
A Latency-Aware Partitioning Method for
Distributed Virtual Environment Systems
Pedro Morillo, Silvia Rueda, Juan Manuel Orduña, and José Duato, Member, IEEE

Abstract—Distributed virtual environment (DVE) systems allow multiple users working on different client computers interconnected

through different networks to interact in a shared virtual world. In these systems, latency is crucial for providing an acceptable quality of

service (QoS), since it determines how fast client computers are reported about changes in the shared virtual scene produced by other

client computers. This paper presents in a unified manner a partitioning approach for providing a latency below a threshold to the

maximum number of users as possible in DVE systems. This partitioning approach searches the assignment of avatars, which

represents the best trade-off among system latency, system throughput, and partitioning efficiency when solving the partitioning

problem. Evaluation results show that the proposed approach not only maximizes system throughput, but also allows the system to

satisfy, if possible, any specific latency requirement needed for providing QoS. This improvement is achieved without decreasing either

image resolution or quality of animation, and it can be used together with other techniques already proposed. Therefore, it can

contribute to provide QoS in DVEs.

Index Terms—Distributed applications, distributed/network graphics.

Ç

1 INTRODUCTION

DISTRIBUTED virtual environments (DVEs) have become a
major trend in distributed applications, mainly due to

the enormous popularity of multiplayer online games
(MOGs) in the entertainment industry. These highly
interactive systems simulate a virtual world where multiple
users share the same scenario. The system renders images
of the virtual world that each user would see if he was
located at that point in the virtual environment. Each user is
represented in the shared virtual environment by an entity
called avatar, whose state is controlled by the user through
the client computer. Hundreds and even thousands of client
computers can be simultaneously connected to the DVE
system through different networks and even through the
Internet. DVE systems are currently used in many different
applications [1] such as civil and military distributed
training [2], collaborative design [3], and e-learning [4].
Nevertheless, the most extended example of DVE systems
are commercial MOG environments. These systems use the
same simulation techniques that DVE systems do [5], and
they are predicted to make up over 25 percent of the local
area network (LAN) traffic by the year 2010 [6]

Although centralized server (client-server) architectures

or peer-to-peer (P2P) architectures were also proposed for

DVE systems [1], architectures based on networked servers

are becoming a de facto standard for DVE systems [7], [8],

[9], [10], [11]. The reason for this trend is that, on one hand,
architectures based on a single centralized server are not
scalable with the number of connected clients (particularly
for the most extended application of DVE systems—MOGs).
On the other hand, DVE systems based on P2P architectures
seem to be scalable enough, but they must still efficiently
solve the awareness problem. This problem consists of
ensuring that each avatar is aware of all the avatars in its
neighborhood [12]. Providing awareness to all the avatars is
a necessary condition to provide time-space consistency (as
defined in [5], [13], [14], and [15]). However, it is not a
sufficient condition. Even when using an awareness method
that determines at each moment which other avatars an
avatar must exchange messages with, time-space incon-
sistencies can arise among different avatars because of clock
drifts and/or network delays [13]. Awareness is crucial for
MOGs, since, otherwise, abnormal situations could happen.
For example, a user provided with a noncoherent view of
the virtual world could be shooting something that he can
see, although it is not actually there. Also, it could happen
that an avatar not provided with a coherent view is killed
by another avatar that it cannot see. In networked-server
architectures, the awareness problem is easily solved by the
existing servers, since they know the location of all avatars
all the time. Each avatar reports about its movements (by
sending a message) to the server where it is assigned to, and
all the servers periodically synchronize their state to
maintain a coherent model of the virtual world. Thus, each
server can easily decide which avatars should be the
destinations of the messages sent by a given avatar by
using a criterion of distance. There is no need for clients to
determine the neighborhood of avatars, since servers can
easily do this task. The efficient solving of the awareness
problem is one of the main reasons that explain the small
number of servers in networked-server architectures (the
higher the number of servers, the higher the complexity of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007 1

. P. Morillo, S. Rueda, and J.M. Orduña are with the Departamento de
Informática, Universidad de Valencia, Av. Vicent Andrés Estellés, s/n,
46100 - Burjassot (Valencia), Spain.
E-mail: {Pedro.Morillo, Silvia.Rueda, Juan.Orduna}@uv.es.

. J. Duato is with DISCA, Universidad Politécnica de Valencia, Camino de
Vera, s/n., 46022 Valencia, Spain. E-mail: jduato@gap.upv.es.

Manuscript received 1 Mar. 2005; revised 3 May 2006; accepted 31 Oct. 2006;
published online 9 Jan. 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0194-0305.
Digital Object Identifier no. 10.1109/TPDS.2007.1055.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

the synchronization technique). Also, it is one of the reasons
for the widespread use of these architectures, particularly in
MOGs. This paper focuses on networked-server architec-
tures, since MOGs represent the vast majority of current
DVE systems.

In networked-server architectures, servers must contain
the current status of different 3D models, perform posi-
tional updates of avatars, and transfer control information
among different clients. Thus, each new avatar represents
an increase in both the computational requirements of the
application and the amount of network traffic. When the
number of connected clients increases, the number of
updating messages must be limited in order to avoid a
message outburst. In this sense, different approaches have
been proposed in order to limit the number of surrounding
avatars that a given avatar must communicate with. At this
point, it is worth mentioning that avatars are only the
representation of users in the virtual world, and they are
not responsible for sending or receiving messages. How-
ever, for the sake of shortness, we will also use the term
avatar to denote the client program running on the client
computer controlling an avatar. Concepts like areas of
influence (AOIs) [1], [16], locales [17], or auras [18] define a
neighborhood area for avatars in such a way that a given
avatar must notify its movements (by sending a message)
only to those avatars located in its neighborhood. Thus, the
AOI of a given avatar determines the amount of network
traffic generated by that avatar. Other approaches use three-
tiered architectures [19], [20], data filtering [21], or dis-
tributed cache management [22] in order to minimize the
impact of network traffic on the performance of the DVE
system.

Users in distributed systems usually perceive system
performance either as the system latency or as the system
response time [23], [24], [25], [26], since the critical factor for
them is that the system works in “real time.” Otherwise,
user productivity rapidly decreases [26]. Latency can be
described as the time interval required by the system in
order to process each information unit. For example, latency
is defined in interconnection networks as the time required
by the network to carry a message from the origin network
interface to the destination network interface [24]. If the
distributed system is interactive, as DVE systems are, then
latency is measured as the response time of the system. The
response time can be defined as the time required by the
system to provide an answer to each user request. Never-
theless, users in a DVE system perceive system performance
not only as system latency, but also as system throughput.
System throughput can be defined as the maximum number
of users that the system can simultaneously support. For
example, users in a multiplayer game environment want
not only for the system to quickly respond to their
movements, but also for it to allow them to simultaneously
play with the greatest number of players (users) as possible.
In order to design actually efficient DVE systems, this
special feature must be taken into account. In a previous
paper, we showed that DVE systems are kept away from
saturation if all the servers are kept below 100 percent of
CPU utilization. Using this result, we also designed a
partitioning method (based on a load-balancing technique)

that maximizes throughput of DVE systems [27]. In this
paper, we go one step further, focusing on both system
throughput and system latency. Latency can be defined in a
DVE system as the time interval from the instant when any
neighbor avatar of a given avatar i makes a movement until
the instant when avatar i (the client computer controlling i)
is notified of that movement.

On the other hand, the term quality of service (QoS) can
be applied to any system, meaning that the system not only
supports a given client but it also fulfills some specific
requirements (potentially in different dimensions) of that
client, regardless of eventual system bottlenecks. For
example, in network environments, the term QoS means
the ability of some networks to conform with some specific
user requirements of latency, jitter delays, traffic peaks, and
so forth regardless of the current network traffic [28].
System bottlenecks arise because the system is designed
with a given capacity in its resources, and the workload that
the system supports (in computers, the amount of informa-
tion to be processed in a given period of time) eventually
exceeds this capacity. In DVE systems, latency is crucial for
providing QoS to users, since it determines how fast users
perceive changes in the virtual world, thus limiting the
responsiveness and interactivity of the system. Therefore, a
system cannot provide an acceptable QoS to a client if a
maximum latency threshold is exceeded. That is, providing
a latency below this maximum threshold to clients is a
necessary condition for providing QoS.

This paper presents, in a unified manner, a partitioning
method that not only maximizes system throughput, but
also allows the system to satisfy, if possible, any specific
latency threshold that can be required to provide QoS [29].
We will show that the problem of providing a latency below
a given threshold to the maximum number of avatars as
possible can be tackled by means of the partitioning
method, regardless of the threshold value. The idea is to
use the aggregated CPU bandwidth of the servers first to
avoid system saturation. After that, if the workload
generated by the clients is below this aggregated band-
width, then this approach uses the remaining CPU
bandwidth to group in the same server that those avatars
surrounded with the greatest amount of neighbors, thus
decreasing the latency provided to the maximum number of
avatars. In order to do so, this approach looks for the
assignment of avatars, which represents the best trade-off
among system latency, system throughput, and partitioning
efficiency when solving the partitioning problem. We have
denoted this problem as the QoS problem to denote that
solving this problem provides an assignment of avatars that
also takes care of QoS. Since the QoS problem shows high
complexity, we propose a partitioning method based on a
heuristic search. Therefore, we also present a new im-
plementation and comparative study of several different
heuristic methods applied to solve the QoS problem [30],
[31]. Finally, we present the performance evaluation of the
proposed partitioning method. Evaluation results show that
the proposed method can maximize system throughput
while providing a latency below a threshold to the highest
number of avatars as possible, therefore contributing to
provide QoS.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

The rest of the paper is organized as follows: Section 2
describes the problem of providing QoS to avatars in DVE
systems and the existing proposals. This section also defines
the QoS problem and presents the proposed method for
solving it. Section 3 presents the implementation, tuning,
and comparative study of different heuristic search meth-
ods described in the literature when applied to the QoS
problem in DVE systems. Next, Section 4 presents the
performance evaluation of the proposed method. Finally,
Section 5 presents some concluding remarks and future
work to be done.

2 THE QOS PROBLEM IN DVE SYSTEMS

The problem of providing QoS to clients in a DVE system
has been already described, and some strategies have been
proposed [32], [33], [34]. One of these approaches [33] uses
latency compensating methods in order to repair the effects
of high network jitter. A different approach consists of
modifying the resolution of the 3D models depending on
the connection speed of the client computer [32]. Both
strategies try to provide QoS to avatars in exchange for
reducing the quality of graphics (either image resolution
[32] or quality of animation [33]). However, none of these
strategies takes into account the nonlinear behavior of DVE
systems with the number of avatars assigned to each server,
as described in [27]. Therefore, they do not care about
guaranteeing a maximum latency to clients (they cannot
guarantee that the system will not become saturated,
greatly degrading the latency provided to all clients
regardless of the connection speed or the network jitter).
Finally, the other approach consists of a scheduling
algorithm for DVE systems based on a client-server
architecture. This algorithm minimizes the overall client
error produced when the server is saturated, and it can only
send a subset of the update messages to clients [34].
However, this approach is for DVE systems based on a
centralized server, where avatars cannot be migrated
(reassigned to a different server). In the case of migration,
this scheduling algorithm could lead to starvation, or it
would have to be modified. As these approaches show, the
problem of providing QoS in DVE systems shows multiple
dimensions (network latency, jitter, consistency, graphical
resolution, quality of animation, and so forth). These
approaches try to provide good performance in a given
dimension (sometimes at the cost of decreasing the
performance in another dimension) in spite of potential
system bottlenecks (connection speed, network jitter, and
number of clients connected to the system).

We propose an approach that improves the performance
in a given dimension without affecting any other dimen-
sion. Additionally, this approach can be used together with
any of the approaches described above. Concretely, we
propose a latency-aware partitioning method for providing
QoS, since a necessary condition for providing QoS in DVE
systems is to keep latency below a maximum threshold
value. However, latency cannot be properly measured in
distributed systems, and the round-trip delay (RTT) for the
messages sent by an avatar i is used instead. A recent work
shows that, if this RTT is not greater than 250 ms, then users
perceive that the system responds quickly [35]. Therefore,

we will consider that a DVE system can offer QoS to a given
client only if the average RTT for the messages sent by this
client (denoted as ASR, for Average System Response [27]) is
lower than 250 ms. Nevertheless, this threshold value can
be modified as necessary, depending on the application
requirements. For the sake of shortness, in the rest of the
paper, we will use the expression “provide QoS to an
avatar” to denote the fact that the ASR provided to the
client computer controlling that avatar is below 250 ms.

The RTT for the messages sent by a given avatar is
closely related to the partitioning problem, since the
average RTT is an interpolation of the maximum RTT
(client-server plus server-server delays) and the minimum
RTT (only client-server delays). Thus, if a given avatar i and
all its neighbors are assigned to the same server, then the
time required for reporting avatar i of the movements of
any neighbor avatar will be smaller than if some of these
neighbors are assigned to a different server. However, the
impact of eliminating the server-to-server delays has not
been measured until now. We have evaluated different
DVE systems by simulation (as described in Section 4) in
order to measure the effect that assigning neighbor avatars
to different servers can have on the latency provided to a
given avatar. This evaluation has been performed on many
different scenarios (different DVE configurations, different
initial distributions of avatars in the virtual world, different
movement pattern of avatars, different avatar populations,
and so forth). A significant example of this evaluation is
shown in Fig. 1. This figure shows on the y-axis the average
RTTs obtained for messages sent by a given avatar i. The
x-axis shows the number of neighbor avatars of i assigned
to the same server that i is assigned to. The rest of the
neighbor avatars were randomly assigned to other servers.
Each point in the plot represents the average value of the
average latencies obtained after 30 different simulations,
and the standard deviation of the different simulations was
not higher than 25 ms in any case.

Fig. 1 shows that the average RTT for messages sent by
avatar i linearly decreases as a higher number of neighbor
avatars of i are assigned to the same server as i. The reason
for that behavior is that, when the neighbor avatars of i are

MORILLO ET AL.: A LATENCY-AWARE PARTITIONING METHOD FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 3

Fig. 1. Average message latencies for an avatar with 100 neighbor

avatars in its AOI.

assigned to the same server, then the messages sent by i do
not have to travel to another server in order to reach their
destinations. Therefore, the average RTT is lower. Con-
cretely, we can see that the system provides QoS (average
RTT under 250 ms) to avatar i if 80 or more neighbor
avatars of avatar i (from a total of 100 neighbor avatars) are
assigned to the same server as i.

The evaluation results obtained for other avatars (with
different AOI sizes) in other scenarios (a different DVE
configuration with a different number of servers, different
movement patterns of avatars) have all been very similar.
These results show that the problem of providing latencies
below a given value to avatars in DVE systems can be
addressed by means of the partitioning method, since the
server-to-server delays represent a significant percentage of
the total RTT. The reason for this behavior is that grouping
neighbor avatars in the same server eliminates not only
interserver network latencies (that could be negligible when
compared to some client-server network latencies), but also
the aggregated CPU latencies of one or more servers. As
shown in the figure above, these aggregated latencies are
not a negligible portion of the total latency provided to
avatars even when the system works under low load.
Therefore, if the system works below the saturation point,
then the partitioning method can use the remaining CPU
bandwidth of the servers for grouping those avatars whose
latency is above the maximum latency threshold.

However, several problems may arise. First, grouping
avatars in a given server can unbalance the workload,
causing the entire system to enter saturation. The simula-
tions shown in Fig. 1 have been entirely performed while
keeping the servers below their saturation point (the best
case). Therefore, the behavior shown in these figures is
localized, probably becoming nonlinear if the number of
assigned avatars had caused any server to become
saturated. As shown in [27], saturation greatly decreases
system performance, not only making the system unable to
limit the latency offered to some avatars, but also greatly
degrading the latency offered to all avatars. That is, the
behavior shown in these figures can only be guaranteed if
none of the servers reaches 100 percent of CPU utilization.
Second, the effect on the number of avatars migrated from
one to another server in each execution of the partitioning
algorithm must be taken into account. In this sense, a recent
work shows that an efficient partitioning method must not
migrate more than 30 percent of avatars in the DVE system
[20]. Therefore, the idea is to design a partitioning method
that takes into account all these three aspects. This
partitioning method must provide a near optimal assign-
ment of avatars satisfying the following requirements at the
same time: ensuring percentages of CPU utilization below
100 percent in all the servers, providing QoS (an average
RTT lower than 250 ms) for the highest number of avatars
possible, and also migrating the least number of avatars
possible. We have denoted this challenge as the QoS
problem. Since this problem shows high complexity, we
have used a heuristic strategy to solve it. The idea is to
model the QoS problem as a quality function associated to
each partition of avatars (assignment of all the existing
avatars to the servers in the system). The partitioning

method will consist of a heuristic search in order to find an
efficient partition or assignment of avatars that minimizes
the quality function.

We have denoted the quality function as fQoS . Let P be a
given partition (assignment) of avatars. Since the quality
function must take into account the three factors described
above, we have defined it as

fQoSðP Þ ¼ �ðP Þ þ �ðP Þ þ �ðP Þ; ð1Þ

where each term measures the quality of the partition
according to one of these factors. Function �ðP Þ evaluates
the estimated percentage of CPU utilization in all the servers
for partition P . The estimation of this term is based on the
characterization method proposed in [27]. Function �ðP Þ
measures the estimated RTT that the considered partition
will provide to the existing avatars. This term is computed
taking into account the current RTT for the messages sent by
each avatar and the current RTT to the servers where they
are assigned. Finally, the term �ðP Þmeasures the number of
avatars migrated from one server to another by partition P .
In order to compute this term, both the current assignment
and the assignment defined by partition P are used. The
heuristic search method should look for the partition with
the lowest value of fQoS .

Concretely, we have defined the �ðP Þ function as

�ðP Þ ¼
Xs

i¼1

hcpuðiÞ; ð2Þ

where S is the number of servers in the DVE system and
the function hcpuðiÞ evaluates the estimated CPU utilization
in each server i for partition P . This function has the
exponential behavior shown in Fig. 2. If partition P results
in an estimated CPU utilization significantly lower than
100 percent in server i, then the value of hcpuðiÞ will be very
low. However, this value will increase if server i reaches a
CPU utilization close to 90 percent, and it will shoot up if
CPU utilization goes beyond this value for partition P . In
this way, we ensure that the heuristic search will reject any

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 2. Evaluation function hcpuðiÞ.

partition where any of the servers shows an estimated CPU
utilization greater than 90 percent. In other words, this
function prevents the DVE from entering saturation.

The second term in fQoS is defined as

�ðP Þ ¼
Xn

i¼1

hasrðiÞ; ð3Þ

where n is the number of existing avatars in the DVE
system and hasrðiÞ is a function that evaluates the estimated
average RTT that the messages sent by avatar i would have
in partition P . Fig. 3 shows the behavior of hasrðiÞ. This
figure shows a plot with two differentiated sections. If the
estimated RTT for the messages sent by avatar i is below
250 ms, then hasrðiÞ shows an inverse exponential behavior.
If that value is greater than 250 ms, then hasrðiÞ shows a
parabolic behavior. In this way, quality function fQoS will
select those partitions that result in a lower average RTT for
most of the avatars, particularly if this value is below
250 ms.

Finally, �ðP Þ is a function that evaluates the partitioning
efficiency of partition P , that is, the number of avatars that
must be migrated in order to provide partition P . Fig. 4
shows the behavior of this function, which is composed of
two sections: a linear section from the zero value to 1/3 of
the existing avatars and a parabolic section from that value
up. �ðP Þ helps fQoS to select those partitions migrating the
less number of avatars as possible.

Although the three terms in (1) measure different
magnitudes, the plain sum of these terms without any
weight results in a cost function that can be used to select
the desired behavior. It must be noticed that �ðP Þ is defined
as the sum of n terms, where n is the number of clients in
the system. For the case of DVE systems based on
networked server architectures, where the number of
servers s is very small if compared to the number of
avatars n, function �ðP Þ has a significant effect on fQoSðP Þ
unless any server becomes saturated. Although weighting
these terms may provide better performance to the
proposed method, we have used the plain sum of these
three terms as the quality function to be minimized in order
to study the worst case, leaving the weighting of the
different terms as a future work.

3 HEURISTIC METHODS

Heuristic techniques have been proved as efficient strate-
gies for solving highly complex problems, since they
provide near optimal solutions while requiring reasonable
execution times [36], [37], [38]. Heuristic search methods
can be classified in three general types of techniques:
stochastic methods such as Simulated Annealing (SA) [39],
evolutive computation methods such as Genetic Algorithms
(GA) [40], and constructive methods such as Greedy
Randomized Adaptive Search Procedures (GRASP) [36],
[41]. In this section, we present a new implementation and
comparative study of two different heuristic techniques:
GRASP and GA. Unlike the implementations shown in
previous work [30], [31] (and as an enhancement of prior
work), the implementations shown in this paper use a heap-
data structure. The particular ordering property of this data
structure [42] allows one to greatly reduce the time required
for sorting different partitions. Therefore, it allows a faster
execution of each of the heuristic search methods. Reducing
the execution time of the partitioning methods is critical,
since they must be executed while the DVE system is
working and avatars are moving, even joining or leaving
the application.

All of the considered methods start from an initial
partition. In our implementations, we have imposed to the
initial partition the only requirement of not saturating the
DVE system. We have used the resulting partition provided
by the fine-grain assembly line balance (FGALB) method
[43] as the initial partition. This load-balancing method is an
enhanced version of the assembly line balance (ALB)
method [27] that provides better results and avoids the
cascading effect. ALB is a load-balancing method that
provides a partition where none of the servers reaches
saturation. The basic difference between FGALB and ALB
techniques is that, when a given server is saturated, the
FGALB method distributes the exceeding workload of this
server among the least loaded servers in the system instead
of migrating this exceeding workload to a single server.
Therefore, using this initial partition, we ensure that the
DVE system is not saturated. It must be noticed that the
FGALB method only focuses on system throughput, and it
does not take into account the latency provided to avatars.

The proposed implementations of the heuristic methods
deal with border avatars. Two avatars (ai and aj) in a DVE

MORILLO ET AL.: A LATENCY-AWARE PARTITIONING METHOD FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 5

Fig. 3. Evaluation function hasrðiÞ.

Fig. 4. Evaluation function �.

system are denoted as border avatars if they are assigned to
different servers (sr and sx), and they can see each other in
the virtual world. The assignment of border avatars is
critical, since it allows obtaining partitions with low levels
of hasr. Both methods take into account these avatars to
provide near-optimal partitions.

3.1 GRASP

GRASP is a constructive technique designed as a multistart
heuristic for combinatorial problems [41]. It has been shown
to quickly produce good quality solutions for certain
problems [36].

The first step in our GRASP implementation consists of
sorting the avatars in the initial partition whose messages
show an RTT higher than 250 ms (those avatars not
provided with QoS) by their presence factor fp. We define
the presence factor ðfpðiÞÞ of avatar i as the number of avatars
in whose AOI avatar i appears. The idea is to provide QoS
(latency below a threshold value) to those avatars that
require the least system efforts.

The first c elements in the sorted list of avatars (from a
population of n avatars) are denoted as critical avatars. The
GRASP method considers that critical avatars are nonas-
signed avatars, and they will be assigned by the GRASP
method to a server in such a way that QoS is provided to
them. The rest of the n avatars (denoted as the e easy avatars,
where n ¼ cþ e) will not be reassigned, and they will
remain assigned to the same server that they were initially
assigned to. The assignment of each of the c critical avatars
are obtained in each of the iterations of the GRASP method.
The number of iterations (the number of reassigned avatars)
is the only parameter to be tuned for the GRASP method. If
the c value is set too low, then only a few avatars will be
provided with QoS. However, if the c value is set too high
(trying to provide too many avatars with QoS), then the
GRASP method will not be able to find a partition fulfilling
all the requirements for all avatars, and it will take a long
time for providing bad partitions.

Each iteration of the GRASP method consists of two
steps: construction and local search. The construction phase
builds a feasible solution, choosing one critical avatar by
iteration, and the local search derives this temporal solution
following a neighborhood criterion. The complete process
performed by the GRASP method is illustrated by the
following algorithm, written as pseudocode:

program GRASP (Int threshold)

CONST

S /* Number of servers */

n /* Number of avatars (clients) */

threshold /* Number of nonassigned avatars */

VAR

Fqos_GRASP, tmp_cost : Real

Ak, Sf, : Integer

non_assig : Integer

heap : Heap

begin

Initial_Partition (FGALB,threshold)

ClearHeap(heap)

non_assig := n - threshold

for i := 1 to non_assig do

for j := 1 to n do

k:= SelectRandomServer(S)

tmp_cost = TestSolution(j, k)

AddToHeap(heap, tmp_cost, j, k)

end_for

HeapSort (1/4, heap)

ChooseRandomElement (1/4, heap, Ak, Sf)

Fqos_GRASP = tmp_cost = INT_MAX

for j := 1 To AvatarsInAOI (avatar) do

k := SelectRandomServer (S)

tmp_cost := TestSolution (j, k)

if (tmp_cost < Fqos_GRASP)

Fqos_GRASP : = tmp_cost

Ak := j

Sf := k

end_if

end_for

AssingSolutionServer(Ak, Sf)

end_for

end

3.2 A Sexual Elitist Genetic Algorithm (SEGA)

Genetic Algorithms (GA) consist of a search method based
on the concept of evolution by natural selection [44]. A GA
starts from an initial population, made of P chromosomes,
that evolves following certain rules until reaching a
convergence condition that maximizes a fitness function.
Each iteration of the algorithm consists of generating a new
population from the existing one by recombining or even
mutating chromosomes. A chromosome contains a genotype
or a string representing an individual (a particular solution
of the problem) and also a phenotype or features that the
genotype represents. Wewill use this additional information
in the phenotype for tuning the behavior of the algorithm.

We have denoted as SEGA [31] the particular imple-
mentation of GA that we have used to solve the QoS
problem in DVE systems. We derived this algorithm from
trial and error, starting from that in [40]. In our implemen-
tation (SEGA), the genotype consists of an array defining
the pair avatar-server. If there are N avatars in the system,
this array contains N elements, each one designating the
server where that avatar is assigned. The phenotype
consists of information about the estimated workload that
each avatar adds (in terms of the CPU utilization) to the
server where it is assigned. Also, the phenotype indicates if
each avatar is a border avatar or not. We use fQoS as the
fitness function to be (in our case) minimized.

Each iteration consists of generating a descendant gen-
eration of chromosomes, starting from an ancestor genera-
tion. The way that the algorithm provides the next
generation determines the behavior of SEGA. We have
chosen a sexual reproduction technique [40] in such a way
that each descendant is generated starting from two
ancestors. However, in order to provide high diversity,
we have also used nonhomogeneous hybrid derivation (a
certain rate of asexual reproduction). Additionally, we use

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

elitism in each iteration and, hence, the name of the heuristic

method. The term elitism means that some individuals

(chromosomes) of a given population are directly passed to

the next generation without suffering any variation [44].
Once the descendants are obtained in iteration t, if the

finishing condition is not reached, then a recombination

process is performed on all of the chromosomes of these

descendants. This recombination process consists of ran-

domly selecting two border avatars and exchanging the

servers they are assigned to. This process helps to keep

diversity while exclusively exploring highly probable solu-

tions. Finally, a mutation can be performed on each resulting

descendant. It consists of randomly selecting an avatar in a

chromosome and changing its server. The whole process

performed in each iteration can be expressed as the

following pseudocode statements (where Genotype Gt is

the resulting population of the previous iteration t, com-

posed of P chromosomes):

Iteration t+1 (Genotype Gt)

CONST

S /* Number of servers in the DVE

system */

n /* Number of avatar (clients) */

Nelitist /* Num. of elitist chromosomes */

P /* Num. of chromosomes in genotype */

N /* Num. of avatars in DVE system */

Sexuality /* Sexuality rate */

TYPE

chromosome : int[N]

VAR

int i

Anc1, Anc2 : chromosome /* Ancestors */

Desc : chromosome /* Descendant */

begin

Copy_Nelitist_best_of_Gt_to Gi()

For i:= Nelitist to P+Nelitist do

Anc1 := Gt[i]

a := Reproduction_select(Sexuality)

if a = 0 then /* 0 = Sexual, 1 = Asexual */

Anc2 := Random_select_from(Gi)

crossover := Random_select_crossover()

case(crossover)

one-point:

Desc := 1point_cross(Anc1, Anc2)

multipoint:

Desc := mpoint_cross(Anc1, Anc2)

uniform:

Desc := unif_cross(Anc1, Anc2)

end_case

else

Desc := Anc1

end_if

if (NOT converg_condition(Desc)) then

recombination(Desc)

end_if

if (random() < mutation_rate) then

mutation(Desc)

end_if

Gi[i] := Desc;

end_for

HeapSort(Gi);

For i := 0 to P do

Gt+1[i]} := Gi[i];

end_for

end

3.3 Comparative Study

In this section, we present a comparative study of the
heuristic methods described above in order to find which
technique is the most suitable one for solving the QoS
problem. In order to make a fair comparison, we have
defined a certain DVE configuration and, then, we have
performed a fine tuning of each method for that config-
uration. Concretely, we have performed a comparative
study for two different configurations, denoted as MED-
IUM1 and MEDIUM2. The MEDIUM1 configuration
defines a DVE system composed of 250 avatars and three
servers, and the MEDIUM2 configuration is composed of
700 avatars and 10 servers. The size of these configurations
has been determined by our computing resources, since the
final idea is to evaluate the partitions provided by the
considered methods by simulation (as shown in Section 4).
However, due to space limitations, in this section, we will
only show the results for the MEDIUM2 configuration. The
results obtained for MEDIUM1 followed the same pattern
as the results shown here, except that, in the MEDIUM1
configuration, the workload that the servers support is
significantly lower than in the case of the MEDIUM2
configuration.

Each of the considered heuristic techniques described in
the previous sections have different parameters that must
be properly tuned in order to obtain the best performance
for each DVE configuration. For the sake of fairness, the
considered methods have been tuned in order to obtain the
best performance as possible for each configuration. Never-
theless, we do not present here the plots that illustrate the
tuning of each parameter for the sake of shortness.
Concretely, the only parameter to be tuned for the GRASP
method is the number of initially nonassigned avatars c. We
obtained 100 as the c optimum value for MEDIUM1
configuration and 200 avatars as the c optimum value for
the MEDIUM2 configuration. The parameters to be tuned in
the SEGA method are the following: the number of
chromosomes in the population ðP Þ, the number of
iterations, the mutation rate, number of elitist chromosomes
ðNelitistÞ, the sexuality rate (the percentage of iterations in
which sexual reproduction is used), the minimum standard
deviation allowed for the convergence condition, and the
maximum number of iterations allowed without improving
the fitness function. For both MEDIUM1 and MEDIUM2
configurations, we obtained the same values, except in the
number of iterations. Concretely, we obtained as optimum
values 100 chromosomes, a mutation rate of 5 percent of
iterations, an elitism rate of 50 percent of the population, a
sexuality rate of 75 percent of iterations, a minimum

MORILLO ET AL.: A LATENCY-AWARE PARTITIONING METHOD FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 7

standard deviation of 0.005, and 50 iterations as the
maximum number of iterations allowed without improving
the fitness function fQoS . For the MEDIUM1 configuration,
we obtained an optimum value of 200 iterations, and for the
MEDIUM2 configuration, we obtained an optimum value of
300 iterations.

In order to completely evaluate the performance of each
of the considered heuristic techniques, we have executed
each technique assuming that each technique is tested
under different situations of the DVE system. We have used
the distributions of avatars suggested in the literature:
uniform, skewed, and clustered [9]. The reason for using
different distributions is that they generate a different
workload. Fig. 5 shows an example of these avatar
distributions in a 2D virtual world. In this figure, the
virtual world is a square, and avatars are represented as
black dots.

For each of these distributions, we have computed the
FGALB algorithm [43]. This algorithm is targeted to provide
a well-balanced partition that keeps the DVE system below
its saturation point. Using this partition as the initial
partition, each one of the considered heuristic techniques
has been then executed, and a final partition has been
obtained. Table 1 shows the results for a MEDIUM2
configuration where avatars are located following a uni-
form distribution (at the instant when the partitioning
method is executed, avatars are uniformly distributed in the
virtual world). Each column in this table shows the results
for each of the considered heuristic techniques (including a
column for the partition provided by the FGALB method).
The first row (labeled as fQoS) shows the value of the quality
function corresponding to the partition provided with each
method. The second row (labeled as �ðP0Þ) shows the
number of avatars migrated by the final partition from the
initial partition. Finally, the last row (labeled as Texe) shows
the execution time required for each heuristic technique.
The values in this table are the average values after

10 executions of each technique. Table 1 shows that the
GRASP method provides the partition with the lowest value
of the quality function while requiring the shortest
execution time. Although the differences among the three
methods are not significant in terms of the quality function,
they are notorious if we focus on the required execution
time. The GRASP method requires around 25 percent of the
time required by the SEGA method. The reason for this
behavior is that the HeapSort procedure is iterative in such
a way that the GRASP method can stop HeapSort when it
has provided the first quartile of the sorted solutions. That
is, the GRASP technique is the method that best takes
advantage of the new data structure. The next to last row of
this table also shows that the three methods provide
partitioning efficiency, migrating less than 30 percent of
the existing 700 avatars.

Table 2 shows the results for a MEDIUM2 configuration
when avatars are located in the virtual world following a
skewed distribution. The results shown in this table are
similar to the ones shown in Table 1. However, in this table,
the values of the quality function provided by the three
methods are higher than the ones in Table 1. The reason is
that, in a skewed distribution, there are regions of the
virtual world that show a high density of avatars. The
avatars located in these crowded regions have an AOI with
a lot of avatars in such a way that each movement of these
avatars represents a lot of messages. Therefore, the average
RTT for the messages sent by these avatars tends to
increase. Also, the CPU utilization increases in all servers
with respect to uniform distribution of avatars. Again, the
GRASP method provides a partition with a slightly better
value of the quality function, and it requires the shortest
execution time.

Finally, Table 3 shows the results for a clustered
distribution of avatars. The first row in this table shows
that the partition provided by the GRASP method obtains
the best value of the quality function, although the
difference with the value provided by the SEGA method
is not significant. Although the GRASP method migrates
the greatest number of avatars, this number is far from

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 5. Distributions of avatars in a 2D virtual world. (a) Uniform.

(b) Skewed. (c) Clustered.

TABLE 1
Results for a MEDIUM2 DVE System
with a Uniform Distribution of Avatars

TABLE 2
Results for a MEDIUM2 DVE System
with a Skewed Distribution of Avatars

TABLE 3
Results for a MEDIUM2 DVE System
with a Clustered Distribution of Avatars

30 percent of the avatars. Regarding the execution times, it
is worth mentioning that the values in this table are still
higher than the ones in Table 2. Again, the GRASP method
requires the shortest time.

Taking into account the results in these tables, the new
implementation of GRASP search seems to provide the best
performance for solving the QoS problem. This implemen-
tation requires the shortest execution times for all the
distributions of avatars, whereas the values of the quality
function provided by this method are similar to the values
provided by the other methods. The main reason for this
behavior is that the new implementation of the SEGA
method does not exploit the iterative property of the
HeapSort procedure. Also, it is worth mentioning that the
fQoS value provided by all the heuristic methods are
significantly lower than the one provided by the FGALB
method.

4 PERFORMANCE EVALUATION

The results in the previous section suggest that significant
improvement can be achieved in the number of avatars
provided with QoS (latency below a threshold value) if the
proposed partitioning method is used, regardless of the
heuristic technique used. However, these results are
theoretical (values of the quality function), and practical
results are needed to show that the proposed method can
actually improve the QoS provided to avatars in a DVE
system. In this section, we evaluate different DVE systems
in order to measure the actual improvement that the
proposed partitioning method can provide.

We propose the evaluation of generic DVE systems by
simulation. The evaluation methodology used is the one
described in [27]. A simulation consists of each avatar
performing 100 movements at a rate of one movement every
2 seconds. An iteration consists of all the avatars perform-
ing one movement (that is, one iteration is performed every
2 seconds). Each time an avatar performs a movement, it
(the client computer controlling that avatar) sends a
message with a time stamp to all its neighbors and the
neighbors send back an acknowledgment (ACK), as ex-
plained in [27]. The reason for using ACK messages is to
avoid clock skewing when computing system latency.

For comparison purposes, we have simulated the
partitioning method proposed in the previous section
(using two different heuristic techniques, the GRASP and
the SEGA methods) and the partitioning method FGALB
proposed in [43] (the partitioning method that provides the
initial partition). We have chosen GRASP and SEGA
because these techniques provide the worst results for the
clustered distribution of avatars (the distribution generating
the highest workload), and the purpose of this section is to
study the performance of the method in the worst case. We
have simulated DVE systems with three movement patterns
of avatars: Changing Circular Pattern (CCP) [45], Hot-
Points-ALL (HPA) [46], and also Hot-Point-Near (HPN)
[47]. CCP considers that all avatars in the virtual world
move randomly around the virtual scene following circular
trajectories. HPA considers that there exists certain “hot
points” that all avatars approach sooner or later. This
movement pattern is typical of multiuser games, where

users must get resources (as weapons, energy, vehicles,
bonus points, and so forth) that are located at certain
locations in the virtual world. Finally, HPN also considers
these hot points, but only avatars located within a given
radius of the hot points approach these locations.

All the considered methods (FGALB, as well as SEGA
and GRASP) have been executed each time that an iteration
finishes and the CPU utilization in any server reaches
95 percent, and the number of avatars provided with QoS in
that iteration is saved. The GRASP and SEGA methods
were executed after any subsequent iteration if this
parameter decreased below the saved value in order to
increase it again.

For the sake of shortness, we will only show here the
results for some representative combinations of movement
patterns and initial distributions of avatars. The experi-
ments performed using the rest of the nine possible
combinations of the movement patterns and initial dis-
tributions of avatars provided very similar results to those
shown here for each DVE configuration.

Table 4 shows the results obtained for a MEDIUM1
configuration and for two different combinations of initial
distributions of avatars and movement patterns. For each
combination, the results for the different partitioning
methods considered are shown in different columns. The
first three rows in this table show the maximum percentage
of CPU utilization reached in each server during the whole
simulation. The fourth row shows the average value of the
ASR provided to each of the avatars [27]. This measure
provides the average RTT for all the messages sent during
the simulation. The next row shows the number of avatars
whose ASR has been lower than 250 ms during the
simulation. That is, this value measures the number of
avatars provided with QoS during the simulation. Finally,
the last row shows the number of avatars migrated by each
method during the simulation. The average execution time
required by each method is not shown in this table because
each partitioning method is executed several times during a
single simulation under different circumstances. These

MORILLO ET AL.: A LATENCY-AWARE PARTITIONING METHOD FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 9

TABLE 4
Results for the MEDIUM1 DVE Configuration

circumstances may greatly differ not only between itera-

tions of different simulations, but also between different

iterations of the same simulation. Therefore, fairness is not

guaranteed when showing the average execution times

required for the different methods.
The first three rows in Table 4 show that all the methods

are able to keep the system away from saturation. Although

the SEGA method reaches a maximum CPU utilization in

server S0 very close to this threshold (98 percent) for the

HPN pattern, it must be taken into account that these are

peak values. The fourth row shows that the two proposed

methods improve the number of avatars provided with QoS

with respect to the FGALB method. Thus, for the case of

HPN movement pattern and a clustered initial distribution

of avatars, the FGALB method provides QoS to around

65 percent of the existing avatars, whereas the GRASP and

SEGA methods provide QoS to around 95 percent of the

existing avatars. Regarding the partitioning efficiency, it can

be seen that the GRASP and SEGA methods migrate more

than 30 percent during the simulation. However, these

partitioning methods have been executed at least five times

during the simulations, resulting in an average number of

migrated avatars that is actually lower than 30 percent.

Therefore, all the considered methods (including FGALB)

migrate less than 30 percent of the existing avatars in each
execution.

Table 5 shows the evaluation results for the MEDIUM2
configuration. In this case, the combination of the HPA
movement pattern and the skewed initial distribution of
avatars makes the system work in deep saturation. The
reason for this behavior is that, again, the avatars located in
the crowded regions have an AOI with a lot of avatars in
such a way that each movement of these avatars represents
a lot of messages. Moreover, since, in this movement
pattern, all avatars tend to concentrate in certain locations
of the virtual world, the number of neighbors in the AOI of
all avatars tends to increase, generating a greater workload
in each subsequent iteration. As a result, in this case, none
of the considered methods have been capable of perform-
ing 100 iterations without saturating the system. The
FGALB method has kept the system away from saturation
during 29 iterations, whereas the GRASP and the SEGA
methods have kept the system away from saturation
during 28 iterations. This is the reason for several servers
to reach 100 percent CPU utilization in Table 5 for the HPA
pattern. Therefore, the measurements in this case are all
referred to a simulation of 28 or 29 iterations. It must be
noticed that this is an extreme situation (if the existing
servers are saturated, the system should be redesigned to
host the actual number of clients). However, we have
forced the system to reach this situation in order to study
the improvement that the proposed technique could
provide under extreme conditions.

Regarding the number of avatars provided with QoS,
Table 5 shows that, for both HPN and HPA patterns, the
proposed methods (both GRASP and SEGA) increase this
value with respect to the FGALB method. Concretely, the
number of avatars provided with acceptable latencies
(labeled as QoS in Table 5) is increased by at least
41.7 percent (from 199 to 282) in the case of the HPN-
Uniform pattern and by 170 percent (from 92 to 249) in the
case of the HPA-Skewed pattern. Again, the GRASP and the
SEGAmethods were executed more than five times, at least,
during the simulation. The number of avatars migrated in
each execution has been lower than 30 percent of the
population for all the partitioning methods. It is also worth
mentioning that the results obtained by the GRASP and the
SEGA methods are very similar, showing that the heuristic
technique used to search the best partition does not have an
important effect on the performance of the method. These
results show that the proposed partitioning method is able
to significantly increase the number of avatars provided
with acceptable latencies, particularly when the DVE
system supports a high workload (under saturation). That
is, it efficiently helps to keep the QoS to the maximum
number of clients.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the problem of reducing
the latency provided to avatars below a given value in DVE
systems (a necessary condition for providing an acceptable
QoS) can be addressed by means of the partitioning
method. Also, we have proposed a new partitioning
method, based on heuristic search, that looks for the

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

TABLE 5
Results for the MEDIUM2 DVE Configuration

partition representing the best trade-off among system
throughput, system latency, and partitioning efficiency.
Although we have used in this paper the latency threshold
proposed in the literature, this method can be used for
providing any other latency threshold, since it is designed
to search an acceptable trade-off. Additionally, it can be
used together with any other proposal for providing QoS.

The results show that the proposed method can sig-
nificantly improve the number of avatars provided with an
acceptable latency (acceptable QoS), regardless of both the
value considered as the threshold latency and the workload
level that the system supports (the CPU utilization of the
servers in the system). When the workload generated by the
application is below the aggregated CPU bandwidth of all
the servers, then the proposed technique uses the remaining
CPU bandwidth to group in the same server those avatars
surrounded with the greatest amount of neighbors, thus
decreasing the latency provided to the maximum number of
avatars. Even when all the servers are close to saturation
(Table 5), the proposed method is able to increase the
number of avatars provided with an acceptable latency.
Since these results are obtained with a quality function that
is the plain sum of three terms, if this quality function is
properly tuned, then the results can still be improved. Also,
the results show that the particular heuristic method used
to search the best partition does not have an important
effect on the performance of the partitioning method itself.
However, since the GRASP method requires the shortest
execution time, this method adds the lowest overhead and,
thus, we think that it is the most appropriate one.

As a future work to be done, we plan to improve the
proposed method by tuning the relative weight of the three
terms in the quality function for different cases. Also, we
plan to design a partitioning that allows different latency
thresholds for different avatars (different priorities) in the
same DVE system.

ACKNOWLEDGMENTS

This paper is supported by the Spanish MEC under Grants
CONSOLIDER-INGENIO CSD2006-46 and TIN2006-15516-
C04-04.

REFERENCES

[1] S. Singhal and M. Zyda, Networked Virtual Environments. ACM
Press, 1999.

[2] D. Miller and J. Thorpe, “Simnet: The Advent of Simulator
Networking,” Proc. IEEE, vol. 83, no. 8, pp. 1114-1123, 1995.

[3] J.S. Dias, R. Galli, A.C. Almeida, C.A.C. Belo, and J.M. Rebordao,
“Mworld: A Multiuser 3D Virtual Environments,” IEEE Computer
Graphics and Applications, vol. 17, no. 2, pp. 55-65, 1997.

[4] C. Bouras, D. Fotakis, and A. Philopoulos, “A Distributed Virtual
Learning Centre in Cyberspace,” Proc. Int’l Conf. Virtual Systems
and Multimedia (VSMM ’98), Nov. 1998.

[5] J. Smed, T. Kaukoranta, and H. Hakonen, “A Review on
Networking and Multiplayer Computer Games,” Technical
Report 454, Turku Centre for Computer Science, 2002.

[6] S. McCreary and K. Claffy, “Trends in Wide Area IP Traffic
Patterns—A View from Ames Internet Exchange,” Proc. ITC
Specialist Seminar, Cooperative Assoc. for Internet Data Analysis
(CAIDA), 2000.

[7] A. Steed and R. Abou-Haidar, “Partitioning Crowded Virtual
Environments,” Proc. ACM Symp. Virtual Reality Software and
Technology (VRST ’03), ACM Press, pp. 7-14, 2003.

[8] T. Funkhouser, “Network Topologies for Scalable Multi-User
Virtual Environments,” Proc. IEEE Virtual Reality Ann. Int’l Symp.,
pp. 222-228, 1996.

[9] J.C. Lui and M. Chan, “An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 13, no. 3, pp. 193-211, 2002.

[10] M.R. Macedonia, “A Taxonomy for Networked Virtual Environ-
ments,” IEEE Multimedia, vol. 4, no. 1, pp. 48-56, 1997.

[11] C. Greenhalgh, A. Bullock, E. Frecon, D. Llyod, and A. Steed,
“Making Networked Virtual Environments Work,” Presence:
Teleoperators and Virtual Environments, vol. 10, no. 2, pp. 142-159,
2001.

[12] R.B. Smith, R. Hixon, and B. Horan, Collaborative Virtual
Environments, chapter on Supporting Flexible Roles in a Shared
Space. Springer, 2001.

[13] S. Zhou, W. Cai, B. Lee, and S.J. Turner, “Time-Space Consistency
in Large-Scale Distributed Virtual Environments,” ACM Trans.
Modeling and Computer Simulation, vol. 14, no. 1, pp. 31-47, 2004.

[14] R.M. Fujimoto and R. Weatherly, “Time Management in the DOD
High Level Architecture,” Proc. 10th Workshop Parallel and
Distributed Simulation, pp. 60-67, 1996.

[15] D. Roberts and R. Wolff, “Controlling Consistency within
Collaborative Virtual Environments,” Proc. IEEE Symp. Distributed
Simulation and Real-Time Applications (DSRT ’04), pp. 46-52, 2004.

[16] L. Zou, M. Ammar, and C. Diot, “An Evaluation of Grouping
Techniques for State Dissemination in Networked Multi-User
Games,” Proc. Ninth Int’l Symp. Modeling, Analysis and Simulation of
Computer and Telecomm. Systems (MASCOTS ’01), 2001.

[17] D.B. Anderson, J.W. Barrus, J.H. Howard, C. Rich, C. Shen, and
R.C. Waters, “Building Multiuser Interactive Multimedia Envir-
onments at MERL,” IEEE Multimedia, vol. 2, no. 4, pp. 77-82, 1995.

[18] F.C. Greenhlagh, “Awareness-Based Communication Manage-
ment in Massive Systems,” Distributed Systems Eng., vol. 5, no. 3,
p. 129, 1998.

[19] H. Abrams, K. Watsen, and M. Zyda, “Three-Tiered Interest
Management for Large-Scale Virtual Environments,” Proc. ACM
Symp. Virtual Reality Software and Technology (VRST ’98), pp. 125-
129, 1998.

[20] K. Lee and D. Lee, “A Scalable Dynamic Load Distribution
Scheme for Multi-Server Distributed Virtual Environment Sys-
tems with Highly-Skewed User Distribution,” Proc. 10th ACM
Symp. Virtual Reality Software and Technology (VRST ’03), pp. 160-
168, 2003.

[21] H. Trefftz, I. Marsic, and M. Zyda, “Handling Heterogeneity in
Networked Virtual Environments,” Presence: Teleoperators and
Virtual Environments, vol. 12, no. 1, pp. 37-51, 2003.

[22] M.V. Capps, “The Quick Framework for Task-Specific Asset
Prioritization in Distributed Virtual Environments,” Proc. IEEE
Virtual Reality Conf. (VR ’00), p. 143, 2000.

[23] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. John Wiley & Sons, 1991.

[24] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Engineering Approach. IEEE CS Press, 1997.

[25] D.L. Spohn, Data Network Design. McGraw-Hill, 1993.
[26] J. Blommers, Practical Planning for Network Growth. Prentice Hall,

1996.
[27] P. Morillo, J.M. Orduña, M. Fernández, and J. Duato, “Improving

the Performance of Distributed Virtual Environment Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 7, pp. 637-
649, July 2005.

[28] F.J. Alfaro, J.L. Sánchez, L. Orozco, and J. Duato, “Providing QoS
in Infiniband for Regular and Irregular Topologies,” Proc.
Canadian Conf. Electrical and Computer Eng. (CCECE ’03), 2003.

[29] P. Morillo, J.M. Orduña, M. Fernández, and J. Duato, “A Method
for Providing QoS in Distributed Virtual Environments,” Proc.
13th Euromicro Conf. Parallel, Distributed and Network-Based Proces-
sing, 2005.

[30] P. Morillo, J.M. Orduña, M. Fernández, and J. Duato, “A
Comparison Study of Metaheuristic Techniques for Providing
QoS to Avatars in DVE Systems,” Proc. Int’l Conf. Computational
Science and Its Applications (ICCSA ’04), pp. 661-670, 2004.

[31] S. Rueda, P. Morillo, J.M. Orduña, and J. Duato, “A Sexual Elitist
Genetic Algorithm for Providing QoS in Distributed Virtual
Environment Systems,” Proc. Int’l Parallel and Distributed Proces-
sing Symp. Workshops (IPDPS ’05), 2005.

MORILLO ET AL.: A LATENCY-AWARE PARTITIONING METHOD FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 11

[32] Z. Choukair, D. Retailleau, and M. Hellstrom, “Environment for
Performing Collaborative Distributed Virtual Environments with
QoS,” Proc. Int’l Conf. Parallel and Distributed Systems (ICPADS ’00),
pp. 111-118, 2000.

[33] Y.W. Bernier, “Latency Compensating Methods in Client/Server
In-Game Protocol Design and Optimization,” Proc. 15th Games
Developers Conf., 2001.

[34] C. Faisstnauer, D. Schmalstieg, and W. Purgathofer, “Priority
Scheduling for Networked Virtual Environments,” IEEE Computer
Graphics and Applications, vol. 20, no. 6, pp. 66-75, 2000.

[35] T. Henderson and S. Bhatti, “Networked Games: A QoS-Sensitive
Application for QoS-Insensitive Users,” Proc. ACM Int’l Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’03), pp. 141-147, 2003.

[36] P. Festa and M. Resende, “Grasp: An Annotated Bibliography,”
Essays and Surveys on Metaheuristics, P. Hansen and C. Ribeiro,
eds., pp. 325-367, Kluwer Academic, 2002.

[37] X. Yuan, “Heuristic Algorithms for Multi-Constrained Quality of
Service Routing,” IEEE Trans. Networking, vol. 10, no. 2, pp. 244-
256, Feb. 2002.

[38] M. Randall and A. Lewis, “A Parallel Implementation of Ant
Colony Optimization,” J. Parallel and Distributed Computing,
vol. 62, no. 9, pp. 1421-1432, 2002.

[39] P.J. Laarhoven and E. Aarts, Simulated Annealing: Theory and
Applications (Mathematics and Its Applications). Springer, 1987.

[40] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms. Wiley,
1997.

[41] F.A. Feo and M.G. Resende, “Greedy Randomized Adaptive
Search Procedures,” J. Global Optimization, vol. 6, pp. 109-133,
1995.

[42] M.A. Weiss, Data Structures and Algorithm Analysis in C++.
Addison-Wesley, 1999.

[43] P. Morillo, J.M. Orduña, M. Fernández, and J. Duato, “A Fine-
Grain Method for Solving the Partitioning Problem in Distributed
Virtual Environment Systems,” Proc. IASTED Int’l Conf. Parallel
and Distributed Computing and Systems (PDCS ’04), pp. 292-297,
2004.

[44] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Springer, 1994.

[45] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick, “A Multi-
server Architecture for Distributed Virtual Walkthrough,” Proc.
ACM Symp. Virtual Reality Software Technology (VRST ’02), pp. 163-
170, 2002.

[46] C. Greenhalgh, “Analysing Movement and World Transitions in
Virtual Reality Tele-Conferencing,” Proc. European Conf. Computer
Supported Cooperative Work (ECSCW ’97), p. 313, 1997.

[47] M. Matijasevic, K.P. Valavanis, D. Gracanin, and I. Lovrek,
“Application of a Multi-User Distributed Virtual Environment
Framework to Mobile Robot Teleoperation over the Internet,”
Machine Intelligence and Robotic Control, vol. 1, no. 1, pp. 11-26,
1999.

Pedro Morillo received the MS and PhD
degrees in computer engineering from the
University of Valencia, Spain, with a dissertation
on “Improving the Performance in Distributed
Virtual Environments.” Currently, he is an
associate professor in the Department of Infor-
matics, University of Valencia. In this depart-
ment, he belongs to the Networking and Virtual
Environments (GREV) group, where he focuses
on the design and development of network

architectures for distributed virtual environments. Furthermore, his
research interests include distributed virtual environment systems, load
balancing, metaheuristics, and cluster computing. He also served as a
visiting scientist at Iowa State University, Ames, Iowa, in 2004 and the
University of Louisiana, Lafayette, in 2006. For more details on his work,
go to http://informatica.uv.es/~pmorillo.

Silvia Rueda is an assistant professor in the
Department of Informatics, University of Valen-
cia, Spain. She belongs to the Networking and
Virtual Environments (GREV) group of this
department. She is preparing her PhD disserta-
tion, which she will be defending within a few
months. Her research interests include distrib-
uted virtual environments systems, virtual rea-
lity, and nature-inspired algorithms.

Juan Manuel Orduña received the MS degree
in computer engineering from the Technical
University of Valencia, Spain, in 1990 and the
PhD degree in computer engineering from the
University of Valencia in 1998. He worked at
Telefónica de España, Manpel Electrónica, and
at the Technical University of Valencia as a
computer engineer. Currently, he is a lecturer
professor in the Department of Informatics,
University of Valencia, where he leads the

Networking and Virtual Environments (GREV) research group. His
research is currently supported by the Spanish MEC, and it addresses
interconnection networks, as well as distributed virtual environments.
His research has been developed inside the ACCA team.

José Duato received the MS and PhD degrees
in electrical engineering from the Technical
University of Valencia, Spain, in 1981 and
1985, respectively. He is currently a professor
in the Department of Computer Engineering
(DISCA) of the same university. He was also
an adjunct professor in the Department of
Computer and Information Science, Ohio State
University. His current research interests include
interconnection networks, multiprocessor archi-

tectures, networks of workstations, and switch fabrics for IP routers. He
has published more than 280 refereed papers. He proposed a powerful
theory of deadlock-free adaptive routing for wormhole networks. He
served as a member of the editorial boards of IEEE Transactions on
Parallel and Distributed Systems and IEEE Transactions on Computers.
He has served as cochair or member of the program committee for more
than 40 conferences, including the most prestigious conferences in his
area (HPCA, ISCA, IPPS/SPDP, ICPP, ICDCS, Europar, and HiPC). He
is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

