

benefiting from shorter videos, but there is no clear benefit

from either longer or shorter duration among all methods.

(v) BYOL degrades performance for training longer

which might be due to the requirement of different hyper-

parameters for different schedules (as noted in Sec. 4.1).

We will return to this point in §A.1, where we show that

increasing clips-size ρ can overcome this issue in BYOL,

along with further studies on the trade-off against training

more epochs, and dataset scale.

4.5. Data augmentations

Importance of augmentations. Augmentations can have a

major impact on visual unsupervised feature learning [12,

14]. In Fig. 3, we ablate spatial cropping (S), temporal

clipping (T) and radiometric color (C) augmentations from

the four unsupervised learning methods (e.g. “T S C” are

the baselines using all augmentations and removing “S C”

equals ρ=1 in Table 2). We make three main observations:

(i) Among the methods, MoCo and BYOL perform most

robust for using fewer augmentations; their advantage over

SimCLR and SwAV might be related to the momentum

encoder which can provide extra augmentation in training.
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Figure 3. Ablating augmentations. We explore temporal (T), spa-

tial (S), and color (C) augmentations to learn persistent features.

(ii) When minimizing the augmentations by resizing the

shorter size of the video to the input size of 224 and only

cropping along the long side of the video (Base in Fig. 3),

MoCo still provides 42.2% K400 linear accuracy, over

BYOLs’ 32.4%, showing an advantage of the contrastive

loss in a weak augmentation scenario.

(iii) Among the augmentations, learning temporal (T) per-

sistency, has the largest impact on performance, except for

MoCo which benefits more from color (C) (incl. grayscale)

augmentations. Especially SimCLR and SwAV show sig-

nificant drops in performance when removing T, i.e. when

extracting positive clips from the same instance in time.

In the remainder of this section, we explore using stronger

augmentations than the default ones in previous experiments.

We perform the ablations with MoCo in the basic setting of

ρ = 2, 200 epochs K400 pre-training.

color grayscale temporal fps accuracy

strength probability difference jitter K400 UCF101

0.5 0.2 65.8 91.0

0.75 0.2 66.0 92.1

1.0 0.2 65.8 91.2

0.5 0.4 65.5 91.0

0.5 0.2 X 66.2 91.3

0.5 0.2 X 65.6 91.5

Table 7. Radiometric augmentation. Method: MoCo, 200

epochs, ρ = 2. Dataset: K400. Stronger color augmentation

in K400 pre-training can especially benefit UCF101 (+1.3%).

Stronger color augmentation. In Table 7 color strength

of 0.5 indicates the default one for MoCo [14], 0.75 and

1.0 increase the strength of randomly jittering brightness,

contrast, saturation and hue proportionally.

Table 7 shows that increasing it to 0.75 can improve

K400/UCF101 accuracy. Increasing the random grayscale

probability from 0.2 to 0.4 does not provide an improve-

ment on either of the datasets. However, using a temporal-

difference augmentation which randomly (with probability

0.2) first converts the frames to grayscale and then subtracts

them across time, can increase K400 accuracy by 0.4%. Fi-

nally, using frame-rate jittering of ±50% of the original

frame-rate does not improve K400 but UCF101 slightly.
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area aspect accuracy

[ min, max] ratio K400 UCF101

default [77, 39, 20] 65.8 91.0

[0.49, 0.76] 64.8 91.7

[0.49, 0.76] X 65.4 91.7

[0.20, 0.76] X 66.8 91.8

[0.20, 0.50] X 66.3 91.8

[0.20, 1.00] X 66.6 91.7

[0.08, 0.50] X 64.3 91.6

[0.08, 1.00] X 65.3 91.2

Table 8. Cropping augmentation. Method: MoCo, 200 epochs,

ρ = 2. Dataset: K400. Stronger cropping and aspect ratio augmen-

tation can be beneficial by +1.0% (K400) and 0.7% UCF101.

Spatial cropping. Our default implementation uses VGG-

style [77, 39] cropping that randomly resizes the shorter

spatial side of a video between [256, 320] pixels and takes a

random 2242 crop extended over time to extract a clip [20].

Since unsupervised learning might benefit from more ag-

gressive cropping, we explore Inception-style [81] cropping

with aspect ratio augmentation that is commonly used in

unsupervised learning from images [36, 12, 32, 9]. This crop-

ping procedure randomly resizes the input area between a

minimum scale and a maximum scale and jitters aspect ratio

between 3/4 to 4/3, before taking a 2242 crop.

We do not change the cropping for downstream training,

as this can drop accuracy significantly (by ∼2% on K400).

In Table 8 we ablate this approach for MoCo (the aug-

mentation in the downstream evaluators are unchanged).

The first ablation shows the comparison of default crop-

ping [77, 39] with a similar version that randomly crops a

fraction between [0.49, 0.76] = [2242/3202, 2242/2562] of

the original area, instead of the short-side. The performance

degrades by 1% on K400 linear evaluation. Randomly crop-

ping based on area favors larger crops over the short-side

resizing and we observe lower training error for this variant.

Next, adding aspect ratio augmentation can recover some

of this performance (65.4%), and using a smaller minimum

area of 0.2, with the maximum area of 0.76 leads to best

performance of 66.8%. Using the default values for Incep-

tion [81] training, [0.08, 1.00], appears to be too aggressive.

MoCo (ρ=4) BYOL (ρ=4)

aug+ K400 UCF101 K400 UCF101

67.8 93.5 68.9 93.8

X 69.0 93.6 69.8 93.9

Table 9. Stronger augmentations. Data: K400, 200 epochs.

“aug+’’ combines the best color and cropping augmentations from

Table 7 and Table 8, respectively.

Combined augmentations. We pull together the best color

and cropping augmentations in Tables 7 & 8, and train MoCo

and BYOL with ρ=4 for 200ep on K400. The result shown

as “aug+” in Table 9 can increase performance on K400

by ∼1%. Training the linear classifier of BYOL (ρ=4) for

100ep instead of 60ep leads to our best accuracy of 70.0% on

K400, which is 4.7% below the supervised R-50, Slow 8×8

accuracy of 74.7%.

4.6. Alternative downstream tasks

The gap between K400 and UCF101 accuracy in Sec. 4.3

question if solely looking at typical evaluation of UCF101

(or the smaller HMDB51) is enough to identify and rank

approaches for unsupervised learning in video.

Table 10 studies several new downstream tasks for un-

supervised representation learning in video. We use our

MoCo, SimCLR, BYOL and SwAV models trained with

ρ=3 for 200 epochs on K400 and evaluate their performance

by finetuning on Charades [76], AVA [33], or Something-

Something [31] (in addition to the K400 linear readout per-

formance and UCF101 performance reported in Table 2).

Details on implementation are given in §B.

The first two rows in Table 10 show the two main com-

petitors for this evaluation: (i) training from scratch on the

datasets and (ii) K400 pre-training. First, we observe that

the supervised pre-trained backbones outperform the train-

from-scratch counterpart significantly, as expected.

Downstream datasets. For K400 pre-training and linear

evaluation, its supervised counterpart has an advantage be-

tween 12.7% and 6.4% top-1 accuracy among the methods.

On UCF101 unsupervised pre-training is only 1% lower

than the supervised counterpart for BYOL (the strongest).

On AVA short-term action detection we observe that the

BYOL pre-trained model is able to outperform the super-

vised counterpart by +1.2% mAP, when using the same,

fixed region proposals [20]. This result is significant, as e.g.

switching from K400 to K600 (nearly double the size of

K400) pre-training on AVA leads to a smaller gains in perfor-

mance [20]. Overall this is a surprising result as the tasks in

K400 and AVA are similar [52], only that the temporal granu-

larity of the actions in AVA is finer while their semantic gran-

ularity is coarser; e.g. “shoot” in AVA vs. “playing paintball”

in Kinetics, which might be better captured by the BYOL

objective which solely works on positive temporal samples

of a video, without contrasting them to other videos (“shoot”

might be a positive appearing in many different videos and

contrasting them could be harmful to downstream perfor-

mance). This line of thinking is supported with MoCo’s

(contrastive objective) performance that is 3.1% worse than

BYOL on AVA. Similarly, SimCLR (contrastive) is worse

than SwAV (non-contrastive) when benchmarked on AVA.

On Charades, long-term action classification, we ob-

serve the opposite. Here, the contrastive MoCo is clearly

the best performer with 33.5% mAP (close to the supervised

pre-training performance of 34.7% mAP), while the non-

contrastive BYOL is 12.5% lower. Similarly, now SimCLR

(contrastive) is better than SwAV (non-contrastive). Com-

pared to AVA, Charades is a temporally less localized dataset

containing activities that need to be recognized from a longer

temporal range video, for which contrastive pre-training ap-

pears to be outperforming the non-contrastive variants.
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linear protocol finetuning accuracy

method pre-train K400 UCF101 AVA (mAP) Charades (mAP) SSv2

supervised scratch 74.7 68.8 11.7 7.4 48.8

supervised K400-240K - 94.8 22.2 34.7 52.8

SimCLR

K400-240K

62.0 (−12.7) 87.9 (−6.9) 17.6 (−4.6) 11.4 (−23.3) 52.0 (−0.8)

SwAV 62.7 (−11.5) 89.4 (−5.4) 18.2 (−4.0) 10.7 (−24.0) 51.7 (−1.1)

BYOL 68.3 (−6.4) 93.8 (−1.0) 23.4 (+1.2) 21.0 (−13.7) 55.8 (+3.0)

MoCo 67.3 (−7.4) 92.8 (−2.0) 20.3 (−1.9) 33.5 (−1.2) 54.4 (+1.8)

MoCo IG-Curated-1M 69.9 (−4.8) 94.4 (−0.4) 20.4 (−1.8) 34.9 (+0.2) 54.5 (+1.8)

MoCo IG-Uncurated-1M 66.0 (−8.7) 92.9 (−2.1) 20.5 (−1.7) 31.3 (−3.4) 53.2 (+0.4)

Table 10. Downstream benchmarks: We use linear evaluation on K400 and finetuning accuracy on the other datasets. 200 epochs. ρ=3.

On Something-Something v2 (SSv2 in Table 10), all

the methods perform strong, with BYOL pre-training show-

ing the largest gain of +3% over supervised pre-training on

Kinetics (55.8% vs. 52.8% top-1 accuracy).

Pre-training sets: Kinetics vs. IG. Next, we experiment

with pre-training on videos from the web. We first investigate

IG-Curated-1M [24], which is a dataset that has been col-

lected with hashtags that are similar to Kinetics labels. This

data is a 1M subset of the original 65M introduced in [24].

Using this data (penultimate row in Table 10) can excels the

performance of MoCo with K400 pre-training, which has a

training set of 240K samples (roughly 4.2× smaller), and

surprisingly even outperforms pre-training on K400 linear

readout itself (69.9% vs. 67.3% accuracy).

Second, we ablate the effect of using uncurated videos,

with IG-Uncurated-1M which are purely random videos

taken from the web. On most downstream tasks perfor-

mance shown in the last row of Table 10 is equal or only

slightly lower than pre-training on K400. Specifically, MoCo

changes by -1.3% on K400 (as expected), +0.1% on UCF,

+0.2% on AVA, -2.2% on Charades and -1.2% on Something-

Something v2. This is an encouraging result for unsuper-

vised learning, as only ∼4.2×the number of videos but ran-

dom ones are required to match the performance of super-

vised K400 pre-training on the UCF101 and AVA.

Overall, our results indicate that unsupervised pre-

training can be a new paradigm for all of these downstream

tasks, for which supervised pre-training is the de-facto stan-

dard to achieve best performance. Further, the large dif-

ference in performance for pre-training methodologies and

objectives (e.g. contrastive/non-contrastive) revealed in the

light of these benchmarks signals large room for future work.

4.7. Comparison to previous work

In a final experiment we take the best model from Ta-

ble 9 and compare it with the state-of-the-art using the com-

monly used protocols on UCF101 and HMDB51 (across all

3 train/val splits) and K400. In Table 11 we show the results.

The strongest previous approaches are using multi-modal

input, Vision “V”, Audio “A”, Text “T”, to train a contrastive

objective across modalities; XDC [3] performs DeepClus-

ter [8] on (V+A), CVRL [72], GDT [69] and MMV [2]

use an objective similar to SimCLR on (V), (V+A), and

method pre-train backbone param T mod UCF HMDB K400

XDC [3] K400 R(2+1)D-18 15.4M 32 V+A 84.2 47.1

GDT [69] K400 R(2+1)D-18 15.4M 32 V+A 89.3 60.0

MMV [2] AS+HT S3D-G 9.1M 32 V+A+T 92.5 69.6

SpeedNet [7] K400 S3D-G 9.1M 64 V 81.1 48.8

CoCLR [35] K400 S3D-G 9.1M 32 V 87.9 54.6

CoCLR [35] K400 2×S3D-G 9.1M 32 V 90.6 62.9

VTHCL [94] K400 R-50 31.8M 8 V 82.1 49.2 37.8

CVRL [72] K400 R-50 31.8M 32 V 92.2 66.7 66.1

ρBYOL K400 R-50 31.8M 8 V 94.2 72.1 70.0

ρBYOL K400 R-50 31.8M 16 V 95.5 73.6 71.5

ρBYOL K400 R(2+1)D-18 15.4M 32 V 94.4 72.2

ρBYOL K400 S3D-G 9.1M 32 V 96.3 75.0

Table 11. Comparison with state-of-the-art. “param” indicates

the number of parameters, T inference frames, in the backbone.

“V” is Vision, “A” is Audio, “T” Text modality. ρBYOL is our

best model trained with temporal persistency of ρ=4. We report

fine-tuning accuracy on UCF/HMDB and linear accuracy on K400.

(V+A+T), with the latter training on a Audioset (AS) [23]

and HowTo100M (HT) [60], and CoCLR [35] can be seen

as a variant of MoCo on rgb and optical-flow input.

In comparisons, our best performing model ρBYOL,

which is BYOL trained with temporal persistency over

ρ=4 clips, (cf. Tables 2 & 9), provides a substantial per-

formance gain over the best published method [35]: +5.7%

and +12.1% top-1 accuracy on UCF101 and HMDB51 (us-

ing identical backbone and pre-training data).

On K400 linear evaluation with the same data and R-50,

Slow pathway [20] as backbone, our approach outperforms

the previous best CVRL [72] by +5.4% accuracy.

5. Conclusion

This paper has studied four meta-methodologies for unsu-

pervised learning from video. Our findings include that it is

beneficial to sample positives with longer timespans between

them, contrastive objectives are less influential than momen-

tum encoders, and training duration, backbones, video aug-

mentation and curation are all critical for good performance.

Our resulting models which learn persistent features across

augmented spacetime clips set a new state-of-the-art.

We observed that linear readout on Kinetics is a good

indicator of the performance on other datasets and that un-

supervised pre-training can compete with the supervised

counterpart on several datasets, but there is room for im-

provement. We hope that our baselines will foster research

and provide common ground for future comparisons.
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[84] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 2, 3

[85] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-

ticipating visual representations from unlabelled video. In

Proc. CVPR, 2016. 2

[86] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In Proc. ICCV, 2015.

2

[87] Xiaolong Wang, Kaiming He, and Abhinav Gupta. Transitive

invariance for self-supervised visual representation learning.

In Proc. ICCV, 2017. 2

[88] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learning

correspondence from the cycle-consistency of time. In Proc.

CVPR, 2019. 2

[89] Laurenz Wiskott and Terrence Sejnowski. Slow feature anal-

ysis: Unsupervised learning of invariances. In Neural Com-

putation, 2002. 2, 5

[90] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-

supervised feature learning via non-parametric instance-level

discrimination. In Proc. CVPR, volume abs/1805.01978,

2018. 1, 2

[91] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning

for video understanding. In Proc. ECCV, 2018. 5

[92] Weidi Xie. Deep Neural Networks in Computer Vision and

Biomedical Image Analysis. PhD thesis, University of Oxford,

2017. 16

[93] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and

Yueting Zhuang. Self-supervised spatiotemporal learning via

video clip order prediction. In Proc. CVPR, 2019. 2

[94] Ceyuan Yang, Yinghao Xu, Bo Dai, and Bolei Zhou. Video

representation learning with visual tempo consistency. arXiv

preprint arXiv:2006.15489, 2020. 2, 8

[95] Yang You, Igor Gitman, and Boris Ginsburg. Large

batch training of convolutional networks. arXiv preprint

arXiv:1708.03888, 2017. 13, 14

[96] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful

image colorization. In Proc. ECCV, 2016. 2

[97] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local

aggregation for unsupervised learning of visual embeddings.

In Proc. ICCV, 2019. 2

3309


