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Abstract

Purpose: To develop and characterize a mouse model with intraocular pressure (IOP) elevation after laser photocoagulation
on the trabecular meshwork (TM), which may serve as a model to investigate the potential of stem cell-based therapies for
glaucoma.

Methods: IOP was measured in 281 adult C57BL/6 mice to determine normal IOP range. IOP elevation was induced
unilaterally in 50 adult mice, by targeting the TM through the limbus with a 532-nm diode laser. IOP was measured up to 24
weeks post-treatment. The optic nerve damage was detected by electroretinography and assessed by semiautomatic
counting of optic nerve axons. Effects of laser treatment on the TM were evaluated by histology, immunofluorescence
staining, optical coherence tomography (OCT) and transmission electron microscopy (TEM).

Results: The average IOP of C57BL/6 mice was 14.562.6 mmHg (Mean 6SD). After laser treatment, IOP averaged above
20 mmHg throughout the follow-up period of 24 weeks. At 24 weeks, 57% of treated eyes had elevated IOP with the mean
IOP of 22.562.5 mmHg (Mean 6SED). The difference of average axon count (59.0%) between laser treated and untreated
eyes was statistically significant. Photopic negative response (PhNR) by electroretinography was significantly decreased.
CD45+ inflammatory cells invaded the TM within 1 week. The expression of SPARC was increased in the TM from 1 to 12
weeks. Histology showed the anterior chamber angle open after laser treatment. OCT indicated that most of the eyes with
laser treatment had no synechia in the anterior chamber angles. TEM demonstrated disorganized and compacted
extracellular matrix in the TM.

Conclusions: An experimental murine ocular hypertension model with an open angle and optic nerve axon loss was
produced with laser photocoagulation, which could be used to investigate stem cell-based therapies for restoration of the
outflow pathway integrity for ocular hypertension or glaucoma.
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Introduction

Glaucoma is a major cause of blindness throughout the world

and the second leading cause of irreversible blindness in the USA

[1,2]. Primary open angle glaucoma (POAG), the most common

form of glaucoma, is characterized by a progressive optic

neuropathy with loss of retinal ganglion cells (RGC) and optic

nerve axons, resulting in impairment of visual function. An

elevated intraocular pressure (IOP) is the most important risk

factor for most forms of glaucoma including POAG. Experimental

animal glaucoma models are normally generated by increasing

IOP which reproduces many pathophysiological changes observed

in human glaucoma patients [3].

The IOP is regulated primarily by a fluid resistance to the

aqueous humor outflow [4]. The juxtacanalicular connective tissue

(JCT) and Schlemm’s canal endothelial cells are generally believed

to be the major sites of resistance to the aqueous outflow, and

hence the primary determinants of IOP [5–7]. Trabecular

meshwork (TM) cells are also believed to have a major role in

regulation of the aqueous outflow. For example, TM cells

modulate the permeability of Schlemm’s canal endothelial cells

in vitro via paracrine signaling [8–11], and keep the aqueous

outflow channels patent via phagocytic activities [12,13]. Further,
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a decrease in TM cellularity was observed both in aged and

glaucomatous eyes [14–22]. The presence of outflow tract

pathologies and role of IOP elevation in glaucoma justify the use

of ocular hypertensive animal models for the study of RGC

damage without ancillary injury to the retina and ocular structures

[23]. Laser photocoagulation of the distal outflow pathway is

frequently used to elevate IOP in animal models. Levkovitch-

Verbin et al [24] reported the translimbal laser photocoagulation

approach to create a rat glaucoma model. Since then, many

groups have induced ocular hypertension in animal models by

using laser photocoagulation of the anterior angle and episcleral

veins [3,25–36]. Aihara et at [25] showed that laser on mouse eyes

with pupil dilation and anterior chamber flattening induced

significant IOP increase with completely closed angle. Fu and

Sretavan [29] applied laser on limbal and episcleral veins of albino

mice and the IOP was doubled within 4 hrs but returned to

normal by 7 days. They claimed [30] that, in C57BL/6 mice, no

consistent and reproducible results with laser-induced ocular

hypertension were obtained.

Using stem cells to repopulate the TM in glaucomatous eyes is

one of the potential therapy strategies for POAG. We have already

successfully isolated and characterized stem cells from human TM

[37] and proved that these stem cells have the ability to home to

the TM region after being transplanted into normal mouse

Figure 1. IOP range of normal C57BL/6 mouse population. IOP was measured on 281 healthy adult C57BL/6 mice under anesthesia. IOP of
right (OD) and left eyes (OS) were recorded and analyzed separately. X-axis represents the IOP and y-axis represents the frequency distribution at
different IOP levels.
doi:10.1371/journal.pone.0107446.g001

Table 1. IOP distribution of normal C57BL/6 mice.

IOP (mmHg) Mean SD 95th percentile 97.5th percentile 99.5th percentile

OD 14.6 2.6 19 20 20.4

OS 14.4 2.7 19 20 20.2

OU 14.5 2.6 19 20 20.3

doi:10.1371/journal.pone.0107446.t001
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anterior chamber [38]. In the present study, we developed a

mouse model with IOP elevation by damaging the TM with laser

photocoagulation. We characterized the effects of the TM damage

to determine the model’s suitability to investigate the potential of

stem cell-based therapies for the outflow pathway reconstruction

for glaucoma.

Materials and Methods

Materials
Antibodies used include anti-CD-45-PE conjugated (BD

Pharmingen, San Diego, CA) and SPARC (R&D Systems,

Minneapolis, MN). Goat anti-mouse IgG Alexa-488 secondary

antibody, Alexa Fluor 633 phalloidin and 49, 6-diamidino-2-

phenylindole (DAPI) were purchased from Life Technologies

(Carlsbad, CA). TUNEL assay kit (In Situ Cell Death Detection

Kit, TMR red) was from Roche Molecular Biochemicals

(Indianapolis, IN).

Animals
Healthy adult female and male C57BL/6 mice aged from 4-

week to 2-year old were purchased from Charles River Labora-

tories International, Inc. (Wilmington, MA). Mice were main-

tained in the University of Pittsburgh Animal Facility with low-

light conditions and a 12-hour light-dark cycle and free access to

food and water. All experimental procedures were reviewed and

approved by the University of Pittsburgh Institutional Animal

Care and Use Committee and handled according to guidelines

provided in the Association for Research in Vision and Ophthal-

mology Resolution on the Use of Animals in Ophthalmic and

Vision Research.

IOP was measured under the housing low-light conditions in

the afternoons at approximately the same time using a rebound

tonometer for rodents (TonoLab; Colonial Medical Supply,

Franconia, NH) on mice that had been anesthetized by

intraperitoneal injection of 2 mg of ketamine hydrochloride and

0.2 mg of xylazine (IVX Animal Health, Inc., St. Joseph, MO)

mixed in 0.2 ml of Dulbecco’s phosphate buffered saline (PBS).

Baseline IOP was measured prior to the laser treatment.

Figure 2. IOP elevation after laser treatment. IOP of laser treated and fellow untreated eyes was shown at different time points after laser.
Values are mean6SEM. Dashed line represents the 99.5th percentile of normal IOP range as shown in Table 1. The difference between two groups at
each time points is statistically significant (p,0.05, paired t-test).
doi:10.1371/journal.pone.0107446.g002

Table 2. IOP changes at different time points after laser treatment.

Time Points Eyes (n) IOP(Mean ±SEM) (mmHg)

Laser treated Untreated Controls

Baseline 50 13.760.7 14.160.5

1 day 50 22.961.2 14.860.7

1 wk 43 22.562.6 12.860.5

2 wks 36 21.363.8 14.360.5

12 wks 29 21.062.9 15.061.1

24 wks 22 22.562.5 13.460.5

doi:10.1371/journal.pone.0107446.t002
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Laser photocoagulation was performed on 8–12 weeks old

C57BL/6 female mice using a 532 nm cw-diode laser (OcuLight

GL Diode Laser, IRIDEX) at 80-mW laser power, 150-ms

duration and 50-mm diameter spot size determined after prelim-

inary studies with different combinations of the parameters for

laser treatment. Approximately 25 laser burns were delivered at

the gray zone of the limbus of each mouse. A second laser

treatment was performed one week after. IOP was measured two

to three times a week for the first 3 weeks after laser and once a

week thereafter.

In this study, 50 eyes were treated with laser and mice were

sacrificed at 1 day, 1 week, 2 weeks and 12 weeks after the second

laser treatment for histology and transmission electron microscopy

(TEM). Three pairs of optic nerves with and without laser

treatment were collected for toluidine blue staining to quantify the

optic nerve axon damage.

Electroretinography (ERG) was performed on both treated

and untreated eyes at 20 weeks following laser treatment using an

Espion Diagnosys system (Diagnosys LLC, Littleton, MA). After

overnight dark adaptation (minimum 12 hours), mice were

prepared for ERG recording under dim red illumination. Pupil

dilation and topical anesthesia were achieved by topical applica-

tion of 1 drop each of 0.5% tropicamide (Akorn, Lake Forest, IL)

and 0.5% proparacaine hydrochloride (Falcon Pharmaceuticals,

Fort Worth, TX). Body temperature was maintained at 37uC with

a homeothermic controller and unit. Electrical signals were

recorded with two 3-mm gold wire loop electrodes (Diagnosys)

contacting the corneal surface of eyes precoated with a 2.5%

hydroxypropyl-methylcellulose solution (Gonak, Akorn). A sub-

dermal needle electrode (Viasys Healthcare, Chicago, IL) between

the ears served as common reference while the other subdermal

needle electrode inserted at the base of the left leg acted as ground.

Retinal responses were recorded simultaneously from both eyes.

Light stimuli were delivered via a ColorDome unit. Three

different stimulus strengths of 1, 5 and 7 cd.s/m2 were used in a

3-step examination. In each step, the stimulus frequency was 2 Hz

with 4 ms of on time green light on a blue background with the

intensity of 10 cd/m2. At each intensity, 50 sweeps were recorded

with sample frequency at 1 kHz, sweep pre-trigger time of 10 ms

and sweep post-trigger time of 150 ms.

Data were analyzed using Espion software (Diagnosys LLC).

Amplitudes of the a-wave, b-wave and photopic negative response

(PhNR) were measured by identifying the maximum peak and

trough and obtaining the baseline trough and peak amplitude, and

then by taking the amplitude at a fixed criterion time after the

stimulus onset, again with respect to baseline.

In vivo imaging of mouse anterior segments was performed

using a high-resolution stereo fluorescence biomicroscope with

vertical fluorescence illuminator (Leica MZFLIII; Leica Micro-

systems Inc., Bannockburn, IL). Mice were anesthetized and

Figure 3. Mouse anterior chamber angle after laser treatment. A: Mouse eye at 4 weeks after laser treatment showing laser burn locations. B:
Plastic section of a normal control eye with anterior chamber angle open (arrowhead). C: Plastic section of a laser-treated eye at 4 weeks with anterior
chamber angle open (arrowhead). D–F: Representative images of SD-OCT scans. D: Normal control (IOP= 14 mmHg). E: Laser treated eye at 20 weeks
(IOP = 30 mmHg) with anterior chamber angle open. F: Laser treated eye at 20 weeks with partial synechia (pointed by arrows, IOP= 28 mmHg). SD-
OCT scans of each eye show the angles with rotations of the eye at 0, 45, 90 and 135 degrees. AC, anterior chamber. TM, trabecular meshwork. SC,
Schlemm’s canal. IOP, intraocular pressure.
doi:10.1371/journal.pone.0107446.g003
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immobilized with a three-point stereotactic mouse restrainer as

previously described [39,40]. Images were obtained at a magni-

fication of 256with visibility to the limbus, anterior chamber, iris,

pupil, and lens.

Spectral-domain optical coherence tomography (SD-

OCT) scanning was adapted from the procedures described

previously [41,42]. Before each session, mice were anesthetized

with an intraperitoneal injection of ketamine and xylazine to

prevent large movements during SD-OCT image acquisition.

Mice were secured on a custom stage that allowed for free rotation

to acquire images focusing on the cornea. Images centered on the

cornea were acquired using SD-OCT (Bioptigen, Inc., Research

Triangle Park, NC). All SD-OCT images consisted of a 2506250

A-scan array; there were 250 A-scans per B-scan, 250 B-scan

frames, and 1024 samplings/A-scan in depth.

Histology
For plastic sectioning, enucleated mouse eyeballs were fixed in

2% glutaraldehyde in 0.1 M PBS at room temperature for 2 hours

followed by post-fixation in 10% formalin at room temperature

overnight. Samples were embedded in plastic (JB-4, Electron

Microscopy Sciences, Hatfield, PA), sectioned for 2- mm thickness

and stained with hematoxylin and eosin.

All other procedures were carried out as described previously

[40]. In brief, enucleated mouse eyeballs were fixed in 1%

paraformaldehyde at 4uC overnight followed by either storage at

4uC in 50% glycerol and 50% PBS (v/v) for wholemount staining

or frozen at 220uC in optimal cutting temperature embedding

compound (Tissue-Tek OCT; Electron Microscopy Sciences,

Hatfield, PA) and cut into 9-mm thick cryosections on a cryostat

for immunofluorescence. Sections were hydrated in PBS and

postfixed in 2% paraformaldehyde for 15 minutes. Nonspecific

binding was blocked with 10% heat-inactivated goat serum and

anti-mouse CD16/CD32 Fcc III/II (BD Pharmingen). Sections

were incubated with primary antibodies overnight at 4uC. After

two rinses in PBS, secondary antibodies and DAPI were added for

1 hour at room temperature. Images were acquired on a confocal

microscope with a 406 objective (Olympus FluoView FV1000

confocal microscope; Olympus, Center Valley, PA).

Wholemount Stain. After fixation, eyes were cut 1.5 mm

posterior to the limbus. The anterior part, including the cornea

and TM, was cut into quarters for wholemount stain. The iris was

carefully removed before staining. Nonspecific binding was

blocked as described above. The tissue was incubated with anti-

CD45 antibody conjugated PE and phalloidin-633 (stains F-actin)

overnight at 4uC. Following five washes, the tissue was incubated

with DAPI for 10 min at room temperature prior to confocal

imaging. Stitched image stacks were acquired by sequential

scanning to avoid fluorescence crossover on a confocal microscope

(Olympus).

TUNEL assay was performed using a cell death detection kit (In

Situ Cell Death Detection Kit) following the manufacturer’s

protocol on cryopreserved tissue. Nuclei were stained with DAPI.

At least three independent TM tissues from each condition and

eight sections of each condition were stained and imaged using a

confocal microscope.

Transmission Electron Microscopy (TEM)
The ultrastructure of mouse TM was examined by TEM.

Mouse eyeballs were fixed in cold 2.5% glutaraldehyde (EM

Figure 4. Photopic negative response (PhNR) of normal and laser-treated mouse eyes. A: a wave, b wave and PhNR of untreated left
control eye (OS) and laser-treated right eye (OD) of step 1 with the stimulus at 1 cd.s/m2. B: Depicts the waves of step 2 with the stimulus at 5 cd.s/
m2. C: Represents the waves of step 3 with the stimulus at 7 cd.s/m2. D: Shows the statistical analysis of the amplitude of PhNR at step 2 with the
stimulus at 5 cd.s/m2 compared to the laser-treated and untreated control eyes (p,0.0001, paired t-test).
doi:10.1371/journal.pone.0107446.g004
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grade, Taab Chemical) in 0.1 M PBS pH 7.3, rinsed in PBS, and

were then post-fixed in 1% osmium tetroxide (Electron Micros-

copy Sciences) with 1% potassium ferricyanide (Fisher). They were

dehydrated through a graded series of ethanol baths and

embedded in Epon (made from dodecenyl succinic anhydride,

nadic methyl anhydride, Scipoxy 812 Resin and 2,4,6-tris(di-

methylaminomethyl)phenol, Energy Beam Sciences). Semi-thin

(300 nm) sections were cut on a Reichart Ultracut, stained with

0.5% toluidine blue (Fisher) and examined under a light

microscope. Ultrathin sections (65 nm) stained with uranyl acetate

(Electron Microscopy Sciences) and Reynold’s lead citrate (Fisher)

were examined and photographed at 80 kV on a Jeol 1011

transmission electron microscope.

Mouse Optic Nerve Axon Assessment
Optic nerves were dissected from 1 mm behind the eyes to the

optic chiasm. Fixation followed the same procedures that were

used for TEM. The proximal part of the optic nerve was cross-

sectioned at 0.5 mm and stained with 1% toluidine blue. Images

were acquired using light microscopy with a BX60 microscope

(Olympus) equipped with a Spot digital camera (Diagnostics

Instruments, Inc., Sterling Heights, CA). For each nerve, at least

five 606 fields were acquired. Axon number counts and average

axon number per mm2 were analyzed by a masked observer using

ImageJ software (National Institute of Health, Bethesda, MD).

Statistical Analysis
All values are presented as mean 6SD or mean 6SEM. The

statistical differences were determined by paired t-test to assess the

significance of differences between two groups. Statistical signif-

icance was set at p,0.05. For IOP distribution on normal eyes,

D’Agostino-Pearson normality test was performed.

Results

IOP of Normal C57BL/6 Mice Are Normally Distributed
The IOP of 281 healthy adult C57BL/6 mice of both sexes aged

from 4-week to 2-year old was measured. The average IOP was

14.662.5 mmHg (mean 6SD, n= 281) in right eyes (OD) and

14.462.7 mmHg (mean 6SD, n= 281) in left eyes (OS) (Table 1).

There was no statistically significant difference between two eyes

(p=0.2648, paired t-test). The IOP of both eyes are normally

distributed (Fig 1) (p=0.4735, D’Agostino-Pearson normality test)

Figure 5. RGC and optic nerve axonal damage following IOP elevation. A and B represent images of plastic-embedded retinal sagittal
sections peripheral to the optic nerve with hemotoxylin-eosin staining. A: Laser-treated. B: Normal control. C: Statistical analysis of the RGC number
counts (p,0.001, paired t-test). D and E show toluidine blue staining of semithin transverse sections of optic nerves. D: Laser treated eye with swollen
axons (arrowheads) and shrunken axons (arrows). E: Normal control with more homogeneous axons. D1–E1 are magnified views of the regions
encased in black boxes in D–E. F Represents the statistical analysis of the axons (p,0.0001, paired t-test). RNFL, retinal nerve fiber layer; RGC, retinal
ganglion cells; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer.
doi:10.1371/journal.pone.0107446.g005
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with 20 mmHg as the top 97.5th percentile and 20.3 mmHg as

the top 99.5th percentile of normal IOP range in C57BL/6 mice.

Laser Photocoagulation to the TM Induces IOP Elevation
The IOP changes between laser-treated and untreated control

eyes at different post-treatment time points are shown in Table 2

and Fig 2. The average IOP of laser treated eyes were above

20.3 mmHg, which is the top 99.5th percentile of normal IOP of

C57BL/6 mice. In contrast, the average IOP of untreated eyes

were below 20.3 mmHg. The IOP difference between treated and

untreated eyes at each time point post-laser treatment was

statistically significant (p,0.05, paired t-test).

The laser burns at the limbus were still visible at 4 weeks after

laser treatment (Fig 3A), which indicates where the laser beams

were shot through. Plastic sections show the anterior chamber

angle of laser-treated eye remained open at 4 weeks after laser

(Fig 3C), similar to that of normal control (Fig 3B).

SD-OCT scanning was used to detect the anterior chamber

angle. The open-angle of normal eyes throughout 360 arc was

shown as Figs 3D-0, D-45, D-90, D-135. Sixteen out of 18 laser-

treated eyes that received OCT examination had open anterior

chamber angles (Fig 3E-0, E-45, E-90, E-135) and only 2 eyes

(11%) had partial synechia (,180u, Figs 3F-0, F-45, F-90, F-135).

Since the laser beams were controlled to be outside of the

anterior chamber angle, hyphema was only observed in one eye

Figure 6. SPARC immunolocalization in the TM. A1–E1: DAPI stains nuclei as blue in the cryosections. A2–E2: SPARC stains the TM and
peripheral cornea and sclera green. A3–E3: Bright field images for tissue orientation. A–E: Merged fluorescent images and bright field provide detailed
structural orientation. Asterisk (*) shows the location of Schlemm’s canal (SC). Arrow points the TM. Anterior chamber (AC) and iris are indicated as
well. A: Untreated control. B: 24 hrs after laser treatment. C: 1 week after laser. D: 2 weeks after laser. E: 12 weeks after laser. Bars, 50 mm.
doi:10.1371/journal.pone.0107446.g006
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out of 50 (2%) laser-treated eyes and no other side effects or

complications were observed as a result of this treatment.

IOP Elevation by Laser Photocoagulation Results in Optic
Nerve Damage
RGC function was evaluated using ERG. Fifty sweeps were

recorded at 3 different stimulus strengths at 1 (step 1), 5 (step 2),

and 7 cd.s/m2 (step 3) and the patterns of the PhNR changes at all

three stimuli were about the same. Fig 4A, 4B and 4C are

representative ERG waves under 3 different stimuli and the

amplitude of PhNR of laser treated eye decreased comparing to

the untreated contralateral eye, whereas the amplitudes of a-wave

and b-wave did not show much difference between laser-treated

and untreated eyes. Under stimulus of 5 cd.s/m2, the average

amplitude of PhNR of the untreated control eyes was 2

41.2962.70 mV (mean 6SEM) and that of laser treated eyes at

20 weeks was 219.5062.51 mV (mean 6SEM). The difference

was statistically significant (p,0.0001, paired t-test, Fig 4D).

The characteristic of glaucomatous damage is the RGC loss

while other retinal layers are relatively spared. Retinal histology at

24 weeks after laser treatment demonstrated prominent RGC cell

loss and diminution of the retinal nerve fiber layer (RNFL)

(Fig 5A) compared to normal controls (Fig 5B). The reduction of

RGC number in laser-treated eyes compared to normal controls

was statistically significant (p,0.001, paired t-test, Fig 5C).

Toluidine blue staining on 0.5 mm optic nerve sections showed

swollen (arrowheads) and shrunken (arrows) axons in the optic

nerve of laser treated with IOP-elevated eyes (Fig 5D, D1) relative

to the fellow untreated normal eyes (Fig 5E, E1). The axon

numbers were counted semiautomatically using ImageJ and the

axon numbers per mm2 were calculated. At least five 606fields per

nerve were counted. The average axon number per mm2 was

reduced by 59.0% at 24 weeks in laser treated eyes compared to

untreated eyes (Fig 5F) (0.0760.01 axons/mm2 of eyes with laser

treatment vs 0.1860.02 (Mean 6SD) of untreated eyes, p,
0.0001).

Figure 7. CD45 and F-actin immunolocalization in the TM wholemounts. A1–E1: DAPI stains nuclei as blue in the wholemounts. A2–E2:
Inflammatory cells positive to CD45 (red) appear at 24 hrs after laser (B2) and decrease thereafter. A3–E3: F-actin (Green) stains the TM cells clearly
shown the location of the TM region. A–E: Merged fluorescent images provide detailed structural orientation. The TM and cornea are indicated. A:
Untreated control. B: 24 hrs after laser treatment. C: 1 week after laser. D: 2 weeks after laser. E: 12 weeks after laser. Bars, 50 mm.
doi:10.1371/journal.pone.0107446.g007
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Laser Induces Inflammatory Response and Fibrosis on the
Outflow Pathway
Fig 6 shows SPARC staining on cryosections of normal control

and eyes of 24 hrs, 1 week, 2 weeks, 12 weeks after laser treatment.

SPARC expression was increased in the TM region as well as in

the peripheral cornea and sclera at 1 week after laser treatment

(Fig 6C) and it was remained in the TM region up to 12 weeks

(Fig 6E). Laser treatment causes an obvious inflammatory

response with anterior chamber infiltration in some eyes. Fig 6B

shows SPARC staining in the anterior chamber indicating

inflammatory infiltration at 24 hrs after laser. Wholemount

staining (Fig 7) demonstrated that the expression of inflammatory

cell marker CD45 peaked at 24 hrs (Fig 7B) after laser treatment

in the TM region and was decreased at 1 week (Fig 7C) and

continued to decline thereafter. There was almost no CD45

expression in the TM region at 12 weeks after laser (Fig 7E),

similar to the normal control (Fig 7A). F-actin staining showed the

localization of the TM (Fig 7A3–E3).

TM Microstructure Changes are Related to IOP Elevation
The ultrastructure of mouse TM was examined by TEM.

Fig 8A shows normal mouse TM containing trabecular beams

with aligned collagen fibrils and three layers of normal TM cells.

Giant vacuoles among the Schlemm’s canal endothelial cells could

be seen. The JCT appeared loose and disorganized compared to

the organized trabecular beams in the TM. Twenty-four hrs after

laser, there were only 1–2 layers of TM cells with some apoptotic

without organelles (Fig 8B1, arrows). The beams were disorga-

nized. Twelve weeks after laser, the TM tissue had more

compacted JCT and collagen fibrils and disorganized ECM

(Fig 8C, C1) compared to the normal structure (Fig 8A, A1). No

giant vacuoles could be seen in the Schlemm’s canal endothelial

cells 12 weeks after laser (Fig 8C).

Laser Photocoagulation Caused TM Cell Apoptosis
Apoptotic cells were detected in the corneal epithelium but not

in the TM region in the normal control (Fig 9A) by TUNEL

staining. There were many apoptotic cells in the TM region as well

as the other tissues in the limbal region 24 hrs after laser treatment

(Fig 9B). At 1 week, 2 weeks and 12 weeks after laser, less

apoptotic cells were detected in the TM region (Figs 9C, D, E).

Discussion

In the present study, we developed and characterized a mouse

model using laser photocoagulation on the TM tissue through the

limbus. IOP elevation lasted up to 24 weeks while maintaining an

open anterior chamber angle and induced RGC damage

demonstrated by PhNR changes and optic nerve axon loss. Laser

photocoagulation elicited an acute inflammatory response and

apoptosis in the TM region and induced fibrotic response and

extracellular matrix (ECM) disorganization in the outflow pathway

at later times. The IOP elevation presumably was induced by the

structural changes other than mechanical blockage by anterior

chamber angle synechia. This model may be suitable for stem cell-

based therapies for remodeling and reconstructing the outflow

pathway to maintain regular IOP and prevent optic nerve

damage.

We measured the IOP of 281 healthy adult C57BL/6 mice and

provided reliable documentation of normal IOP range and IOP

distribution in C57BL/6 mice. 97.5th and 99.5th percentiles of the

IOP of normal mice were determined. Clinically 99.5th percentile

of the normal population has been used as the diagnostic threshold

of pathogenic IOP when it is impossible to check the visual fundus

and visual function [43]. The average IOP of laser treated eyes in

this study at each time point after laser was above the 99.5th

percentile. It has been reported that ketamine administration

could affect mouse IOP and accurate IOP measurement in mice

must be made within minutes [44]. By measuring IOP of normal

mice immediately after anesthesia, we acquired a normally

Figure 8. TM ultrastructure changes after laser. The region encased in the black box in the upper row is magnified in the lower row. A and A1:
TEM of normal mouse TM revealed aligned collagen beams with three layers of normal TM cells. A giant vacuole (V) was seen. The JCT appeared loose
and disorganized. B and B1: 24 hrs after laser, the TM tissue had only 1–2 layers of cells with disorganized beams. C and C1: 12 weeks after laser, the
TM had disorganized beams and the collagen fibrils were more compacted compared to the normal structure and the JCT was more compacted with
more and disorganized extracellular matrix. Abbreviations: SC, Schlemm’s canal; JCT, Juctacanalicular connective tissue; V, giant vacuole.
doi:10.1371/journal.pone.0107446.g008
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distributed IOP of normal mice and we concluded that the method

we used to measure mouse IOP is reliable.

Many studies [3,25–30] have worked on mice and rats to make

glaucoma models using laser photocoagulation. They all focused

on increasing IOP and inducing optic nerve damage but did not

attempt to keep the normal morphology of the anterior segment

and did not clarify the pathological changes of the outflow

pathway and TM tissue. In this study, we treated the eyes

specifically in several aspects. First, instead of dilating the pupils to

cause mydriasis prior to laser treatment, we used 1% pilocarpine

for miosis to open the angle. Grozdanic et al [28] also used

pilocarpine in their study to increase outflow of photosensitive dye

to the TM. Second, we did not drain the aqueous humor to flatten

the anterior chamber. Third, we did not burn and block the

episcleral veins. With less energy and smaller laser spot size, we

successfully avoided the angle synechia which disturbs the TM

structure and renders the model unsuitable for cell-based therapies

for TM remodeling. Grozdanic et al [28] and Gunn et al [45] used

similar parameters with 810 nm diode laser to build their high

IOP animal models, but they either did not check the anterior

chamber angle or found closed anterior chamber angle. Our data

show that laser damage to the outflow pathway, even without

mechanical blockage at the angle, can induce structural and hence

functional changes to the outflow pathway to effectively elevate

IOP for up to 24 weeks.

Figure 9. TUNEL staining on cryosections. A1–E1: DAPI stains nuclei as blue. A2–E2: TUNEL assay stains apoptotic cells as red peak at 24 hrs after
laser (B2). A3–E3: Bright field for tissue orientation. A–E: Merged fluorescent images and bright field provide detailed structural orientation. Asterisk (*)
represents the location of Schlemm’s canal (SC). Arrow points the TM. Anterior chamber (AC) and iris are indicated as well. A: Untreated control. B:
24 hrs after laser treatment. C: 1 week after laser. D: 2 weeks after laser. E: 12 weeks after laser. Bars, 50 mm.
doi:10.1371/journal.pone.0107446.g009
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To confirm that the IOP elevation was caused by the outflow

structural changes but not mechanical synechia, we used SD-OCT

as well as histology to detect the anterior chamber angle. We show

that among eighteen eyes with laser treatment, only two eyes had

synechia of less than 180 arc and all the others had completely

open anterior chamber angles (Fig 3). Hematoxylin-eosin staining

on the plastic sections confirmed the open angles after laser

treatment. Our mouse model thus presents one of the main

characteristics, open anterior chamber angle, of human POAG,

and may serve as an option for animal research on open angle

glaucoma. Our data also indicate that SD-OCT is effective to

examine the anterior chamber and the 360 degrees of the angle of

mouse eye. Since OCT scanning can be done on live animals

under anesthesia, it can be used to track the angle changes

throughout the entire period of an experiment.

By definition, glaucoma is a group of diseases that damage the

RGC and optic nerve. Pattern electroretinogram (PERG) is a well-

established method to assess RGC function [46,47]. PhNR, a

component of the full-field ERG, is another method to assess RGC

function in glaucoma patients since 1999 [48,49]. Both PhNR and

PERG are nearly equal in detecting early glaucoma in human

patients [50]. The PhNR component of the full-field ERG can be

recorded in mice and is sensitive to elevation of IOP [51]. In this

mouse model, we demonstrate that PhNR amplitude of eyes with

IOP elevation caused by laser photocoagulation was reduced

dramatically (Fig 4), consistent with the RGC loss and optic nerve

damage (Fig 5). On the other hand, the outer layers of retina were

not damaged by laser treatment (Fig 5A), which is consistent with

the ERG results that a-wave and b-wave of the ERG remained

similar between the laser-treated eyes and contralateral untreated

eyes (Fig 4).

Aging produces a decreased TM cellularity and additional

cellular loss beyond that of normal aging has been found in the

TM of human glaucomatous eyes [14–22]. The ECM of the TM is

thought to be important in regulating IOP in both normal and

glaucomatous eyes. The ECMs of the TM beams, JCT and

Schlemm’s canal inner wall are comprised of fibrillar and non-

fibrillar collagens, elastin containing microfibrils, matricellular and

structural organizing proteins, glycosaminoglycans and proteogly-

cans. The ECM of outflow pathway is relatively dynamic,

undergoing constant turnover and remodeling [4]. F-actin

architecture in the TM cells responds to the local environment

changes [52–54]. With laser photocoagulation, we show that the

TM cell layers were decreased (Fig 8) and the ECM of the TM

and JCT became compacted and disorganized (Fig 8).

SPARC (secreted protein, acidic and rich in cysteine) is a

matricellular protein associated with increased fibrosis and

glaucoma pathogenesis [55]. Studies have shown that SPARC-

null mice have reduced IOP [55] and overexpression of SPARC in

the TM of perfused cadaveric human anterior segments increases

IOP [56,57]. To determine whether laser photocoagulation

induces inflammatory response and fibrotic changes in TM tissue

resulting in IOP elevation, the expression of inflammatory cell

marker CD45 and fibrotic marker SPARC in laser-treated and

control eyes was examined using cryosections and wholemount

tissues. CD45 inflammatory cells increased dramatically in the TM

region 1 week after laser (Fig 7). The expression of SPARC

increased in the TM region beginning 1 week after laser treatment

(Fig 6). This finding is consistent with previous discoveries that

SPARC has a regulatory role in IOP [56]. We speculate that

inflammatory response after laser plays a role in promoting the

fibrotic changes of the ECM and the combined changes of TM

cellularity and ECM after laser photocoagulation are the main

cause for IOP elevation.

The functional morphology of the mouse outflow pathway is

similar to that of humans. The mouse eye resembles the human

eye not only in the presence of a continuous Schlemm’s canal and

comparable TM, but also in the three dimensional elastic fiber

network connected to the inner wall, to ciliary muscle and to

choroidal vessels. All these are very important to control aqueous

outflow (Lutjen-Drecoll E, et al. IOVS 2013; 54: ARVO E-

Abstract 3544). Our mouse model produces the pathological

changes which block the outflow pathway in a similar way to that

found in glaucomatous humans. It induces long-lasting IOP

elevation, outflow structural changes including disorganized ECM

(Fig 8), open anterior chamber angle, loss of RGC axons and

decreased PhNR, mirroring all the characteristics of human

POAG. Using stem cells to reconstruct the TM in glaucomatous

eyes is one of the potential therapy strategies for POAG. We

previously demonstrated that adult stem cells have an ability to

remodel tissue matrix [39]. We also reported that stem cells from

human TM can home to the TM region after being transplanted

into normal mouse anterior chamber [38]. We hypothesize that

once the decreased TM cellularity in glaucomatous eye is

repopulated and the ECM is remodeled after stem cell transplan-

tation, the outflow facility will be restored which would reduce the

increased IOP back to normal. A suitable animal model for cell-

based therapies requires TM cellular damage, outflow pathway

ECM changes with open anterior chamber angle from which

exogenous stem cells can access and target to the TM. We

therefore speculate that this mouse glaucoma model could be

valuable for studies of TM stem cell-based therapies for glaucoma

on reconstructing the outflow pathway both morphologically and

functionally. Work is ongoing to determine the ability of adult

stem cells to home to damaged TM tissue and remodel the tissue

to regulate IOP.
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