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Abstract

Background: Establishing the relationship between microbiota and specific diseases is important but requires

appropriate statistical methodology. A specialized feature of microbiome count data is the presence of a large

number of zeros, which makes it difficult to analyze in case-control studies. Most existing approaches either add a

small number called a pseudo-count or use probability models such as the multinomial and Dirichlet-multinomial

distributions to explain the excess zero counts, which may produce unnecessary biases and impose a correlation

structure taht is unsuitable for microbiome data.

Results: The purpose of this article is to develop a new probabilistic model, called BERnoulli and MUltinomial

Distribution-based latent Allocation (BERMUDA), to address these problems. BERMUDA enables us to describe the

differences in bacteria composition and a certain disease among samples. We also provide a simple and efficient

learning procedure for the proposed model using an annealing EM algorithm.

Conclusion: We illustrate the performance of the proposed method both through both the simulation and real data

analysis. BERMUDA is implemented with R and is available from GitHub (https://github.com/abikoushi/Bermuda).

Keywords: Latent allocation model, Mixture distribution, Metagenomics

Background
Low-cost metagenomic and amplicon-based sequencing

has provided a snapshots of microbial communities and

their surrounding environments. One of the goals for

case-control studies using microbiome data is to inves-

tigate whether cases differ from controls in term of the

microbiome composition of a particular body ecosystems

(e.g., the gut) and which taxa are responsible for any dif-

ferences observed [1]. (Here, we use the generic term

“taxa” to denote a particular phylogenetic classification.)

These studies present microbiome data are represented

as count data using operational taxonomic units (OTUs).

The number of occurrences of each OTU is measured for

each sample drawn from an ecosystem, and the resulting
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OTU counts are summarized for any level of the bac-

terial phylogeny, e.g., species, genes, family, order, etc.

An important feature of these microbiome count data is

that it is highly sparse—i.e., a very high proportion of the

data entries are zero—which makes analyzing these data

difficult.

A common strategy to handle these excessive zeros is

to add a small number called a pseudo-count. For exam-

ple, Xia et al. (2013) [2] applied a logistic normal model to

their data, adjusted by a pseudo-count. Although adding

a pseudo-count is a simple and widely used strategy, it

can add an unnecessary bias to the data. Further, Weiss

et al. (2017) [3] noted that there is no clear consensus

on how to choose that value. Another common strategy

to mitigate the effects of these excessive zeros is to use

non-parametric statistical tests. Wagner et al. (2011) [4]

described a test statistic that combines the proportion of

zeros in the data with the statistics on values other than 0.
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However, this statistical test can only be used for compar-

ing two taxa. In addition, the test cannot evaluate the co-

occurrence relationships between many taxa, or the effect

of combination of taxa. Other strategies include model-

ing excess zeros using probability models [5, 6]. Such an

approach is called “zero-inflated" modeling, and directly

models the probability of producing excessive zeros.

However, zero-inflated models make an implicit assump-

tion that microbial composition is identical among indi-

viduals. Thus, such models cannot capture the effects of

individual differences in microbial composition.

Contributions This article proposes a new probabilistic

model, called BERnoulli and MUltinomial Distribution-

based latent Allocation (BERMUDA), to address these

problems. The contributions of our work are summarized

below:

1 BERMUDA is a generative statistical model that

allows a set of taxa to be explained by unobserved

groups and can be used to find the inherent

relationship between taxa and a specific disease and

to generate microbiome count data through the

model.

2 In BERMUDA, the abundance of each taxon can be

viewed as a mixture of various groups, which enables

us to describe the differences in bacteria composition

between samples.

3 We provide a simple and efficient learning procedure

for the proposed model using an annealing EM

algorithm that reduces the local maxima problem

inherent to the traditional EM algorithm. The

software package that implements the proposed

method in the R environment is available from

GitHub (https://github.com/abikoushi/Bermuda).

We describe our proposed model and algorithm in

the “Methods” section. We also provide the efficiency of

BERMUDA using synthetic and real data in “A Simulation

Study” and “Results” sections, respectively.

Methods
Proposedmodel

Suppose that we observe a microbial count dataset with

disease labels, {(wnk , yn); n = 1, . . . ,N , k = 1, . . . ,K)},

where wnk is the abundance of the k-th taxon and yn is a

binary outcome such that yn = 1 if the n-th sample has

a certain disease and yn = 0 otherwise. Let wn be the k-

th row of matrix W = (wnk) and Mn =
∑K

k=1 wnk be the

total reads count of the n-th sample.

We extract the associations between microbial compo-

sition and a specific disease by also supposing that there

exist L latent clusters that vary with microbial composi-

tion and the disease risk. Let zn = (zn1, . . . , znL)
T be an

indicator vector such that znl = 1 if the n-th sample is in

the l-th class and znl = 0 otherwise. We then consider the

following generative model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yn|zn, ρ ∼ Bernoulli
(

ρ
zn1
1 · · · ρ

znL
L

)

,

wn|Mn, zn,P ∼ Multinomial
(

Mn, z
T
n P

)

,

zn|φ ∼ Multinomial(1,φ),

pl|α ∼ Dirichlet(α),

(1)

where ρ = (ρ1, . . . , ρL)
T is the probability of developing

a certain disease, P = (plk) (l = 1, . . . L) is an L × K

matrix of the appearance probability of taxa, pl is the l-th

row vector of matrix P, φ = (φ1 . . . ,φL)
T is a vector of

each component’s mixing ratios, and α = (α1, . . . ,αK )T

is a vector of the hyperparameters of the Dirichlet prior

distribution. Figure 1 displays the plate notation for the

proposed model. The gray node represents an observed

variable and the white node represents an unobserved

variable; the latent variable zn affects both yn and wn.

If the latent variable zn is given, the complete likelihood

of this model is represented by the following formula:

N
∏

n=1

f (yn ,wn , zn|P, ρ,φ)

=

N
∏

n=1

L
∏

l=1

φ
znl
l

{

ρ
yn
l

(

1 − ρl
)1−yn

}znl

⎛

⎝

(

∑K
k=1 wnk

)

!

wn1 ! · · ·wnK !

K
∏

k=1

(

p
wnk
lk

)znl

⎞

⎠ .

(2)

The posterior distribution is then proportional to:

exp

(

N
∑

n=1

log f (yn,wn, zn|P, ρ,φ)+

L
∑

l=1

K
∑

k=1

(αk−1) log plk

)

.

(3)

Parameter estimation

We find themaximum a posteriori probability (MAP) esti-

mators, using an annealing EM (AEM) algorithm [7]. One

advantage of using an AEM algorithm is that it reduces

the local maxima problem from which the traditional EM

algorithm suffers.

Fig. 1 The plate notation for the proposed model
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In the E-step, using the inverse temperature 0 < β ≤ 1,

we calculate

z
(i+1)
nl =

f
(

yn,wn, znl|P
(i), ρ(i),φ(i)

)β

∑

znl
f
(

yn,wn, znl|P(i), ρ(i),φ(i)
)β

. (4)

To simplify the explanation, we set γ = αk −1. From the

logarithm of (3), in the M-step, we update the parameters

using:

φ
(i+1)
l =

1

N

N
∑

n=1

z
(i+1)
nl , (5)

ρ
(i+1)
l =

∑N
n=1 z

(i+1)
nl yn

∑N
n=1 z

(i+1)
nl

, (6)

p
(i+1)
lk

=

∑N
n=1 z

(i+1)
nl wnk + γ

∑N
n=1 z

(i+1)
nl Mn + Kγ

. (7)

If γ = 0, MAP estimators are equivalent to maximum

likelihood estimatos (MLEs).

The procedure of BERMUDA is then summarized as

follows:

1 Set β .

2 Arbitrarily choose an initial estimate P(0), φ(0) and

ρ(0). Set i ← 0.

3 Iterate the following two steps until convergence:

(a) E-step: Compute z
(i+1)
nl from (4).

(b) M-step: Compute P(i+1), φ(i+1) and ρ(i+1)

from (5), (6) and (7). Set i ← i = i + 1.

4 Increase β .

5 If β < 1, repeat from step 3; otherwise stop.

Let φ̂, ρ̂ and P̂ be MAP estimators of φ, ρ and P. If given

wn and the estimators, we can evaluate the probability that

the n-th sample has the target disease. The conditional

probability is given by

ρ̃n = Pr
(

yn = 1|wn, P̂, ρ̂, φ̂
)

=
Pr

(

yn = 1,wn|P̂, ρ̂, φ̂
)

Pr
(

wn|P̂, ρ̂, φ̂
)

=

∑

znl
f
(

yn = 1,wn, znl|P̂, ρ̂, φ̂
)

∑

znl

∑

yn
f
(

yn,wn, znl|P̂, ρ̂, φ̂
) . (8)

The advantage of using the Dirichlet prior distribution

is that we can evaluate the abundance of the taxa whose

abundance is exactly zero.

The n-th sample is then classified into the l-th class that

maximizizes the conditional probability given by

ẑnl =
f
(

yn,wn, znl|P
(i), ρ(i),φ(i)

)

∑

znl
f
(

yn,wn, znl|P(i), ρ(i),φ(i)
) . (9)

In fitting the model, it is important to choose an appro-

priate number for L. In this article, we use cross-validation

to choose L. From (8), we can evaluate the probability

that the n-th sample has the target disease. We can then

evaluate the log-loss function represented by:

LL = −

J
∑

j=1

(

yj log
(

ρ̃j
)

+
(

1 − yj
)

log
(

1 − ρ̃j
))

, (10)

where J is an arbitrarily chosen subsample size for the val-

idation data. We then select an L which minimizes (10) in

this analysis.

A simulation study
In this section, we generated synthetic data and evaluated

the performance of our method in order to gain insights

into the accuracy of the parameters estimated using the

proposedmodel. A simulation study was conducted as fol-

lows. An i.i.d. sample is generated by (1) where we set

N = 700, Mn = 10000, L = 7, γ = 10−9, φ =

(1/7, . . . , 1/7)T , and ρ = (0, 3, 0.4, . . . , 0.9)T . P is chosen

by a standard Dirichlet random number.We estimated the

parameters from 10,000 replicates of the experiment.

Table 1 shows the mean and standard error (se) of the

estimates for ρ and φ using the proposed method. It can

be observed that the estimates are unbiased to the order of

1/100. Figure 2 shows the relationship between estimates

and true P in this simulation. In this figure, the points

are arranged diagonally, implies that the estimator is unbi-

ased. The overall accuracy of classification by ẑnl (9) is

0.87.

Results
Parkinson’s disease data

We first seek to identify the gut dysbiosis in relation to the

development of Parkinson’s disease (PD), which is thought

to be associated with intestinal microbiota. We analyzed

Table 1 The mean and se of ρ̂ and φ̂

Cluster 1 2 3 4 5 6 7

ρ 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Mean 0.30 0.40 0.50 0.60 0.70 0.80 0.90

se 0.05 0.05 0.05 0.05 0.05 0.04 0.03

φ 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Mean 0.14 0.14 0.14 0.14 0.14 0.14 0.14

se 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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Fig. 2 The comparison of trueP and mean of P̂

intestinal microbial data for PD cases and controls in three

different countries. Scheperjans et al. (2015) [8] , Hill-

Burns et al. (2017), [9], Hopfner et al. (2017) [10] and

Heintz et al. (2018) [11] conducted case-control studies

by sequencing the bacterial 16S ribosomal RNA gene in

Finland, the USA, and Germany, respectively.

The OTUs are then mapped to the SILVA taxonomic

reference, version 132 (https://www.arb-silva.de/) and the

abundances of genus-level taxa are calculated.We focused

on the top 20 genera in terms of sample mean of nor-

malized abundance wnk/Mn for 336 PD cases and 277

controls.

We set γ = 10−9, which is equivalent to giving a

weakly informative prior. The number of components

L = 6 is selected using 10-fold cross-validation (Fig. 3). To

ensure the stability, we iterated the cross validation 10,000

41.00

41.25

41.50

41.75

2 4 6 8

number of components

lo
g
−

lo
s
s

Fig. 3 The behavior of the log-loss functions given by different

numbers of components L. The error-bars indicate standard error

times and used the mean of log-loss functions. Figure 3

shows the log-loss functions for different numbers of the

components L.

Figure 4 presents the estimated appearance probabili-

ties of the 20 genera. The clusters are sorted by estimated

PD risk ρ̂ (Table 2). As displayed Fig. 4, the distribution

of Prevotella is quite distinctive, being concentrated in the

low-risk cluster of PD. Faecalibacterium also tends to be

higher in the low-risk cluster. In contrast, Akkermansia is

concentrated in the high-risk cluster.

Zeller’s colorectal carcinoma data

Next, we investigate the identification of gut dysbio-

sis associated with the development of colorectal cancer

(CRC). Zeller et al. (2014) [12] studied gut metagenomes

extracted from 157 persons, 91 of whom are CRC patients

and 66 are controls. The data are available as an R

package “curatedMetagenomicData” (https://github.com/

waldronlab/curatedMetagenomicData). In the analysis,

we used the abundance of order-level taxa.

While training the model, we set γ = 10−9. The num-

ber of components L = 3 was selected using 10-fold

cross-validation. To ensure the stability, we iterated the

cross validation 10,000 times and used the mean of log-

loss functions. Figure 5 shows that log-loss functions for

different numbers of the components, L. The clusters are

sorted by the estimated CRC risk ρ̂.

Figure 6 presents the estimated appearance probabilities

for each cluster. Previous studies showed that Fusobac-

terium flourishes in colorectal cancer cells [13]. Figure 6

shows that the abundance of Fusobacteriales is positively

correlated ρ̂. We also observe bacteria, such as Bac-

teroides and Chlamydiales with monotonically increasing

abundance. This result indicates that BERMUDA can

be a valuable tool for discovering new disease-related

bacteria.

Discussion
We evaluated the accuracy of parameter estimation using

the simulated data. Table 1 and Fig. 2 shows that the

proposed method can produce reasonable estimates and

classify samples into true groups.

We also applied BERMUDA to the real metagenomic

sequencing data in order to identify the associations

between the gut microbiota and PD. We compared the

results of BERMUDA with those of previous studies.

Petrov et al. (2016) [14] reported that the gut micro-

biota of PD patients contained high levels of Chris-

tensenella, Catabacter, Lactobacillus, Oscillospira, and

Bifidobacteriumm, and the control cluster was charac-

terized by increased content of Dorea, Bacteroides, Pre-

votella, and Faecalibacterium. In family level analysis,

Hill-Burns et al. (2017) [9] reported PD patients con-

tained high levels of Bifidobacteriaceae, Lactobacillaceae,

https://www.arb-silva.de/
https://github.com/waldronlab/curatedMetagenomicData
https://github.com/waldronlab/curatedMetagenomicData
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Fig. 4 The appearance probability of the 20 genera (P̂)

Tissierellaceae, Christensenellaceae and Verrucomicrobi-

aceae and low levels of Lachnospiraceae, Pasteurellaceae.

Scheperjans et al.(2015) [8] reported PD patients con-

tained high levels of Lactobacillaceae, Verrucomicro-

biaceae, Bradyrhizobiaceae and Ruminococcaceae and

low levels of Prevotellaceae and Clostridiales Incer-

tae Sedis IV. Akkermansia belongs in Verrucomicrobi-

aceae. Of the Verrucomicrobiaceae, it has been suggested

that Akkarmansia may be related to PD. BERMUDA

revealed Prevotella, Faecalibacterium, and Akkerman-

sia associated with PD, which were commonly found

in several studies. Thus, the analysis with real data

demonstrates that the proposed method can identify the

connection between the gut microbiota and PD, with

the results are strongly supported by the previous PD

research.

Table 2 The estimated disease risk (ρ̂l) within each cluster

1 2 3 4 5 6

1 0.31 0.43 0.54 0.62 0.71 0.73

Conclusion
We proposed the new probabilistic model BERMUDA to

analyze the relationship betweenmicrobiota and a specific

diseases. Although the existing approaches tend to under-

estimate individual differences in microbial composition,

10.52

10.56

10.60

2 4 6 8

number of components

lo
g
−

lo
s
s

Fig. 5 The behavior of the log-loss functions given by different

numbers of components L. The error-bars indicate standard error
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Fig. 6 The appearance probability of the 45 orders (P̂)

BERMUDA can take into account these differences and

identify combinations of taxa rather than single taxa in

the analysis of association with a specific disease risk. We

demonstrated the applicability of BERMUDA to micro-

bial analyses with simulation and real data.We expect that

BERMUDA can be efficiently applied to studies that seek

for an association between gut dysbiosis and a specific

disease.
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