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A LASSO FOR HIERARCHICAL INTERACTIONS

BY JACOB BIEN1, JONATHAN TAYLOR2 AND ROBERT TIBSHIRANI3

Cornell University, Stanford University and Stanford University

We add a set of convex constraints to the lasso to produce sparse inter-
action models that honor the hierarchy restriction that an interaction only be
included in a model if one or both variables are marginally important. We
give a precise characterization of the effect of this hierarchy constraint, prove
that hierarchy holds with probability one and derive an unbiased estimate for
the degrees of freedom of our estimator. A bound on this estimate reveals the
amount of fitting “saved” by the hierarchy constraint.

We distinguish between parameter sparsity—the number of nonzero
coefficients—and practical sparsity—the number of raw variables one must
measure to make a new prediction. Hierarchy focuses on the latter, which is
more closely tied to important data collection concerns such as cost, time and
effort. We develop an algorithm, available in the R package hierNet, and
perform an empirical study of our method.

1. Introduction. There are numerous situations in which additive (main ef-
fects) models are insufficient for predicting an outcome of interest. In medical
diagnosis, the co-occurrence of two symptoms may lead a doctor to be confident
that a patient has a certain disease whereas the presence of either symptom without
the other would provide only a moderate indication of that disease. This situation
corresponds to a positive (i.e., synergistic) interaction between symptom variables.
On the other hand, suppose both symptoms convey redundant information to the
doctor about the patient so that knowing both provides no more information about
the disease status than either one on its own. This situation is again not additive,
but this time there is a negative interaction between symptoms. Fitting regression
models with interactions is challenging when one has even a moderate number, p,
of measured variables, since there are

(p
k

)
interactions of order k. For this paper,

we focus on the case of pairwise (k = 2) interaction models, although the ideas we
develop generalize naturally to higher-order interaction models.
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1.1. Two-way interaction model. We consider a regression model for an out-
come variable Y and predictors X1, . . . ,Xp , with pairwise interactions between
these predictors. In particular our model has the form

Y = β0 +∑
j

βjXj + 1

2

∑
j �=k

�jkXjXk + ε,(1)

where ε ∼ N(0, σ 2). Regardless of whether the predictors are continuous or dis-
crete, we will refer to the additive part as the “main effect” terms and the quadratic
part as the “interaction” terms. Our goal is to estimate β ∈ R

p and � ∈ R
p×p ,

where � = �T and �jj = 0. The factor of one half before the interaction summa-
tion is a consequence of our notational decision to deal with a symmetric matrix
� of interactions rather than a vector of length p(p − 1)/2. We take �jj = 0
throughout this paper because it simplifies notation, but everything carries over if
we remove this restriction. Indeed, we provide this as an option in the hierNet
(pronounced “hair net”) package.

We observe a training sample, (x1, y1), . . . , (xn, yn), and our goal is to select a
subset of the p+p(p−1)/2 main effect and interaction variables that is predictive
of the response, and to estimate the values for the nonzero parameters of the model.

1.2. Strong and weak hierarchy. It is a well-established practice among statis-
ticians fitting (1) to only allow an interaction into the model if the correspond-
ing main effects are also in the model. Such restrictions are known under var-
ious names, including “heredity,” “marginality,” and being “hierarchically well-
formulated” [Chipman (1996), Hamada and Wu (1992), Nelder (1977), Peixoto
(1987)]. There are two types of restrictions, which we will call strong and weak
hierarchy:

STRONG HIERARCHY: �̂jk �= 0 �⇒ β̂j �= 0 and β̂k �= 0;
WEAK HIERARCHY: �̂jk �= 0 �⇒ β̂j �= 0 or β̂k �= 0.

Some statisticians argue that models violating strong hierarchy are not sensible.
For example, according to McCullagh and Nelder (1983),

“[T]here is usually no reason to postulate a special position for the origin, so that the
linear terms must be included with the cross-term.”

To see that violating strong hierarchy amounts to “postulating a special po-
sition for the origin,” consider writing an interaction model as Y = β0 + (β1 +
�12X2)X1 + · · ·. First of all, we would only take β0 = 0 if we have special reason
to believe that the regression surface must go through the origin. Likewise, taking
β1 = 0 but �12 �= 0 would only be appropriate if we actually believe that X1’s
effect on Y should only be present specifically when X2 is nonzero. In most situ-
ations, we do not think that the variable X2 that we measured is any more special
than aX2 + b. Yet if our model with X2 violates strong hierarchy, then our model
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with aX2 + b (for any b �= 0) is strongly hierarchical. This argument suggests that
violations to hierarchy occur in special situations whereas hierarchy is the default.

Another argument in favor of hierarchy has to do with statistical power. In the
words of Cox (1984):

“[L]arge component main effects are more likely to lead to appreciable interactions
than small components. Also, the interactions corresponding to larger main effects may
be in some sense of more practical importance.”

In other words, rather than looking at all possible interactions, it may be useful
to focus our search on those interactions that have large main effects. Indeed, the
method we propose in this paper makes direct use of this principle.

As a final argument for hierarchy, it is useful to distinguish between two notions
of sparsity, which we will call parameter sparsity and practical sparsity. Parameter
sparsity is what most statisticians mean by “sparsity”: the number of nonzero co-
efficients in the model. Practical sparsity is what someone actually collecting data
cares about: the number of variables one needs to measure to make predictions at
a future time. The hierarchy restriction favors models that “reuse” measured vari-
ables whereas a nonhierarchical model does not. The top left panel of Figure 1
gives a small example where this difference is manifest. In fact, a simple calcula-
tion shows that this difference can be quite substantial: we can have a hierarchical
and a nonhierarchical interaction model with the same parameter sparsity but with
the nonhierarchical method having a practical sparsity of k(k + 1) whereas the
hierarchical method’s practical sparsity is just k.

While taking these arguments to the extreme leads to the use of strong hierar-
chy exclusively, we develop the case of weak hierarchy in parallel throughout this
paper. Weak hierarchy, as the name suggests, can be thought of as a compromise
between strong hierarchy and imposing no such structure and appears as a principle
in certain statistical methods such as classification and regression trees [Breiman
et al. (1984)] and multivariate additive regression splines [Friedman (1991)].

1.3. Sparsity, the lasso and structured sparsity. The lasso [Tibshirani (1996)]
is a method that performs both model selection and estimation. It penalizes the
squared loss of the data with an �1-norm penalty on the parameter vector. This
penalty has the property of producing estimates of the parameter vector that are
sparse (corresponding to model selection). Given a design matrix X̃ ∈ R

n×d and
response vector y ∈ R

n, the lasso is the solution to the convex optimization prob-
lem,

Minimize
β0,φ

1

2
‖y − β01 − X̃φ‖2 + λ‖φ‖1,

where 1 ∈ R
n is the vector of ones. The penalty parameter, λ ≥ 0, controls the rela-

tive importance of fitting to the training data (sum-of-squares term) and of sparsity
(�1 penalty term). A natural extension of the lasso to our interaction model (1)
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FIG. 1. Olive oil data: (Top left) Parameter sparsity is the number of nonzero coefficients while
practical sparsity is the number of measured variables in the model. Results from all 100 random
train-test splits are shown as points; lines show the average performance over all 100 runs. (Top
right) Misclassification error on test set versus practical sparsity. (Bottom) Wheel plots showing the
sparsity pattern at 6 values of λ for the strong hierarchical lasso. Filled nodes correspond to nonzero
main effects, and edges correspond to nonzero interactions.

would be to take φT = [βT ,vec(�)T ] and X̃ = (X : Z/2), where the columns of
Z ∈ R

n×p(p−1) correspond to elementwise products of the columns of X. We will
refer to this method as the all-pairs lasso since it is simply the lasso applied to a
data matrix which includes all pairs of interactions (as well as all main effects). It
is common with the lasso to standardize the predictors so that they are on the same
scale. In this paper, we standardize X so that its columns have mean 0 and standard
deviation 1; we then form Z from these standardized predictors and, finally, center
the resulting columns of Z. By centering y and X̃, we may take β̂0 = 0.

The lasso’s �1 penalty is neutral to the pattern of sparsity, allowing any sparsity
pattern to emerge. The notions of strong and weak hierarchy introduced in Sec-
tion 1.2 represent situations in which we want to exclude certain sparsity patterns.
There has been a growing literature focusing on methods that produce structured
sparsity [Yuan and Lin (2006), Zhao, Rocha and Yu (2009), Jenatton et al. (2010),
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Jenatton, Audibert and Bach (2011), Bach (2011), Bach et al. (2012)]. These meth-
ods make use of the group lasso penalty (and generalizations thereof) which, given
a predetermined grouping of the parameters, induces entire groups of parameters
to be set to zero [Yuan and Lin (2006)]. Given a set of groups of variables, G , these
methods generalize the �1 penalty by∑

G∈G
dG‖φG‖γG

,

where γG > 1, φG is φ projected onto the coordinates in G, and dG is a nonnegative
weight. Hierarchical structured sparsity is obtained by choosing G to have nested
groups. For example, Zhao, Rocha and Yu (2009) consider the penalty∑

j �=k

{|�jk| +
∥∥(βj , βk,�jk)

∥∥
γjk

}
.

Likewise, the framework of Bach et al. (2012) if specialized to this paper’s focus
would lead to a penalty of the form

‖�‖1 +∑
j

dj

∥∥(�j ,βj )
∥∥
q(2)

for some q > 1 and dj > 0. In fact, Radchenko and James (2010) suggest a penalty
for generalized additive models with interactions that reduces to (2) in the linear
model case, with q = 2 and dj independent of j .

1.4. This paper. Here, we propose a lasso-like procedure that produces sparse
estimates of β and � while satisfying the strong or weak hierarchy constraint. In
contrast to much of the structured sparsity literature which is based on group lasso
penalties, our approach, presented in Section 2, involves adding a set of convex
constraints to the lasso. Although we find this form of constraint more naturally
interpretable, we show (Remark 3) that this problem can be equivalently expressed
in a form that relates it to penalties from the structured sparsity literature such
as (2).

A key advantage of our specific choice of penalty structure is that it admits a
simple interpretation of the effect of the hierarchy demand. Unlike other hierar-
chical sparsity methods, which do not pay much attention to the particular choice
of norms (as long as γG > 1), our formulation is carefully tailored to allow it to
be related directly back to the lasso, permitting one to understand specifically how
hierarchy alters the solution (Section 3.1). This feature of our estimator gives it
a transparency that exposes the effects (both positive and negative!) of the hier-
archy constraint. Furthermore, our characterization suggests that the demand for
hierarchy is—analogous to the demand for sparsity—a form of “regularization.”
We develop an unbiased estimator of the degrees of freedom of our method (Sec-
tion 3.3) and an interpretable upper bound on this quantity, which also points to
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hierarchy as regularization. In particular, we show that we do not “spend” in de-
grees of freedom for main effects that are forced into the model by the hierarchy
constraint.

Another difference from much of the structured sparsity literature, which aims
to develop a broad treatment of structured and hierarchical sparsity methods, is
that our focus is narrowed to the problem of interaction models. Our restricted
scope allows us to address specifically the performance of such a tool to this im-
portant problem. In Section 4, we review previous work on the problem of hierar-
chical interaction model fitting and selection. These methods fall into three cate-
gories: Multi-step procedures, which are defined by an algorithm [Peixoto (1987),
Friedman (1991), Turlach (2004), Nardi and Rinaldo (2012), Bickel, Ritov and
Tsybakov (2010), Park and Hastie (2008), Wu et al. (2010)]; Bayesian approaches,
which specify the hierarchy requirement through a prior [Chipman (1996)]; and,
most related to this paper’s proposal, regularized regression methods, which are
defined by an optimization problem [Yuan, Joseph and Zou (2009), Zhao, Rocha
and Yu (2009), Choi, Li and Zhu (2010), Jenatton et al. (2010), Radchenko and
James (2010)]. In Section 5, we study via simulation the statistical implications
of imposing hierarchy on an interactions-based estimator under various scenarios
(in both the lasso and stepwise frameworks). In Section 6 we present an efficient
algorithm for computing our estimator. Real data examples are used to illustrate a
distinction we draw between “parameter sparsity” and “practical sparsity” and to
discuss hierarchy’s role in promoting the latter.

2. Our proposed method. In Section 1.3, we introduced the all-pairs lasso,
which can be written as

Minimize
β0∈R,β∈Rp,�∈Rp×p

q(β0, β,�) + λ‖β‖1 + λ

2
‖�‖1 s.t. � = �T ,(3)

where ‖�‖1 = ∑
j �=k |�jk| and q(β0, β,�) is the loss function, typically

1
2
∑n

i=1(yi −β0 − xT
i β − 1

2xT
i �xi)

2 = 1
2‖y −β01 −Xβ −Z vec(�)/2‖2, but may

also include a ridge penalty on the coefficients as discussed later or may be sub-
stituted for the binomial negative log-likelihood. The one-half factors in front of
terms involving � are merely a consequence of the notational choice to represent
� as a symmetric matrix (with �jj = 0 for j = 1, . . . , p). In this paper, we pro-
pose a modification of the all-pairs lasso that produces models that are guaranteed
to be hierarchical.

As motivation for our proposal, consider building hierarchy into the optimiza-
tion problem as a constraint,

Minimize
β0∈R,β∈Rp,�∈Rp×p

q(β0, β,�) + λ‖β‖1 + λ

2
‖�‖1

(4)
s.t. � = �T ,‖�j‖1 ≤ |βj | for j = 1, . . . , p,
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where �j denotes the j th row (and column, by symmetry) of �. Notice that if
�̂jk �= 0, then ‖�̂j‖1 > 0 and ‖�̂k‖1 > 0 and thus β̂j �= 0 and β̂k �= 0. While the
added constraints enforce strong hierarchy, they are not convex, which makes (4)
undesirable as a method. In this paper, we propose a straightforward convex relax-
ation of (4), which we call the strong hierarchical lasso,

Minimize
β0∈R,β±∈Rp,

�∈Rp×p

q
(
β0, β

+ − β−,�
)+ λ1T (β+ + β−)+ λ

2
‖�‖1

(5)

s.t. � = �T ,
‖�j‖1 ≤ β+

j + β−
j

β+
j ≥ 0, β−

j ≥ 0

⎫⎬⎭ for j = 1, . . . , p,

where we have replaced the optimization variable β ∈ R
p by two vectors β+, β− ∈

R
p . After solving the above problem, our fitted model is of the form f̂ (x) = β̂0 +

xT (β̂+ − β̂−)+xT �̂x/2. While we might informally think of β+ and β− as posi-
tive and negative parts of a vector β = β+−β−, that is, that β± = max{±β,0}, this
is not actually the case since at a solution we can have both β̂+

j > 0 and β̂−
j > 0.

Indeed, if we were to add the constraints β+
j β−

j = 0 for j = 1, . . . , p to (5), then

these would be positive and negative parts and so β+
j + β−

j = |βj |, giving us pre-
cisely problem (4). This observation establishes that (5) is a convex relaxation
of (4).

The hierarchy constraints can be seen as an embedding into our method of David
Cox’s “principle” that “large component main effects are more likely to lead to
appreciable interactions than small components.” The constraint

‖�j‖1 ≤ β+
j + β−

j

budgets the total amount of interactions involving variable Xj according to the
relative importance of Xj as a main effect. One additional advantage of the convex
relaxation is that the constraint is less restrictive. If the best fitting model would
have ‖�j‖1 large but |βj | only moderate, this can be accommodated by making
β+

j and β−
j both large.

REMARK 1. Another possibility for the hierarchy constraint that we have con-
sidered is |�jk| ≤ β+

j + β−
j ; however, we have found that this can lead to an over-

abundance of interactions relative to main effects.

REMARK 2. It is desirable to include in the loss function q an elastic net
term, (ε/2)(‖�‖2

F + ‖β+‖2 + ‖β−‖2), to ensure uniqueness of the solution [Zou
and Hastie (2005)]. We think of ε > 0 as a fixed tiny fraction of λ, such as ε =
10−8λ, rather than as an additional tuning parameter. Such a modification does not
complicate the algorithm, but simplifies the study of the estimator. In all numerical
examples and in the hierNet package, we use this elastic net modification.



1118 J. BIEN, J. TAYLOR AND R. TIBSHIRANI

REMARK 3. We prove in Section 2 of the supplementary materials [Bien, Tay-
lor and Tibshirani (2013)] that (5) may equivalently be written as

Minimize
β0∈R,β∈Rp,

�∈Rp×p,�=�T

q(β0, β,�) + λ
∑
j

max
{|βj |,‖�j‖1

}+ λ

2
‖�‖1.(6)

This reparameterization of the problem shows its similarities to the group lasso
based methods. In place of the more standard penalty ‖(�j ,βj )‖q of (2), we use
max{‖�j‖1, |βj |}. In Section 3.1, we show that this unusual choice of penalty
admits a particularly simple interpretation for the effect of imposing hierarchy.

In Section 1.2, we also introduced the notion of weak hierarchy. By simply
removing the symmetry constraint on �, we get what we call the weak hierarchical
lasso,

Minimize
β0∈R,β±∈Rp,�∈Rp×p

q
(
β0, β

+ − β−,�
)+ λ1T (β+ + β−)+ λ

2
‖�‖1

(7)

s.t.
‖�j‖1 ≤ β+

j + β−
j

β+
j ≥ 0, β−

j ≥ 0

⎫⎪⎬⎪⎭ for j = 1, . . . , p.

Even though at a solution to this problem, �̂ is not symmetric, we should think
of the interaction coefficient as (�̂jk + �̂kj )/2 since this is what multiplies the
interaction term xij xik when computing f̂ (xi).

REMARK 4. We can build further on the connection between (2) and (5) dis-
cussed in Remark 3. Our removal of the symmetry constraint in (7) is analogous
to the technique of duplicating columns of the design matrix used in the overlap
group lasso [Obozinski, Jacob and Vert (2011)].

A favorable property that distinguishes our method from previous approaches
discussed in Section 4 is the relative transparency of the role that the hierarchy
constraint plays in our estimator. This aspect is developed in Section 3.1.

Although our primary focus in this paper is on the Gaussian setting of (1),
our proposal extends straightforwardly to other situations, such as the logistic
regression setting in which the response is binary. In this case, we simply have
q(β0, β,�) be the appropriate negative log-likelihood, −∑n

i=1 yi logpi + (1 −
yi) log(1 − pi), where pi = [1 + exp(−β0 − xT

i β − 1
2xT

i �xi)]−1. In Section 3 of
the supplementary materials [Bien, Taylor and Tibshirani (2013)], we show that
solving this problem requires only a minor modification to our primary algorithm.
It should also be noted that our estimator (and the algorithms developed to compute
it) is designed for both the p < n and p ≥ n setting.
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As a preliminary example, consider predicting whether a sample of olive oil
comes from Southern Apulia based on measurements of the concentration of p = 8
fatty acids [Forina et al. (1983)]. The dataset consists of n = 572 samples, and we
average our results over 100 random equal-sized train-test splits. We compare three
methods: (a) a standard lasso with main effects only (MEL), (b) the all-pairs lasso
(APL), and (c) the strong hierarchical lasso (HL).

The top left panel of Figure 1 shows an interesting difference between HL and
APL. We see that, on average, at a parameter sparsity level of five, the HL model
uses four of the measured variables whereas APL uses six. Using the hierarchical
model to classify a future olive oil, we only need to measure four rather than six
of the fatty acids.

The top right panel of Figure 1 shows the predictive performance (versus the
practical sparsity) of the three methods. It appears that HL enjoys the “best of both
worlds,” matching the good performance of MEL for low practical sparsity levels
(since it tends to pick out the main effects first) and the good performance of APL
at high practical sparsity levels (since it can incorporate predictive interactions).
Finally, the bottom panel of the figure provides a visual display of a sequence of
HL’s solutions (by varying λ). Nonzero main effects are shown as filled nodes, and
edges indicate nonzero interactions. Since all edges are incident to filled nodes, we
see that strong hierarchy holds.

In the next section, we present several properties of our estimator that shed
light on the effect of adding the convex hierarchy constraint to the lasso. Among
these properties is an unbiased estimate of the degrees of freedom of our estima-
tor. We view this degrees-of-freedom result as valuable primarily for the sake of
understanding the effect of hierarchy. While such an estimate could be used for pa-
rameter selection, we prefer cross validation to select λ since this is more directly
tied to the goal of prediction.

3. Properties.

3.1. Effect of the constraint. A key advantage of formulating an estimator as
a solution to a convex problem is that it can be completely characterized by a
set of optimality conditions, known as the Karush–Kuhn–Tucker (KKT) condi-
tions. These conditions are useful for understanding the effect that the hierarchy
constraint in (5) and (7) has on our solutions. In this section, we will study the
simplest case, taking q(β0, β,�) to be the quadratic loss function with no elastic
net penalty. We let

r(−j) = y − ŷ + xj β̂j ,

r(−jk) = y − ŷ + (xj ∗ xk)(�̂jk + �̂kj )/2

denote partial residuals (where ∗ denotes elementwise multiplication, ŷ the vector
of fitted values and xj the j th predictor), and we assume that ‖xj‖2 = 1. For linear
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regression, the KKT conditions are known as the normal equations and can be
written as

β̂j = xT
j r(−j), �̂jk = (xj ∗ xk)

T r(−jk)

‖xj ∗ xk‖2 .

The all-pairs lasso solution satisfies

β̂j = S
(
xT
j r(−j), λ

)
, �̂jk = S[(xj ∗ xk)

T r(−jk), λ]
‖xj ∗ xk‖2 ,(8)

where S denotes the soft-thresholding operator defined by S(c, λ) = sign(c)(|c| −
λ)+. Written this way, we see that the lasso is similar to linear regression, but
all coefficients are shrunken toward 0, with some coefficients (those for which
|xT

j r(−j)| ≤ λ) set to zero. It is instructive to examine the corresponding statements
for the strong and weak hierarchical lasso methods.

PROPERTY 1. The coefficients of the strong and weak hierarchical lassos with
λ > 0 and taking q(β0, β,�) to be the quadratic loss (with no elastic net penalty)
satisfy:

• STRONG:

β̂+
j − β̂−

j = S
(
xT
j r(−j), λ − α̂j

)
,

�̂jk = S[(xj ∗ xk)
T r(−jk), λ + α̂j + α̂k]
‖xj ∗ xk‖2 ;

• WEAK:

β̂+
j − β̂−

j = S
(
xT
j r(−j), λ − α̃j

)
,

�̂jk + �̂kj

2
= S[(xj ∗ xk)

T r(−jk), λ + 2 min{α̃j , α̃k}]
‖xj ∗ xk‖2

for some α̂j ≥ 0, j = 1, . . . , p with α̂j = 0 when ‖�̂j‖1 < β̂+
j + β̂−

j (and likewise
for α̃j ).

PROOF. See Section 1 of the supplementary materials [Bien, Taylor and Tib-
shirani (2013)]. �

The α̂j , α̃j appearing in the above two properties are optimal dual variables
corresponding to the j th hierarchy constraint for the strong and weak hierarchical
lasso problems, respectively. When ‖�̂j‖1 < β̂+

j + β̂−
j , we have α̂j = 0 (or α̃j = 0)

by complementary slackness. Comparing these expressions to those of the all-
pairs lasso gives insight into the effect of the constraint. Property 1 reveals that
the overall form of the all-pairs lasso and hierarchical lasso methods is identical.
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The difference is that the hierarchy constraint leads to a reduction in the shrinkage
of certain main effects and an increase in the shrinkage of certain interactions. In
particular, we see that when the hierarchy constraints are loose at the solution, that
is, ‖�̂j‖1 < β̂+

j + β̂−
j , the weak hierarchical lasso’s optimality conditions become

identical to the all-pairs lasso (since α̃j = 0) for all coefficients involving xj . For
the strong hierarchical lasso, when both the j th and kth constraints are loose, the
optimality conditions match those of the all-pairs lasso for the coefficients of xj , xk

and xj ∗xk . The methods differ when constraints are active, that is, when ‖�̂j‖1 =
β̂+

j + β̂−
j , which allows α̂j (or α̃j ) to be nonzero. Intuitively, this case corresponds

to the situation in which hierarchy would not have held “naturally” (i.e., without
the constraint), and the corresponding dual variable plays the role of reducing �̂j

in �1-norm and increasing β̂+
j + β̂−

j until the constraint is satisfied. The way in
which the weak and strong hierarchical lasso methods perform this shrinkage is
different, but both are identical to the all-pairs lasso when all constraints are loose.

3.2. Hierarchy guarantee. In Section 2, we showed that adding the constraint
‖�j‖1 ≤ |βj | would guarantee that hierarchy holds. However, we have not yet
shown that the same is true of the convex relaxation’s constraint, ‖�j‖1 ≤ β+

j +
β−

j . In particular, while �̂jk �= 0 �⇒ β̂+
j + β̂−

j �= 0, we could still have β̂+
j − β̂−

j =
0. This would correspond to a model in which XjXk is used in the model, but Xj

is not. Intuitively, we would expect that if β̂+
j > 0, then β̂+

j = β̂−
j is analogous

to getting an exact zero in linear regression (i.e., a zero probability event). In this
section, we establish that this is in fact the case.

In particular, we study (5) and (7) where q(β0, β,�) includes an elastic net
term. The importance of this modification is that it ensures uniqueness, simplifying
the analysis. As noted in Remark 2, we think of ε as a small, fixed proportion of λ

rather than as a separate tuning parameter.

PROPERTY 2. Suppose y is absolutely continuous with respect to the Lebesgue
measure on R

n. If (β̂+, β̂−, �̂) solves (5), where q(β0, β,�) is the quadratic loss
with an ε > 0 ridge penalty, then strong hierarchy holds with probability 1, that is,

�̂jk �= 0 �⇒ β̂+
j − β̂−

j �= 0 and β̂+
k − β̂−

k �= 0.

PROOF. See Appendix A. �

To understand how dropping the symmetry constraint leads to the “or” statement
required of weak hierarchy, note that XjXk is in the weak hierarchical lasso model
if and only if �̂jk + �̂kj �= 0. This holds only if �̂jk �= 0 or �̂kj �= 0.

PROPERTY 3. Suppose y is absolutely continuous with respect to the Lebesgue
measure on R

n. If (β̂+, β̂−, �̂) solves (7), where q(β0, β,�) is the quadratic loss
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with an ε > 0 ridge penalty, then weak hierarchy holds with probability 1, that is,

�̂jk + �̂kj

2
�= 0 �⇒ β̂+

j − β̂−
j �= 0 or β̂+

k − β̂−
k �= 0.

PROOF. See Appendix A. �

3.3. Degrees of freedom. In classical statistics, the degrees of freedom of a
procedure refer to the dimension of the space over which its fitted values can
vary. It is useful in that it provides a measure of how much “fitting” the proce-
dure is doing. This notion can be generalized to adaptive procedures such as the
lasso [Stein (1981), Efron (1986), Efron et al. (2004), Zou, Hastie and Tibshirani
(2007)]. See (Ryan) Tibshirani and Taylor (2012) for a thorough discussion. If
given data y ∈ R

n, a procedure h produces fitted values ŷ = h(y) ∈ R
n, the de-

grees of freedom of the procedure h is defined to be

df (h) = 1

σ 2

n∑
i=1

cov(yi, ŷi).(9)

PROPERTY 4. Suppose y ∼ N(μ,σ 2In). An unbiased estimate of the degrees
of freedom of the strong hierarchical lasso, with quadratic loss and no ridge
penalty, is given by

d̂f λ = rank(X̃P ),

where X̃ = (X : −X : Z/2 : −Z/2) with Z containing the interactions, and P is a
projection matrix which depends on the sign pattern of (β̂+, β̂−, �̂) and on the set
of hierarchy constraints that are tight.

PROOF. See Appendix B. �

Figure 2 provides a numerical evaluation of how well d̂f λ estimates df λ. We
fix X ∈ R

n×p,β ∈ R
p and � ∈ R

p×p , and we generate B = 10,000 Monte Carlo
replicates y(1), . . . , y(B) ∈ R

n. For each replicate, we fit the strong hierarchical
lasso along a grid of λ values to get (β̂

+(b)
λ , β̂

−(b)
λ , �̂

(b)
λ ) and ŷ

(b)
λ ∈ R

n. From
these values, we compute Monte Carlo estimates of df λ from the definition in (9)
and of E[d̂f λ].

While d̂f λ can be calculated from the data and is therefore useful as an unbiased
way of calibrating the amount of fitting the strong hierarchical lasso is doing, this
expression is difficult to interpret. However, it turns out that we can bound d̂f λ by
a quantity that does make more sense:

PROPERTY 5. Let T = {j :‖�̂j‖1 = β̂+
j + β̂−

j }, Aβ = {j : β̂+
j − β̂−

j �=
0}, A± = {j : β̂±

j > 0} and A� = {jk : �̂jk �= 0, j < k}. Then,

d̂f λ ≤ |Aβ | + |A�| − ∣∣T ∩ (A+�A−)
∣∣
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FIG. 2. Numerical evaluation of how well d̂f λ estimates df λ. Monte Carlo estimates of E[d̂f λ]
(y-axis) versus Monte Carlo estimates of df λ (x-axis) for a sequence of λ values (circular) are
shown. One-standard-error bars are drawn and are hardly visible. Our bound on the unbiased esti-
mate is plotted with diamonds.

holds almost surely, where A+�A− = (A+ \ A−) ∪ (A− \ A+).

PROOF. See Appendix B. �

By contrast, for the all-pairs lasso in the case that p + (p
2

)
< n and the design

matrix is full rank, we have dfλ(APL) = E[|Aβ |+ |A�|] [Zou, Hastie and Tibshi-
rani (2007)]. In other words, the strong hierarchical lasso does not “pay” (in terms
of fitting) for those main effects, β̂+

j − β̂−
j , that are forced into the model by the

hierarchy constraint to accommodate a strong interaction. Notice that we do pay
for a nonzero main effect if both β̂+

j and β̂−
j are nonzero. This makes sense since

the constraint could be satisfied with just one of these variables nonzero, but in this
case it is advantageous to the fit to make both nonzero. In Figure 2, we find that
this bound is in expectation visually indistinguishable from E[d̂f λ].

4. Related work. There has been considerable interest in fitting interaction
models in statistics and related fields. We focus here on an overview of methods
that aim at forming predictive models that satisfy the hierarchical interactions re-
striction.

4.1. Multi-step procedures. Many statistics textbooks discuss a simple step-
wise procedure in which one iteratively considers adding or removing the “best”
variable (whether it be main effect or interaction); they add that one should only
consider including an interaction if its main effects are in the model [e.g., see back-
ward elimination in Agresti (2002), Section 6.1.3]. In doing so, they are enforcing
the strong hierarchy restriction. Such procedures are ubiquitous [Nelder (1997),
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Peixoto (1987)] as are more recent versions [Friedman (1991), Bickel, Ritov and
Tsybakov (2010), Park and Hastie (2008), Wu et al. (2010)]. Another approach
is to perform model selection first without considering hierarchy and then to in-
clude any lower-order terms necessary to satisfy hierarchy as a post-processing
step [Nardi and Rinaldo (2012)]. Finally, Turlach (2004) and Yuan, Joseph and
Lin (2007) consider modifying the LARS algorithm [Efron et al. (2004)] so that
hierarchy is enforced.

4.2. Bayesian approaches. Another set of procedures for building hierarchical
interaction models comes from a Bayesian viewpoint. Chipman (1996) adapts the
stochastic search variable selection (SSVS) approach of George and McCulloch
(1993) to produce strong or weak hierarchical interaction models. SSVS makes
use of a hierarchical normal mixture model to perform variable selection in regres-
sion. Every variable has a latent binary variable indicating whether it is “active.”
Conditional on this latent variable, each coefficient is a 0-mean normal with vari-
ance determined by the latent importance of the coefficient. The original SSVS
paper chooses a prior in which the importance of each variable is an independent
Bernoulli. Chipman (1996) introduces dependence into the prior so that �jk is
important only if βj and/or βk is important as well.

4.3. Optimization-based approaches. Choi, Li and Zhu (2010) formulate a
nonconvex optimization problem to get sparse hierarchical interaction models.
They write �jk = �jkβjβk , where β are the main effect coefficients and then
apply �1 penalties on β and �. Notice that �jk �= 0 implies βj �= 0 and βk �= 0.
The nonconvexity arises in writing �jk as the product of optimization variables.

Most similar to this paper’s proposal is a series of methods which formu-
late convex optimization problems to give sparse hierarchical interaction models.
Yuan, Joseph and Zou (2009) modify the nonnegative garrote [Breiman (1995)] by
adding linear inequality constraints to enforce hierarchy. In this sense, our method
can be seen as the adaption of their approach to the lasso.

Finally, as discussed in Section 1.3, another set of convex methods makes use
of the group lasso penalty [Yuan and Lin (2006)]. Zhao, Rocha and Yu (2009)
[and, relatedly, Jenatton, Audibert and Bach (2011)] describe composite absolute
penalties (CAP), a very broad class of penalties that can achieve group and hierar-
chical sparsity. To achieve “hierarchical selection,” they put forward the principle
that a penalty of the form ‖(φ1, φ2)‖γ + |φ1|, with γ > 1, induces φ2 to be zero
only when φ1 is zero as well. For hierarchical interaction models, they suggest a
penalty of the form λ

∑
j<k[|�jk|+‖(βj , βk,�jk)‖γj,k

]. This framework has been
developed in the structured sparsity literature [e.g., Bach et al. (2012)]. Radchenko
and James (2010) introduce VANISH, which uses this nested-group principle to
achieve hierarchical sparsity in the context of nonlinear interactions. Their penalty
in the setting of (1) is

∑
j [λ1‖(βj ,�j )‖2 + λ2‖�j‖1]. As noted in Remark 3, our

proposal is closer to CAP and VANISH than it may first appear. Our problem can
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be rewritten to have a penalty of the form λ
∑

j [max{|βj |,‖�j‖1}+ (1/2)‖�j‖1].
In this sense, the penalty is in the spirit of CAP and related methods although it
does not quite fall into the class of CAP (since ours involves a sum of norms of
norms). It is most similar to VANISH in that it combines all of �j into the term
involving βj .

5. Empirical study.

5.1. Simulations. Our main interest in this section is to study the advantages
and disadvantages of restricting one’s interaction models to those that honor hi-
erarchy. Clearly, the effectiveness of such a strategy depends on the true model
generating the data. We take n = 100 and p = 30 (435 two-way interactions) and
consider four scenarios:

(I) Truth is hierarchical: �jk �= 0 �⇒ βj �= 0, βk �= 0;
(II) Truth is anti-hierarchical: �jk �= 0 �⇒ βj = 0, βk = 0;

(III) Truth only has interactions: βj = 0 for all j ;
(IV) Truth only has main effects: �jk = 0 for all jk.

In cases (I), (II), (IV), we set 10 elements of β to be nonzero (with random sign),
and, in cases (I), (II), (III), we set 20 elements of the submatrix of � = �T to be
nonzero. The signal-to-noise ratio (SNR) for the main effects part of the signal is
about 1.5 whereas the SNR for the interactions part is about 1.

We study the effectiveness of the hierarchy constraint in the context of both
the lasso and forward stepwise regression. Forward stepwise regression refers to a
greedy strategy for generating a sequence of linear regression models in which we
start with an intercept-only model and then at each step add the variable that leads
to the greatest decrease in the residual sum of squares. We choose forward stepwise
as a basis of comparison since it has a simple modification that we think may be
the hierarchical interactions approach most commonly used by statisticians. The
modification is to restrict the set of interactions that could be added at a given step
to only those between main effect variables currently in the model. A backward
stepwise version of this approach is suggested in Peixoto (1987).

We compare six methods, corresponding to each cell of the following table:

Hierarchical All-pairs Main effects only

Lasso HL (our method) APL MEL
Fwd stepwise HF APF MEF

Each method has a single tuning parameter: for the lasso methods, the penalty
parameter, λ, and for the forward stepwise methods, the number of variables, k. We
fit each method along a grid of tuning parameter values and select the model with
the smallest mean squared error, E‖ŷ − μ‖2. Note that such an operation is only
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FIG. 3. Prediction error: Dashed line shows Bayes error (i.e., σ 2), and the base rate refers to the
prediction error of ȳtrain. Green, red and blue colors indicate hierarchy, all-pairs, and main effect
only, respectively; solid and striped indicate lasso and forward stepwise, respectively.

possible in simulation since it requires knowing μ; however, doing so avoids the
added variance of cross validation without being biased in favor of any particular
method. The results presented are based on 100 simulations from the underlying
model. Figure 3 shows the expected prediction error, σ 2 + E[(ŷ − μ)2]. Panel (I)
shows that when the truth is hierarchical, methods that assume hierarchy (HL, HF)
do better than the rest. These methods have “concentrated” their power on the cor-
rect set of models and therefore receive the biggest payoff for being correct. APL
does better than MEL and MEF since it succeeds in incorporating some of the
correct interactions (recall that interactions make up one quarter of the signal). In
panel (II), we notice our first surprise—that HL predicts well relative to the others
even when the truth is not hierarchical! We would have expected APL (or APF)
to be the clear winner in this situation since surely the hierarchy assumption can
only be detrimental in this “anti-hierarchical” scenario. The reason APL does not
outperform HL in this scenario is because APL has trouble identifying the main
effects (it gets swamped by the 435 interaction variables). In light of Section 3.1,
this is where the hierarchy constraint helps—main effects are penalized by less
and interactions by more. Even though APL is better able to find the correct inter-
actions than HL, as seen in panel (II) of Figure 4, APL does not predict as well
as HL because it fails to find the main effects, which constitute three quarters of
the signal. Relatedly, in a “hierarchical truth” scenario similar to (I) but with p > n

(not presented here), we have in fact observed MEL doing better than APL (though
not as well as HL) since APL is not able to detect interactions accurately enough
to make up for its inferior ability to detect main effects. By contrast, HL does best
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FIG. 4. Plots show the ability of various methods to correctly recover the nonzero interactions.
This is the sensitivity (i.e., proportion of �jk �= 0 for which �̂jk �= 0) and specificity (i.e., proportion
of �jk = 0 for which �̂jk = 0) corresponding to the lowest prediction error model of each method.

in that scenario, aided by hierarchy to capture both the main effect and interaction
components of the signal.

In panel (III), we see a situation where APL does dominate HL. Since there
are no main effects in the signal, all that is relevant is a method’s ability to find
the interactions. HL identifies fewer correct interactions than APL since any main
effect “information” that HL is using is spurious. Finally in panel (IV), we see a
situation where MEF, HF, MEL do better than the rest. Here again we find that the
hierarchy methods beat the all-pairs methods since they favor main effects.

It is particularly illuminating to note the difference in performance between HL
and HF. HF in scenarios (II), (III) and (IV) performs very similarly to the main
effect only models. In (II) and (III), HL does much better than HF both in terms of
prediction error and in ability to correctly identify interactions. HL appears to be
far less sensitive to violations of hierarchy than HF. This difference is attributable
to the joint nature in which HL acts: the decision to include a main effect is made
at the same time as decisions about interactions. This allows a strong interaction
to “pull” itself into the model. By contrast, HF selects main effects with no regard
to the information contained in the interactions.

5.2. Data examples. Rhee et al. (2006) study six nucleoside reverse transcrip-
tase inhibitors (NRTIs) that are used to treat HIV-1. The target of these drugs
can become resistant through mutation, and Rhee et al. (2006) compare a col-
lection of models for predicting these drug’s (log) susceptibility—a measure of
drug resistance—based on the location of mutations. In the six cases, there are
between p = 211 and p = 218 sites with mutations occurring in the n = 784 to
n = 1073 samples. While they focus on main effect only models, we consider
here the all-pairs lasso (APL) and weak hierarchical lasso (HL) in addition to
the standard main effects lasso (MEL). We train on half of the samples and test
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FIG. 5. HIV drug data: Test-set RMSE versus practical sparsity (i.e., number of measured vari-
ables required for prediction) for six different drugs. For each method, the data from all 20 runs are
displayed in faint colors; the thick lines are averages over these runs.

on the remaining samples. To reduce the dependence of the results on the par-
ticular random training-test split, we repeat this process twenty times and aver-
age the results. Figure 5 shows the average test RMSE versus the average prac-
tical sparsity for each of the six drugs. In all cases but ABC, we find that HL
achieves a better test error at most levels of practical sparsity than APL. That said,
if the number of mutations one has to measure is not of concern (so that we can
choose for each method the minimum RMSE model), then no method dominates
in all the situations. It is worth conceding—since this is a paper on interactions—
that in several of the cases a pure main effects model appears to be the best op-
tion.

6. Algorithmics. Some of the fastest lasso solvers rely on coordinate descent,
which amounts to iteratively applying (8) until convergence [Friedman, Hastie and
Tibshirani (2010)]. Tseng (2001) proves that blockwise coordinate descent con-
verges to the global minimum for a convex problem specifically when the nondif-
ferentiable part of the problem is blockwise separable. In the case of the strong hi-
erarchical lasso, the hierarchy constraints combined with the symmetry constraint
couple all the parameters together, meaning that coordinate descent is prone to
getting stuck at suboptimal points. To see this, note that �jk = �kj appears in
two constraints ‖�j‖1 ≤ β+

j + β−
j and ‖�k‖1 ≤ β+

k + β−
k . By contrast, the con-

straints in the weak hierarchical lasso problem are blockwise separable so that
blockwise coordinate descent on blocks of the form (�j ,β

+
j , β−

j ) for j = 1, . . . , p

does work. We begin by discussing our approach to solving the weak hierarchical
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lasso problem. In Section 6.2 we discuss how we can solve a sequence of weak
hierarchical lasso problems that converges to a solution of the strong hierarchical
lasso.

6.1. Solving the weak hierarchical lasso. While blockwise coordinate descent
would work for solving the weak hierarchical lasso problem, we instead describe
a generalized gradient descent approach. Given a problem of the form

Minimize
φ

g(φ) + h(φ),(10)

in which g is convex and differentiable with a Lipschitz gradient and h is convex,
generalized gradient descent works by solving a sequence of problems of the form

φ̂k ← arg min
φ

1

2t

∥∥φ − [
φ̂k−1 − t∇g(φ̂k−1)

]∥∥2 + h(φ),

where t is a suitably chosen step size [Beck and Teboulle (2009)]. These subprob-
lems are easier to solve than (10) since they replace g by a spherical quadratic.
Under the previously stated conditions, generalized gradient descent is guaran-
teed to get within O(1/k) of the optimal value after k steps; in fact, with a
simple modification to the algorithm, this rate improves to O(1/k2) [Beck and
Teboulle (2009)]. Looking back at (7), we take g to be the differentiable part,
q(β0, β

+ − β−,�) + λ1T (β+ + β−) and h to be the �1 penalty on � and the set
of constraints. The subproblem is of the form

Minimize
β±∈Rp,�∈Rp×p

1

2t

∥∥β+ − β̃+∥∥2 + 1

2t

∥∥β− − β̃−∥∥2 + 1

2t
‖� − �̃‖2

F + λ

2
‖�‖1

s.t.
‖�j‖1 ≤ β+

j + β−
j

β+
j ≥ 0, β−

j ≥ 0

⎫⎪⎬⎪⎭ for j = 1, . . . , p,

where (β̃+, β̃−, �̃) depends on the previous iteration’s solution and the data,
X, Z and y. The exact form of (β̃+, β̃−, �̃) is given in Algorithm 1 for solv-
ing (7), where q(β0, β,�) includes an elastic net penalty as described in Re-
mark 2 of Section 2. The above problem decouples into p separate pieces involving
(�j ,β

+
j , β−

j ) that could be solved in parallel:

Minimize
β±

j ∈R,�j∈Rp−1

1

2t

(
β+

j − β̃+
j

)2 + 1

2t

(
β−

j − β̃−
j

)2 + 1

2t
‖�j − �̃j‖2 + λ

2
‖�j‖1

(11)
s.t. ‖�j‖1 ≤ β+

j + β−
j , β+

j ≥ 0, β−
j ≥ 0.

In Appendix C, we derive an algorithm, ONEROW, that solves (11) based on the
observation that, in terms of an optimal dual variable α̂, a solution is simply �̂j =
S[�̃j , t (λ/2 + α̂)] and β̂±

j = [β̃±
j + t α̂]+.
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Algorithm 1 WEAK-HIERNET: Generalized gradient descent to solve weak hier-
archical lasso, (7), with elastic net penalty ε.

Inputs: X ∈ R
n×p,Z ∈ R

n×p(p−1), λ > 0. Initialize (β̂+(0), β̂−(0), �̂(0)).
For k = 1,2, . . . until convergence:
Compute residual: r̂ (k−1) ← y − X(β̂+(k−1) − β̂−(k−1)) − Z�̂(k−1)/2.

For j = 1, . . . , p:(
β̂

+(k)
j , β̂

−(k)
j , �̂

(k)
j

) ← ONEROW
(
δβ̂

+(k−1)
j − tXT

j r̂(k−1),

δβ̂−(k−1) + tXT
j r̂(k−1),

δ�̂
(k−1)
j − tZT

(j,·)r̂ (k−1)),
where ONEROW is given in Algorithm 3, δ = 1 − tε, and Z(j,·) ∈ R

n×(p−1) denotes
the columns of Z involving Xj .

We solve (7) along a sequence of λ values, from large to small, using the so-
lution from the previous λ as a warm start for the next. The WEAK-HIERNET
algorithm gets within ε of the optimal value of (7) in O(p2 max{n,p}/ε) time.

6.2. Solving the strong hierarchical lasso. In Section 6.1, we noted that each
step of generalized gradient descent conveniently decouples into p single-variable
optimization problems. However, for the strong hierarchical lasso, (5), the sym-
metry constraint ties all variables together. We therefore make use of Alternat-
ing Direction Method of Multipliers (ADMM), which is a very widely applicable
framework that allows convex problems to be split apart into separate easier sub-
problems [Boyd et al. (2011)].

Given a convex problem of the form Minimizeφf (φ) + g(φ), we rewrite it
equivalently as Minimizeφ,ϕf (φ) + g(ϕ) s.t. φ = ϕ, and then the ADMM algo-
rithm repeats the following three steps until convergence:

(1) φ̂ = argminφ[f (φ) + (ρ/2)‖φ − ϕ̂ + û/ρ‖2].
(2) ϕ̂ = argminϕ[g(ϕ) + (ρ/2)‖ϕ − φ̂ − û/ρ‖2].
(3) û ← û + ρ(φ̂ − ϕ̂).

Thus the ADMM algorithm separates the two difficult parts of the problem, f

and g, into separate optimization problems. The dual variable û serves to pull these
two problems together, resulting in an algorithm that is guaranteed to converge
to a solution as long as ρ > 0. In practice, the value of ρ affects the speed of
convergence.

In our case, we use ADMM to separate the hierarchy constraints, involving
(β+, β−,�) from the symmetry constraint, which will involve a symmetric ver-
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Algorithm 2 STRONG-HIERNET: Solve (5) via ADMM.

Inputs: X ∈ R
n×p,Z ∈ R

n×p(p−1), λ > 0, ρ > 0.
Initialize (β̂+, β̂−, �̂), �̂, Û .
Repeat until convergence:

(1) WEAK-HIERNET(X,Z,λ), but in the call to ONEROW replace the argument
δ�̂

(k−1)
j − tZT

(j,·)r̂ (k−1) with δ�̂
(k−1)
j − tZT

(j,·)r̂ (k−1) + ρ[�̂(k−1)
j − �̂j ] + Ûj .

Also, initialize with (β̂+, β̂−, �̂).
(2) �̂ ← 1

2(�̂ + �̂T ) + 1
2ρ

(Û + ÛT ).

(3) Û ← Û + ρ(�̂ − �̂).

sion of �, which we call �:

Minimize
β0∈R,β±∈Rp,

�,�∈Rp×p

q
(
β0, β

+ − β−,�
)+ λ1T (β+ + β−)+ λ

2
‖�‖1

(12)

s.t. � = �T ,� = �

‖�j‖1 ≤ β+
j + β−

j

β+
j ≥ 0, β−

j ≥ 0

⎫⎪⎬⎪⎭ for j = 1, . . . , p.

The resulting ADMM algorithm is given in Algorithm 2, which is explained
in greater detail in Section 4 of the supplementary materials [Bien, Taylor and
Tibshirani (2013)]. Conceptually, the algorithm alternately updates two matri-
ces, � and �. Throughout the algorithm, we update � by solving a version
of problem (7), and we update � by symmetrizing a version of �. At conver-
gence, �̂ = �̂, and thus �̂ is both symmetric and satisfies the hierarchy con-
straints.

7. Discussion. In this paper, we have proposed a modification to the lasso for
fitting strong and weak hierarchical interaction models. These two approaches are
closely tied, and our algorithms to solve the two exploit their similar structure.
A key advantage of our framework is that it admits a simple characterization of the
effect of imposing hierarchy. We compare our hierarchical methods to the lasso and
to stepwise procedures to understand the implications of demanding hierarchy. We
introduce a distinction between models that have a small number of parameters
and those that require measuring only a small number of variables. The hierarchi-
cal interaction requirement favors models with the latter type of sparsity, a feature
that is desirable when performing measurements is costly, time consuming, or oth-
erwise inconvenient. The R package hierNet provides implementations of our
strong and weak methods, both for Gaussian and logistic losses. This work has po-
tential applications to genomewide association studies. In future work, we intend
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to extend this framework to contexts in which only certain interactions should be
considered such as in gene-environment interaction models.

APPENDIX A: PROOFS OF STRONG AND WEAK HIERARCHY

We begin by proving Lemma 1, which characterizes all solutions to (5) as a
relatively simple function of y. The structure of our proof is based on (Ryan)
Tibshirani and Taylor (2011, 2012).

A.1. Characterizing the solution. For ease of analysis, we write (5) equiv-
alently in terms of �+ and �−. Also, for notational simplicity, we write φ =
(β+, β−,�+,�−) and X̃ = (X;−X;Z/2;−Z/2). The strong hierarchical lasso
problem is the following:

Minimize
β+,β−,�+,�−

1

2
‖y − X̃φ‖2 + λ11T (β+ + β−)+ λ2

〈
11T ,�+ + �−〉

s.t. 1T (�+
j + �−

j

) ≤ β+
j + β−

j and β+
j ≥ 0, β−

j ≥ 0 for each j,

�+ − �− = �+T − �−T ,�±
jk ≥ 0,�±

jj = 0.

In introducing �±, we are not in fact changing the problem since at a solution
�̂± = max{±�̂,0} (for λ2 > 0). To see this, note that given any feasible point
with �+

jk > 0 and �−
jk > 0, we can produce a feasible point with strictly lower

objective by reducing �+
jk,�

−
jk,�

+
kj ,�

−
kj all by equal amounts.

We will try to make this as close as possible in form and notation to (Ryan)
Tibshirani and Taylor’s (2012) treatment of the generalized lasso problem. Our
optimization problem is of the form

Minimize
φ

1

2
‖y − X̃φ‖2 + wT φ s.t. Dφ ≥ 0,Lφ = 0.(13)

The Lagrangian of this problem is

L(φ;μ,ν) = 1

2
‖y − X̃φ‖2 + wT φ − μT Dφ + νT Lφ,

where μ ≥ 0 and ν are dual variables. The KKT conditions for (φ̂(y), (μ̂(y),

ν̂(y))) to be an optimal primal-dual pair are the following:

X̃T (y − X̃φ̂) = w − DT μ̂ + LT ν̂,

μ̂i(Dφ̂)i = 0,

μ̂ ≥ 0,

Dφ̂ ≥ 0, Lφ̂ = 0.
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Now, define the “boundary” and “active” sets as

B(μ̂) = {i : μ̂i = 0},
A(φ̂) = {

i : [Dφ̂]i > 0
}
.

These are not necessarily unique since (φ̂, (μ̂, ν̂)) may not be unique. In terms of
the active set A(φ̂), the KKT conditions become

X̃T (y − X̃φ̂) = w − DT

−A(φ̂)
μ̂−A(φ̂)

+ LT ν̂,

μ̂A(φ̂)
= 0, μ̂ ≥ 0,

Lφ̂ = 0, D−A(φ̂)
φ̂ = 0.

Solving for φ̂, we get the following characterization of a strong hierarchical lasso
solution:

LEMMA 1. Suppose φ̂ is a solution to the strong hierarchical lasso prob-
lem (5) [taking q(β0, β,�) to be the quadratic loss] with A(φ̂) = {i : [Dφ̂]i > 0}.
Then, φ̂ can be written in terms of A(φ̂) and y as

φ̂ = (X̃Pnull(L)∩null(D−A(φ̂)
))

+(y − (
Pnull(L)∩null(D−A(φ̂)

)X̃
T )+w

)+ b,

where b ∈ null(X̃) ∩ null(L) ∩ null(D−A(φ̂)
) satisfies

Di

[
(X̃Pnull(L)∩null(D−A(φ̂)

))
+(y − (

Pnull(L)∩null(D−A(φ̂)
)X̃

T )+w
)+ b

]
> 0

for all i ∈ A(φ̂).

PROOF. Defining D̃ = (D−A(φ̂)

L

)
and P = Pnull(D̃) = Pnull(L)∩null(D−A(φ̂)

), we

solve for φ̂ in the same manner as is done in (Ryan) Tibshirani and Taylor (2012).
Since D̃φ̂ = 0 is equivalent to P φ̂ = φ̂, we have PX̃T (y − X̃P φ̂) = Pw. We see
that Pw ∈ col(P X̃T ) and thus Pw = (P X̃T )(P X̃T )+Pw. Thus, PX̃T X̃P φ̂ =
PX̃T (y − (P X̃T )+Pw) from which we get

φ̂ = (X̃P )+
(
y − (

PX̃T )+Pw
)+ b

for b ∈ null(X̃P ) and such that D̃b = 0 and Diφ̂ > 0 for i ∈ A(φ̂). To complete the
result, we observe that the first two conditions reduce to b ∈ null(X̃) ∩ null(L) ∩
null(D−A(φ̂)

). �

We will use this characterization of a solution both to prove that the hierarchy
property holds with probability one under weak assumptions and to derive an un-
biased estimate of the degrees of freedom.
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Before we do so, we write out D̃ = (D−A(φ̂)

L

)
more explicitly and introduce a

little notation that will be useful later. Every row of D corresponds to an inequality
constraint, and we can describe these rows in terms of ten subsets,

L = {
j : 1T (�̂+

j + �̂−
j

)
< β̂+

j + β̂−
j

}
, T = Lc,

P
(
β̂±) = {

j : β̂±
j > 0

}
, Z

(
β̂±) = P

(
β̂±)c,(14)

P
(
�̂±) = {

j �= k : �̂±
jk > 0

}
, Z

(
�̂±) = P

(
�̂±)c.

The set A(φ̂)c is made up of T , Z(β̂+), Z(β̂−), Z(�̂+) and Z(�̂−). The matrix
D̃ has 2p + 2p2 columns that can be partitioned as (D̃β+

: D̃β−
: D̃�+

: D̃�−
) and

a row for every constraint. The rows of this matrix are the following (where ej

and 1p are row vectors):
R1. For each j ∈ T , (ej ej −ej ⊗ 1p −ej ⊗ 1p )
R2. For each j ∈ Z(β+), (ej 0 0 0 )
R3. For each j ∈ Z(β−), ( 0 ej 0 0 )
R4. For each jk ∈ Z(�+), ( 0 0 ej ⊗ ek 0 )
R5. For each jk ∈ Z(�−), ( 0 0 0 ej ⊗ ek )
R6. For each j , ( 0 0 ej ⊗ ej 0 )
R7. For each j , ( 0 0 0 ej ⊗ ej )
R8. For each j < k, ( 0 0 ej ⊗ ek + ek ⊗ ej −ej ⊗ ek − ek ⊗ ej ).
We will refer to this in the proofs that follow.

A.2. Proof of strong hierarchy (Property 2). Including the elastic net
penalty, (ε/2)‖β+‖2 + (ε/2)‖β−‖2 + (ε/2)‖�‖2

F , is equivalent to replacing X̃

and y in (13) by

X̃ε =

⎛⎜⎜⎜⎝
X −X Z/2 −Z/2√
εIp 0 0 0
0

√
εIp 0 0

0 0
√

εIp2 −√
εIp2

⎞⎟⎟⎟⎠ and yε =
(

y

0(2p+p2)×1

)
.

Suppose we solve (13) with the above design matrix. By Lemma 1,

φ̂ = (X̃εPnull(L)∩null(D−A(φ̂)
))

+(yε − (
Pnull(L)∩null(D−A(φ̂)

)X̃
T
ε

)+
w
)+ b

for some b ∈ null(X̃ε) ∩ null(L) ∩ null(D−A(φ̂)
) satisfying

Di

[
(X̃Pnull(L)∩null(D−A(φ̂)

))
+(yε − (

Pnull(L)∩null(D−A(φ̂)
)X̃

T )+w
)+ b

]
> 0

for all i ∈ A(φ̂). Let Sv : R2p+2p2 → R
|v| be the linear operator that selects the

part of a vector corresponding to the variable v. Now, b ∈ null(X̃ε) implies that
Sβ+(b) = Sβ−(b) = 0 and S�+(b) = −S�−(b). We showed earlier that we cannot
have �̂+

jk > 0 and �̂−
jk > 0. This means that for any jk, there must be an i /∈ A(φ̂)
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for which Diφ̂ = 0 corresponds to S�+
jk

(φ̂) = 0 or S�−
jk

(φ̂) = 0. Thus, D−A(φ̂)
b =

0 means that S�+
jk

(b) = 0 or S�−
jk

(b) = 0 for each jk. This implies that null(X̃ε)∩
null(D−A(φ̂)

) = {0} and thus b = 0.

We show now that P(
⋃

j {β̂+
j = β̂−

j > 0}) = 0. In terms of our above notation,
this is

P

(⋃
j

{
φ̂T (e+

j − e−
j

) = 0, φ̂T e+
j > 0, φ̂T e−

j > 0
}) = 0,(15)

where e±
j ∈ R

2p+2p2
is the vector with all zeros except for Sβ±(e±

j ) = 1. Let P =
Pnull(L)∩null(D−A), and consider the set

N = ⋃
A

p⋃
j=1

{
z :

[
(X̃εP )+

(
z − (

PX̃T
ε

)+
w
)]T (

e+
j − e−

j

) = 0,

[
(X̃εP )+

(
z − (

PX̃T
ε

)+
w
)]T

e+
j > 0,[

(X̃εP )+
(
z − (

PX̃T
ε

)+
w
)]T

e−
j > 0

}
.

In light of (14), fixing A automatically specifies T , P(β̂±), P(�̂±). The outer
union is restricted to those subsets A of 2p + 2p2 elements that would have
P(�̂+)∩ P(�̂−) = ∅ and P(β̂+)∩ P(β̂−) ⊆ T . The event in (15) is contained in
{yε ∈ N } since it corresponds to the case in which A is A(φ̂). We begin by show-
ing that A(φ̂) is in this restricted union with probability one. We have already
argued that at a solution we must have �̂+

jk�̂
−
jk = 0 for all jk. Now, β̂+

j > 0 and

β̂−
j > 0 together imply that 1T (�̂+

j + �̂−
j ) = β̂+

j + β̂−
j since otherwise we could

lower the objective by reducing β̂+
j and β̂−

j without leaving the feasible set. There-
fore, it would be sufficient to show that P(yε ∈ N ) = 0. We do so by observing
that {yε ∈ N } is a finite union of zero probability sets.

We begin by establishing that null(I1:n(P X̃T
ε )+) = null(X̃P ). To do so, we

write P = UUT for some UT U = I . Now, row(X̃P ) ⊆ row(P ) = col(U), so we
can write U = (U1 : U2), where row(X̃P ) = col(U1) and thus X̃PU2 = 0. Since

PU2 = U2, it follows that X̃U2 = 0. Write UT
i = (U

β+T
i :Uβ−T

i :U�+T
i :U�−T

i )

for i = 1,2, and observe that UT
i X̃T

ε = [UT
i X̃T :

√
εU

β+T
i :

√
εU

β−T
i :√

ε(U�+T
i − U�−T

i )] so that

UT
1 X̃T

ε X̃εU2 = 0 + ε
[
U

β+T
1 U

β+
2 + U

β−T
1 U

β−
2 + (

U�+
1 − U�−

1
)(

U�+
2 − U�−

2
)]

= ε
[
UT

1 U2 − U�+T
1 U�−

2 − U�−T
1 U�+

2
]

= −ε

[
0 +∑

jk

[
U�+

1
]
jk

[
U�−

2
]
jk + [

U�−
1

]
jk

[
U�+

2
]
jk

]
.
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Now, for each jk we must have jk ∈ Z(�+) ∪ Z(�−) since P(�+) ∩ P(�−) =
∅. Thus, for each jk, there is a R4 or R5 row in D−A and thus D−A(U1 : U2) = 0
implies that [U�+

1 ]jk = 0 or [U�−
2 ]jk = 0 for each jk and likewise [U�+

2 ]jk = 0

or [U�−
1 ]jk = 0. Therefore, UT

1 X̃T
ε X̃εU2 = 0. Now,

I1:n
(
PX̃T

ε

)+ = X̃P
(
PX̃T

ε X̃εP
)+ = X̃UUT (UUT X̃T

ε X̃εUUT )+
= X̃UUT U

(
UT X̃T

ε X̃εU
)+

UT = X̃U
(
UT X̃T

AX̃εU
)+

UT

= X̃(U1U2)

(
UT

1 X̃T
ε X̃εU1 UT

1 X̃T
ε X̃εU2

UT
2 X̃T

ε X̃εU1 UT
2 X̃T

ε X̃εU2

)+
UT

= (X̃U10)

(
UT

1 X̃T
ε X̃εU1 0

0 UT
2 X̃T

ε X̃εU2

)+
UT

= X̃U1
(
UT

1 X̃T
ε X̃εU1

)+
UT

1 .

Now, UT
1 X̃T

ε X̃εU1 � 0 since UT
1 X̃T

ε X̃εU1 = UT
1 X̃T X̃U1 + J and J � 0 and

X̃U1 has full column rank. Thus, null(I1:n(P X̃T
ε )+) = null(UT

1 ) = null(X̃P ). This
completes the first part of the proof.

Next, we show that X̃P (e+
j −e−

j ) �= 0 as long as [(X̃εP )+(yε −(P X̃T
ε )+w)T ]×

e±
j > 0. Now, since j ∈ ∩P(β+) ∩ P(β−) ⊆ T , the only row of D̃ that has

D̃i(e
±
j ) �= 0 is the R1 row; but clearly D̃i(e

+
j − e−

j ) = 1 − 1 = 0. Thus, e+
j − e−

j ∈
null(D̃) and P(e+

j − e−
j ) = e+

j − e−
j . It follows that

X̃P
(
e+
j − e−

j

) =

⎛⎜⎜⎜⎝
2xj√
εej

−√
εej

0

⎞⎟⎟⎟⎠ �= 0 assuming ε > 0.

Putting these two parts of the proof together establishes that I1:n(P X̃T
ε )+(e+

j −
e−
j ) �= 0. Thus, {yε ∈ N } is a finite union of Lebesgue measure 0 sets. This shows

that P(yε ∈ N ) = 0 as long as y is absolutely continuous with respect to the
Lebesgue measure on R

n.

A.3. Proof of weak hierarchy (Property 3). An argument nearly identical
to that of the previous section establishes that �̂jk �= 0 �⇒ β̂+

j − β̂−
j �= 0 with

probability one. Thus, if β̂+
j − β̂−

j = 0 and β̂+
k − β̂−

j = 0, then both �̂jk = 0 and
�̂kj = 0. It follows then that (�̂jk + �̂kj )/2 = 0. This establishes weak hierarchy.

APPENDIX B: DEGREES OF FREEDOM

B.1. Proof of unbiased estimate (Property 4). The fit in terms of the active
set is given by

X̃φ̂ = (X̃P )(X̃P )+
(
y − (

PX̃T )+w
)
,
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where P = Pnull(L)∩null(D−A(φ̂)
). Of course, μ̂A(φ̂)

= 0, and we can solve the KKT
conditions to get the rest of the optimal dual variables in terms of the active set(

μ̂−A(φ̂)

ν̂

)
= D̃T +[w − X̃T (y − X̃φ̂)

]+ c,

where c ∈ null(D̃) satisfies D̃T +[w − X̃T (y − X̃φ̂)] + c ≥ 0.

Note that φ̂ = φ̂(y) and thus A(φ̂) and b depend on y even though we do not
write this explicitly. We will continue writing φ̂ to mean specifically φ̂(y). For y′
in a neighborhood of y, we might guess that φ̂(y′) = f (y′) and (μ̂(y′), ν̂(y′)) =
(g(y′), h(y′)), where

f
(
y′) = (X̃Pnull(L)∩null(D−A(φ̂)

))
+(y′ − (

Pnull(L)∩null(D−A(φ̂)
)X̃

T )+w
)

+ b,(
g
(
y′)

−A(φ̂)

h
(
y′)

)
=

(
D−A(φ̂)

L

)T + [
w − X̃T (y′ − X̃f

(
y′))]+ c,

g
(
y′)

A(φ̂)
= 0.

To verify this guess, we need to check that the pair (f (y′), (g(y′), h(y′))) satisfies
the optimality conditions at y′,

X̃T (y′ − X̃f
(
y′)) = w − DT g

(
y′)+ LT h

(
y′),

gi

(
y′)(Df

(
y′))

i = 0,

g
(
y′) ≥ 0, Df

(
y′) ≥ 0, Lf

(
y′) = 0.

First of all, Lf (y′) = 0 holds since L(X̃Pnull(L)∩null(D−A(φ̂)
))

+ = 0 and Lb = 0.

Likewise, D−A(φ̂)
f (y′) = 0. Now DA(φ̂)

f (y) > 0, so by continuity of f , we
have DA(φ̂)

f (y′) > 0 for all y′ in a small enough neighborhood, U1, of y.

This establishes that A(f (y′)) = A(φ̂). Now g(y′)A(φ̂)
= 0, so complementary

slackness holds. To see that the first optimality condition holds, we can sim-
ply plug (g(y′), h(y′)) into the left-hand side. All that remains is to show that
g(y′)−A(φ̂)

≥ 0. If we knew that μ̂−A(φ̂)
> 0, then by continuity of g we could ar-

gue that over a small enough neighborhood, U2, g(y′)−A(φ̂)
> 0. However, it could

be the case that μ̂i = 0 for some i /∈ A(φ̂), that is, i ∈ B(φ̂) \ A(φ̂). Nonetheless,
one can show that there is a set N of measure 0 for which y /∈ N implies that
A(φ̂(y)) = A(φ̂(y′)) and B(φ̂(y)) = B(φ̂(y′)) for all y′ in a neighborhood of y.
Lemma 9 of (Ryan) Tibshirani and Taylor (2012) proves this result for a nearly
identical situation.

The fit X̃φ̂(y) is a piecewise affine function of y. Using Stein’s formula for the
degrees of freedom [as described in Ryan, Tibshirani and Taylor (2012)], we get
that

df (X̃φ̂) = E
[∇ · X̃φ̂(y)

] = E
[
tr
{
(X̃P )(X̃P )+

}] = E
[
rank(X̃P )

]
,
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where P = Pnull(L)∩null(D−A(φ̂)
).

B.2. Proof of bound on estimate (Property 5). We bound this by an estimate
that is more interpretable: rank(X̃P ) ≤ rank(P ) = nullity

( L
D−A(φ̂)

)
.

Clearly, R2–R7 are linearly independent rows. Thus, the rank of D̃ is at least
|Z(β+)| + |Z(β−)| + |Z(�+)| + |Z(�−)| + 2p. Now, an R1 row is linearly in-
dependent of R2–R8 precisely when j ∈ T has j ∈ Z(β+)�Z(β−). To see this,
note that if j ∈ Z(β+) \ Z(β−), then R1 is certainly linearly independent of R2–
R8 and likewise for j ∈ Z(β−) \ Z(β+); however if j ∈ Z(β+) ∩ Z(β−), then
jk ∈ Z(�+) ∩ Z(�−) for all k ∈ {1, . . . , p} \ {j}, and therefore this row of R1
lies in the span of R3–R7. Thus, this means there are |T \ (Z(β+)�Z(β−))| ad-
ditional linearly independent rows. Finally, we consider R8. Clearly, R8 lies in the
span of R4–R5 for jk ∈ Z(�+) ∩ Z(�−) since jk ∈ Z(�+) �⇒ kj ∈ Z(�+) at
a solution. But if jk ∈ P(�+) ∪ P(�−), then it is linearly independent of R1–R8.
Therefore, R8 adds |P(�+)|/2 + |P(�−)|/2 to the rank where we have used that
P(�+) ∩ P(�−) = ∅ at a solution (since λ2 > 0) and recalling that j < k for the
rows of R8. In summary, we have shown that the row-rank is∣∣Z(β+)

∣∣+ ∣∣Z(β−)
∣∣+ ∣∣Z

(
�+)∣∣+ ∣∣Z

(
�−)∣∣+ 2p

+ ∣∣T \ (Z(β+)�Z(β−)
)∣∣+ ∣∣P

(
�+)∣∣/2 + ∣∣P

(
�−)∣∣/2.

Recalling that there are 2p + 2p2 columns, we get that

nullity
(

L

D−A(φ̂)

)
= (

2p + 2p2)− rank
(

L

D−A(φ̂)

)
= (

p − ∣∣Z(β+)
∣∣)+ (

p − ∣∣Z(β−)
∣∣)+ (

p(p − 1) − ∣∣Z
(
�+)∣∣)

+ (
p(p − 1) − ∣∣Z

(
�−)∣∣)

− ∣∣T \ (Z(β+)�Z(β−)
)∣∣− ∣∣P

(
�+)∣∣/2 − ∣∣P

(
�−)∣∣/2

= ∣∣P(β+)
∣∣+ ∣∣P(β−)

∣∣+ ∣∣P
(
�+)∣∣/2 + ∣∣P

(
�−)∣∣/2

− ∣∣T \ (P(β+)�P(β−)
)∣∣.

APPENDIX C: SOLVING THE PROX FUNCTION

The Lagrangian of (11) is given by

L
(
β±, θ;α,γ ±) = 1

2t

(
β+ − β̃+)2 + 1

2t

(
β− − β̃−)2 + 1

2t
‖θ − θ̃‖2

+
(

λ

2
+ α

)
‖θ‖1 − (

γ + + α
)
β+ − (

γ − + α
)
β−,

where α is the dual variable corresponding to the hierarchy constraints and γ ± are
the dual variables corresponding to the nonnegativity constraints. For notational
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Algorithm 3 ONEROW: Solve (11) via dual.

Inputs: β̃+
j , β̃−

j ∈ R, �̃j ∈ R
p−1, λ ≥ 0.

(1) Find α̂. Define f (α) = ‖S(�̃j , t (λ/2 + α))‖1 − [β̃+
j + tα]+ − [β̃−

j + tα]+.

(a) If f (0) ≤ 0, take α̂ = 0 and go to step 2.
(b) Form knot the set P = {|�̃jk|/t − λ/2}pk=1 ∪ {−β̃±/t}, and let P + = P ∩

[0,∞).
(c) Evaluate f (p) for p ∈ P +.
(d) If f (p) = 0 for some p ∈ P +, take α̂ = p and go to step 2.
(e) Find adjacent knots, p1,p2 ∈ P +, such that f (p1) > 0 > f (p2). Take

α̂ = −f (p1)
[
f (p2) − f (p1)

]
/(p2 − p1).

(2) Return �̂j = S[�̃j , t (λ/2 + α̂)] and β̂±
j = [β̃±

j + t α̂]+.

convenience, we have written θ for �j , and we have dropped the subscripts on
β±. The KKT conditions are(

β̂± − β̃±)/t − γ̂ ± − α̂ = 0, (θ̂ − θ̃ )/t + (λ/2 + α̂)u = 0,

β̂±γ̂ ± = 0, α̂
(‖θ̂‖1 − β̂+ − β̂−) = 0,

β̂± ≥ 0, ‖θ̂‖1 ≤ β̂+ + β̂−, α̂ ≥ 0, γ̂ ± ≥ 0,

where uj is a subgradient of the absolute value function evaluated at θ̂j . The three
conditions involving γ ± implies that β̂± = [β̃± + t α̂]+. The stationarity condition
involving θ̂ implies that θ̂ = S(θ̃, t (λ/2 + α̂)). Now, define f (α) = ‖S(θ̃ , t (λ/2 +
α))‖1 − [β̃+ + tα]+ − [β̃− + tα]+. The remaining KKT conditions involve α̂

alone: α̂f (α̂) = 0, f (α̂) ≤ 0, α̂ ≥ 0. Observing that f is nonincreasing in α and
piecewise linear suggests finding α̂ as done in Algorithm 3.
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SUPPLEMENTARY MATERIAL

Supplement to “A lasso for hierarchical interactions” (DOI: 10.1214/13-
AOS1096SUPP; .pdf). We include proofs of Property 1 and of the statement in
Remark 3. Additionally, we show that the algorithm for the logistic regression
case is nearly identical and give more detail on Algorithm 2.
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