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Abstract—With a continuous increase in the number of Earth
Observation satellites, leading to the development of satellite im-
age time series (SITS), the number of algorithms for land cover
analysis and monitoring has greatly expanded. This paper offers a
new perspective in dynamic classification for SITS. Four similarity
measures (correlation coefficient, Kullback–Leibler divergence,
conditional information, and normalized compression distance)
based on consecutive image pairs from the data are employed.
These measures employ linear dependences, statistical measures,
and spatial relationships to compute radiometric, spectral, and
texture changes that offer a description for the multitemporal
behavior of the SITS. During this process, the original SITS is
converted to a change map time series (CMTS), which removes the
static information from the data set. The CMTS is analyzed using
a latent Dirichlet allocation (LDA) model capable of discovering
classes with semantic meaning based on the latent information
hidden in the scene. This statistical method was originally used
for text classification, thus requiring a word, document, corpus
analogy with the elements inside the image. The experimental
results were computed using 11 Landsat images over the city
of Bucharest and surrounding areas. The LDA model enables
us to discover a wide range of scene evolution classes based on
the various dynamic behaviors of the land cover. The results are
compared with the Corinne Land Cover map. However, this is
not a validation method but one that adds static knowledge about
the general usage of the analyzed area. In order to help the
interpretation of the results, we use several studies on forms of
relief, weather forecast, and very high resolution images that can
explain the wide range of structures responsible for influencing the
dynamic inside the resolution cell.
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I. INTRODUCTION

THE Earth’s surface is constantly affected by various pro-

cesses, thus explaining why the study of its dynamics

is one of the emergent issues in the field of remote sensing

imagery processing. Seasons, climate, natural disasters, human

activities, and the urban development are few of the reasons

underlying surface transformations. Monitoring the land cover

evolution is imperative for understanding the environmental

changes and complex land transformations identifiable over

short (days–weeks) to long (seasonal–years) periods of time.

Vast data collections have been created using images presenting

a region at different moments of time (years, months, or days),

which have been identified as satellite image time series (SITS)

that can provide significant knowledge about the Earth’s surface

dynamics.

By exploiting their rich information content, a broad range of

new applications may be opened. For instance, by using SITS

covering short periods of time, one can observe the growth

and the maturation periods of cultures and their harvesting, the

evolution of rivers and flooded areas, or other details helpful in

domains such as agriculture, forestry, or hydrology. Moreover,

images acquired during long periods of time may explain urban

development, natural resources exploitation and their subse-

quent consequences, or the pollution phenomenon. These are

only few examples of potential applications for urbanization,

industry, and ecology.

It is difficult though for the human eye to observe and

extract relevant information directly from such an important

amount of data. Therefore, significant attention has been paid

to a set of various techniques developed for temporal infor-

mation extraction [1] in order to apply them on SITS. Several

methods have been developed for the automatic discovery of

regularities or relationships inside collections of unstructured

data indexed according to the temporal interdependences. The

spatiotemporal study presented in [2] aims at extracting relevant

information based on the information-bottleneck principle. A

method depending on a suitable model selection and a rate-

distortion analysis are combined. A novel method for extrac-

tion of frequent temporal patterns is depicted in [3]. It relies

on the identification of evolutions and subevolutions at pixel

level for finding groups of pixels that could be of interest

to the end users. Furthermore, unsupervised learning of dy-

namic cluster trajectories followed by an interactive learning
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process is proposed in [4]. Landsat SITS was characterized

considering spectral indices [5] and a mixed information mea-

sure [6]. A methodology for compressing an image database

is presented in [19] by taking into account interobject re-

dundancies and using the informational similarity measure.

Recently, a method for SITS analysis that is able to deal

with temporal irregular sampling and to compare time series

having different numbers of temporal observations based on

dynamic-time-warping similarity measure has been introduced

in [27].

Nevertheless, the scene dynamic can be analyzed considering

only two images and computing how alike they are. This

could be extremely helpful for finding specific details about the

transformations that a certain area had suffered at a specific

moment of time. In order to identify those transformations,

change detection algorithms may be applied on image pairs

depicting the same region at different moments of time, before

and after a certain event. Similarity measures are generally used

to estimate the degree of variation between the pixels of two

images. The correlation coefficient (CC) is probably one of the

most common similarity measures, and it helps highlighting

radiometric changes [7], [8]. The Kullback–Leibler divergence

(KLD) [8] and the conditional information (CI) [9] are two

measures that emphasize the changes associated to the spectral

features of the compared scenes. The changes related to the

images’ texture are captured when computing the normalized

compression distance (NCD) [10], [11]. While change detec-

tion algorithms using two images represent the starting point

for long-term analysis, leading to SITS modeling, the similarity

measures employed provide new features for describing the

evolution of scene dynamics.

Supporting this idea, this paper introduces a new approach

for the study of land cover dynamic evolution by combin-

ing SITS temporal analysis with classical change detection

techniques. The main idea is to model an image time series

based on the transformations occurring between consecutive

acquisitions of the considered SITS. The innovation of the

proposed technique lies in the conversion of the multispectral

information from the entire data set in a change map time

series (CMTS). Hereby, each pair of consecutive images will

be described by a number of four change maps computed using

the four different similarity measures mentioned previously.

Complementary information about the changes occurred in the

scene will be extracted and further employed in order to provide

the user with a broader perspective on the land transformation

processes.

CMTS size will quadruple compared to the original SITS,

making the usual processing even more difficult. In order to

structure the collection of images for a fast analysis, each

pixel of the scene will be described by a temporal signature.

A k-means classification will be performed over all available

signatures, such that the values assigned to a precise position

in the image will be reduced to a single label and denoted as

a “word.” In order to apply text statistics for image analysis,

the definition of a dictionary is mandatory. For this purpose, the

authors propose a k-means classification over the set of tem-

poral signatures (words) such that the assigned labels denote

the dynamic evolution of pixels in the scene. Moreover, each

class can be regarded as a “visual word,” and it comprises areas

characterized by the same type of change in the same period of

time as the SITS. For instance, different types of crops or veg-

etation can be separated according to their periodicity and life

spans. Based on this image–text analogy, the scene described

by the CMTS will be modeled using latent Dirichlet allocation

(LDA) generative model [12], [13], a technique developed for

text analysis. Using a bag-of-words assumption, the order of

visual words is neglected, and the dictionary will be reduced

to a set of latent parameters treated as variables drawn from

a Dirichlet distribution. The result is a thematic map which

highlights regions with similar dynamic evolution, offering a

different perspective from the already existing ones.

All the previously developed algorithms for SITS modeling

analyze sequences of image classifications characterizing the

scene at the time of data acquisition. Therefore, the process

uses precisely defined temporal attributes as inputs to obtain

a classification of the considered scene. The evolution of Earth

surface is indirectly pursued.

The methodology that we propose in this paper emphasizes

the process of Earth surface dynamic evolution using attributes

of change which are computed in order to express the land

dynamic between consecutive image acquisitions. Based on

these attributes, the generative process of LDA model is able

to latently discover classes of evolution whose semantics is de-

fined by similar dynamic evolution in time of different regions.

The LDA modeling proved to be effective with a small training

data set, randomly chosen and with no prior information about

the classes to be extracted. Even if our methodology may

seem similar to a classification process, LDA is nevertheless

an algorithm for information retrieval. In this case, it can

find, annotate, and return regions characterized by a similar

evolution in time, pointing toward specific directions of Earth

surface transformation.

The remainder of this paper is organized as follows.

Section II presents the method proposed by the authors for

the analysis of Earth surface dynamic evolution. The similarity

measures used to describe short-time changes (CC, KLD, CI,

and NCD) are defined in Section III, while the LDA modeling

of the dynamic evolution is explained in Section IV. Experi-

mental results (Section V) and the conclusions (Section VI) will

contribute to the exemplification and validation of the proposed

methodology.

II. PROPOSED METHOD FOR THE LATENT ANALYSIS

OF EARTH SURFACE DYNAMIC EVOLUTION

This section focuses on describing the proposed methodol-

ogy for the analysis of Earth surface dynamic using remote

sensing image time series.

Considering a SITS with N + 1 images (of m× p pixels

each), we form pairs of consecutive acquisitions that will

be integrated as inputs of a change detection process. Four

different similarity measures will be used to identify various

types of changes occurred in the scene, offering the user an

overview about the nature of the analyzed landscape. The four

different measures will provide complementary information

as follows: the CC determines radiometric changes, the KLD



VĂDUVA et al.: ANALYSIS OF EARTH SURFACE DYNAMIC EVOLUTION 2107

Fig. 1. Processing chain of the proposed approach used to classify the dynamic evolution of the scene.

and CI measure the local and, respectively, general spectral

differences, and the NCD is used for detecting transformations

of the land cover texture.

In order to perform a change detection analysis, we employ

a sliding window that simultaneously covers the same area

from both images. The size of the window depends on both

the image spatial resolution and the type of analyzed change.

The value of the similarity measure gives us the amount of

change corresponding to the pixel in the center of each tile. The

resulting change maps are gray level images with the intensity

of the pixel defining the degree of change. Thereby, each pair of

consecutive acquisitions will be characterized by a set of four

change maps.

The output of the change detection process consists of a

series of 4∗N components comprising four change maps com-

puted based on the similarity measures employed for each of the

N pairs of images in the original SITS consecutively acquired.

A new quadruple sized time series is formed based on the newly

computed maps. At this stage, every pixel will be described by

a 4∗N component temporal signature that depicts the dynamic

evolution of the area.

Once the CMTS is obtained, a k-means algorithm employing

a Euclidean distance will be applied on the set of m× p

temporal signatures obtained in order to define some patterns

for the dynamic evolution. All the pixels characterized by a

similar temporal behavior will receive the same label, reducing

the CMTS to a single image. These patterns will be denoted

as visual words and used as inputs for the LDA modeling in

order to perform an interactive classification which is based on

a text analysis method. Considering that LDA is a probabilistic

generative model for collections of discrete data or text corpora,

the purpose is to identify symbolic characteristics for the ob-

jects in the analyzed collection that enable efficient processing

while preserving fundamental statistical relationships necessary

for a semantic classification of Earth’s surface dynamic. The

model requires an arbitrary training set to learn the statistic

interactions in the scene and afterward apply them for the anal-

ysis of the entire collection. The scene will be described as a

mixture of topics characterized by latent variables. Every topic

is, in turn, distinguished by means of a probability distribution

based on the co-occurrence of visual words extracted from the

image.

A general diagram for the proposed approach is shown

in Fig. 1. The method is unsupervised and assigns semantic

meaning to the scene, according to the dynamic evolution of

the Earth’s surface.

Nevertheless, the extension of the SITS with a new image

implies the resumption of the entire analysis, because no new

information can be added without discarding the previous

model. After the radiometric correction of the new image,

depending on its time positioning in the series, one or two sets

of change maps need to be obtained and then introduced in the

CMTS. Even if this is a simple and independent computation, it

will significantly affect the parameters of the analysis. This will

result in a new feature space, and for vector quantization, we

have to apply k-means on this new feature space. Increasing the

dimensionality of the feature space also changes the semantic

meaning of the extracted “words,” and as such, the optimal

number of LDA topics and the optimal number of words have

to be determined. The final influence depends on the amount

of existing differences between the new scene and the existing

ones.

A theoretical overview over the similarity measures and

the LDA generative model is given in the following sections,

detailing the computation method and type of information

that it extracts from a SITS in order to help environmental

understanding based on Earth’s land cover dynamic.

III. SIMILARITY MEASURES FOR CHANGE DETECTION

During the change detection process, we compare two im-

ages acquired at different times, before and after an unspecified

event, unknown for the user. The purpose is to identify the

differences occurred in the landscape by applying a patch-

based analysis on two images of the same size. Therefore,

we simultaneously scan the images with a window, measure

the similarity between them, and assign the obtained value

to the coordinates corresponding to the center of the window.

The measures applied assess similarity from different points of

view. Thus, the CC computes radiometric information based on

linear dependences, the KLD and CI use first- and second-order

statistics to depict spectral changes, and the NCD considers the

spatial information to extract textural differences between two

regions in consecutive images.
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A. CC

The CC is a measure of the dependences existing between

two quantities, and we use it to express the quality of a least

squares fitting of the image after to the one before a certain

event.

The computation of the CC between two image windows i

(in the first image) and j (in the second image) can be made by

means of the following formula:

CC(i, j) =
1

n

∑

x,y

(i(x, y)−mi) (j(x, y)−mj)

σiσj

(1)

where n is the number of pixels included in the analysis

window, x and y represent their coordinates, mi and mj are

the estimated mean values for the ith and jth windows, respec-

tively, and σi and σj are their standard deviations. CC(i, j) = 0
when the landscape is completely changed, while CC(i, j) = 1
for identical images.

There are two approaches for the use of this similarity

measure; it can model geometric deformations by local rigid

displacements [7] or detect radiometric scene transformations

[8]. In this paper, the authors employ the CC in order to identify

radiometric changes occurred between two consecutive images

included in a SITS.

B. First-Order KLD

The KLD is based on pixel statistics and has been used as a

similarity measure for change or anomaly detection processes

in image analysis [7], [8], [11]. In this paper, we apply this

measure to detect the transformations that occurred in the land-

scape, aiming to quantify the divergence between two image

windows characterized by the probability distributions p(x) (in

the first image) and q(x) (in the second image).

Considering the two probability distributions p(x) and q(x)
related to the same random variable X , the KLD or relative

entropy [14] is given by

DKL(p, q) =
∑

x

p(x) log
p(x)

q(x)
. (2)

The KLD is a positively defined not-symmetric measure,

being equal to zero only if p(x) = q(x). When the analyzed

images are very similar, DKL(p, q) → 0.

Based on this measure, the change detection algorithm com-

pares the density probabilities of the gray level pixels for

both image windows, offering information about the spectral

differences of the data. It is important to mention that all the

pixels inside a sliding window are characterized by identical

weights.

C. CI

The third algorithm for change detection is an adapted ver-

sion of the Alparone method used for synthetic aperture radar

images [8]. The rationale is that the negative of logarithm of

probability of an amplitude level in one image conditional to the

level of the same pixel in the other image conveys information

on the amount of change occurred between the two images.

The algorithm is based on the computation of the CI at each

pixel (m,n) from the before and after images:

CI(m,n) = − log(q (⌊ḡ2(m,n)⌋ | ⌊ḡ1(m,n)⌋) (3)

where g1 and g2 are the before and after images and q is the

rescaled conditional probability.

Although this algorithm finds spectral changes between the

pair of images, it differs from the KLD by decreasing the

weights of the pixels toward the edges of the window. Further

advantages of the method are its low sensitivity to noise and

lack of preprocessing requirements.

D. NCD

The NCD is a universal parametric free metric successfully

applied as a similarity measure to unstructured data in various

domains such as text corpora, computer programs, genomes,

or images. The NCD considers the length of the shortest

binary program used to transform two items into each other

[10]. Its main idea is based on the Kolmogorov complexity, a

noncomputable notion that needs to be approximated using a

compressor (i.e., gzip and jpeg).

In the present paper, we use the NCD to measure the dif-

ferences between two images and to detect major structural

changes that occurred in the landscape. Both spectral and

texture transformations will be identified.

The NCD is obtained by employing the following equation,

where i and j are the analysis windows in the first and second

images, respectively:

NCD(i, j) =
C(i, j)−min {C(i), C(j)}

max {C(i), C(j)}
. (4)

C(i, j) denotes the compressed size of the concatenation of i

and j, C(i) denotes the compressed size of i, and C(j) denotes

the compressed size of j.

The result is a nonnegative number 0 < r < 1 + e repre-

senting how different the two images are. Therefore, smaller

numbers (darker areas) represent more similar parts in the map

of changes. The error e in the upper bound appears due to the

imperfections in the compression technique (in our case, the

“zip” program).

IV. LDA MODELING OF THE DYNAMIC EVOLUTION

After we have identified the changes that occurred between

consecutive images of the SITS, the CMTS is complete and

ready to be modeled in order to assess the dynamic evolution of

the Earth land cover. An interactive classification is performed

by applying a statistical tool initially developed for text classi-

fication [12] and also used for semantic image annotation [13],

[15], [16].

This is a generative model for collections of discrete data

named LDA, a random source that is able to generate infi-

nite sequences of samples based on a probability distribution

[12]. LDA is a three-level hierarchical Bayesian model (word,

document, corpus) founded on the bag-of-words assumption,

meaning that the order of words inside a document and that
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of documents inside a corpus are ignored. Consequently, each

document in the collection is defined as a finite random mixture

over a “latent” hidden set of topics, while a topic is defined as a

probability distribution over a set of words in the vocabulary.

Denoting a document as a collection of N words in

the vocabulary and the vocabulary W = {w1, w2, . . . , wN}
and the corpus as a collection of M documents D =
{W1,W2, . . . ,WM}, LDA assumes a generative process

for each document in the corpus, as will be described

hereinafter [12].

First, we choose a K-dimensional Dirichlet random variable

θ ∼ Dir(α), where K is considered known and preset. Fur-

thermore, for each of the word positions n ∈ {1, 2, . . . , N},

we choose a topic zn ∼ Multinomial(θ) and a word wn from

p(wn|zn, β), a multinomial probability conditioned on the topic

zn. The word probabilities are parameterized by a matrix βij =
p(wj = 1|zi = 1) whose size is given by the size of the vocab-

ulary and by the dimensionality of the Dirichlet distribution. It

is treated as a fixed quantity to be expected.

The corpus level parameters α and β are estimated during

the training phase, θ characterizes the documents, and z and

w represent the word level variables. Given α and β, one can

compute the joint distribution of a topic mixture θ, a set of N

topics z, and a set of N words w using the following formula,

where θi is represented in terms of the p(zn|θ) probability for

the unique i when zin = 1:

p(θ, z,W |α, β) = p(θ|α)

N
∏

n=1

p(zn|θ)p(wn|zn, β). (5)

Taking into consideration all the values of θ and z, we can

compute the marginal distribution of a document based on (6).

Furthermore, the probability of the corpus is measured as the

product of the marginal probabilities of single documents (7)

p(W |α, β)

=

∫

p(θ|α)

(

N
∏

n=1

∑

zn

p(zn|θ)p(wn|zn, β)

)

dθ (6)

p(D|α, β)

=
M
∏

d=1

∫

p(φd|α)

(

Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β)

)

dθd. (7)

We mention that M is the number of documents in the corpus

and Nd is the number of words in a document. Within the

three levels involved by LDA, the documents can be associated

with multiple topics. Due to its flexibility to assign probabilities

to documents outside the training corpus, LDA is considered

a suitable algorithm for supervised classification over an un-

known data set.

In order to be able to apply the algorithm to CMTS, we

need to define a correspondence between text and the current

approach. Due to the fact that the probability of two pixels

describing similar time evolutions in terms of change maps

is small, we have to perform a k-means classification to label

visual words and, thus, the vocabulary. Therefore, each pixel

characterized by a 4∗N component temporal signature repre-

TABLE I
ACQUISITION DATES FOR SITS

TABLE II
IMAGE PAIRS AND THE CORRESPONDING TIME PERIODS

FOR CHANGE DETECTION ANALYSIS

sents a visual word. An image tile represents a visual document,

while the corpus is the entire CMTS. As the LDA model can

only be applied on discrete data, the k-means classification can

also be considered as a vector quantization process that trans-

forms the extracted feature space into a word space modeled

based on the bag-of-words assumption. The rationale behind

the selection of this algorithm is its simplicity and frequent use.

V. LATENT ANALYSIS OF THE EARTH’S

SURFACE DYNAMIC EVOLUTION

The method was tested on 11 Landsat images [20] acquired

over a period of five months between May 5 and September 14,

2007 (Table I). The study area is Bucharest and its surround-

ings, with each scene being 1500 × 1100 pixels in size, which

corresponds to a surface of 45 × 33 km. Table II presents the

time periods for the change detection analysis.

A. Experimental Setup

The proposed processing chain implies the study of a series

of 11 images. Even if they are provided by the same sensor, the

conditions of acquisition vary according to the Earth–Sun posi-

tioning. A data preprocessing is required in order to standardize

the SITS for an optimum analysis. The actual methodology de-

scribed in this paper (Fig. 1) consists of two major parts: change

detection algorithm and LDA modeling. Their parameter setup

will be presented and detailed within this section along with the

characteristics of data preprocessing.

Data Preprocessing: Preprocessing of the data first includes

the conversion to the planetary top-of-atmosphere reflectance

ρλ [17] using the following equation in order to minimize the

illumination effects:

ρλ =
π · Lλ · d2

ESUNλ · cos θs
(8)
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Fig. 2. (a) and (b) Landsat image (16.05, 29.08). (c)–(f) Change maps
using the KLD. The sizes of the analysis window are (c) 5 × 5 pixels,
(d) 10 × 10 pixels, (e) 20 × 20 pixels, and (f) 30 × 30 pixels. As can be
noticed, smaller windows increase the sensitivity to local changes.

where Lλ is the spectral radiance at the sensor’s aperture, d is

the Earth–Sun distance, ESUNλ is the mean exoatmospheric

solar irradiance, and θs is the solar zenith angle.

The area chosen for the experiments in this paper is charac-

terized by a temperate climate, with a low occurrence of haze

during the studied period. As there are not enough weather data

to perform a full radiometric correction, we have performed a

relative radiometric correction using the COST method [18],

[22], choosing the image from September 19 as reference.

Normalization is performed on the basis of an invariant set of

pixels by means of a regression analysis. In addition, in order

to obtain accurate results, we have selected for the time series

analysis only scenes that are cloud free or with a very low

presence of clouds.

Every new image needs to be radiometric corrected with

respect to the reference scene. There is also the option of setting

the new image as reference if it is considered more accurate

than the present reference image. If that is the case, a complete

radiometric correction will be applied on the entire SITS.

Parameter Setup for Change Detection Process: The ex-

tracted classes are then used to compute change maps with

the described method: For every pair of consecutive images in

the SITS, we simultaneously scan the images with a window,

measure the similarity between them, and assign the obtained

value to the coordinates corresponding to the center of the

window.

The size of the analysis window must be set according to the

following three parameters:

1) image spatial resolution—the amount of details one can

distinguish;

2) type of deformations desired—the type of change one

wants to locate (for instance, a flooded area detection

requires a larger window, while damaged houses are

identified by a small window);

3) computation time—the computational load of the algo-

rithms increases with the reduction of the window.

Fig. 3. (a) and (b) Landsat image (16.05, 29.08). (c)–(f) Change maps using
CC, KLD, CI, and NCD. Areas with major changes are presented in white, and
areas with no changes are presented in black. Changes are visible in different
areas due to the complementarity of the extracted features (radiometry, spectral,
and texture). The analysis window’s size is 10 × 10 pixels.

The precision of the method depends significantly on the

size of the analysis window, as shown in Fig. 2. The change

maps were computed using the KLD similarity measure and a

window with various dimensions (5 × 5, 10 × 10, 20 × 20, or

30 × 30 pixels).

The change map is a gray level image. Its interpretation

depends on the similarity measure used. Consequently, the

areas with major changes are colored in white for the KLD, the

CI, and the NCD and in black for the CC. In order to uniform

the results, we use the negative of the change maps computed

based on the CC.

An example illustrating the change maps computed with the

four similarity measures for the 16.05–29.08.2007 image pair

is shown in Fig. 3.

Considering the employed data, a 10 × 10 pixel sliding

window was selected experimentally as a compromise between

the data features and accuracy of the results. Due to the image

low resolution, a window that is too large leads to an important

information loss. The identified changes would have no real

meaning. Considering these setups, we compute a set of four

change maps for every pair of consecutive images in the SITS

and form a new image series named CMTS. As a mention, if

the original SITS has N + 1 images, the obtained CMTS has

2N images.

Parameter Setup for LDA Analysis: The LDA modeling is

applied on the CMTS. For an accurate analysis, the following

two parameters need to be set:

1) number of words;

2) size of the document.

In order to determine these parameters, we propose a method

that uses the perplexity to identify an optimum LDA model. The

perplexity is equivalent to the inverse of the geometric mean

per word likelihood, monotonically decreasing in the likelihood

of test data [12]. A good inference extent to the entire data

set is given by a low value of this measure. Given a test set

of M documents D = {W1,W2, . . . ,WM} containing N =
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Fig. 4. Evolution of perplexity based on the document size for dictionaries
of 150, 200, and 250 words. (a) Perplexity for 150 words. (b) Perplexity for
200 words. (c) Perplexity for 250 words.

{N1, N2, . . . , NM} words, the perplexity is computed using the

following formula:

perplexity(Dtest) = e

−

M
∑

d=1

log p(Wd)

M
∑

d=1

Nd

. (9)

In our experiments, we considered dictionaries containing

150, 200, and 250 words. For each set of words, we formed doc-

uments with variable sizes, and we assessed the perplexity for a

number of 3–70 topics. The obtained results are shown in Fig. 4.

We can observe that there is a strong link between the number

of words and an optimum size of the document.

1) For the dictionary of 150 words, the optimum size for the

document is 10 × 10 pixels.

2) For the dictionary of 200 words, the perplexity has the

lowest value for a document size of 6 × 6 pixels.

3) For the dictionary of 250 words, the optimum size for the

document is 9 × 9 pixels.

Fig. 5. Perplexity assessment for the best LDA models.

Fig. 6. Classification of the Earth’s surface dynamic evolution. The legend
specifies the classes’ indexes.

The selection of the dictionary and the optimum document

size were determined by comparing the values of perplexity

according to Fig. 5. According to this assessment, it is found

that the LDA model defined using a dictionary of 200 words

and a document size of 6 × 6 pixels is characterized by the

lowest value of the perplexity. Regarding the number of topics,

we can observe a local minimum and, thus, an optimum value

for a number of 15 topics.

B. Experimental Results

Considering the setup process described in Section V-A, we

resume here the selected parameters for the proposed latent

analysis of Earth’s surface dynamic evolution:

1) size of the sliding window for change detection: 10 × 10

pixels;

2) size of the dictionary for the LDA model: 200 words;

3) size of the document for the LDA model: 6 × 6 pixels;

4) number of topics for the LDA analysis: 15.

There are several processing steps, involving the analysis of

a SITS of 11 scenes, from which we extract a set of 40 different

change measures. In terms of time consumptions, we mention
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that, on a desktop personal computer with a 2.4-GHz quad-core

CPU and 16 GB of RAM, each run of k-means took about 2 h

and each run of LDA training process required about 1.5 h. The

classification (topic estimation) step of LDA is faster, requiring

about 15 min.

The obtained results (Fig. 6) are presented as a land cover

classification, each class (LDA topic) portraying areas with a

similar evolution (concerning the type and the time of changes

that occurred) during the entire SITS acquisition period. The

Earth’s surface is characterized based on the dynamic evolution

of objects and structures on the ground in the analyzed period.

Without previous information explaining certain transforma-

tions, a specific description of the retrieved LDA topics is

complicated, such that the legend of the obtained map specifies

only the indexes for the identified classes.

The specific features of each class (LDA topic) can be

described in terms of temporal signatures according to the

dynamic evolution of the pixels included in that class. One

temporal signature, subsequent to one pixel, is given by all the

values in the CMTS corresponding to the coordinates of that

pixel. Each temporal signature is characterized by four different

components, measured with the four similarity measures. The

components defining the dynamic evolutions for all the classes

in Fig. 6 are shown in Fig. 7(a) (for the CC-based evolution),

Fig. 7(b) (for the KLD-based evolution), Fig. 7(c) (for the CI-

based evolution), and Fig. 7(d) (for the NCD-based evolution).

We mention that we used the same colors for the classification

as well as for the dynamic evolution representation. On the x-

axis, we can find the image pairs (see Table II) for which the

degree of change on the y-axis was computed. The obtained

values were normalized between zero and one, such that all the

identified transformations have the same influence during the

LDA modeling.

We observe that the radiometric changes were smaller than

the texture and spectral ones. This can be explained by the

fact that the time interval for the analyzed SITS is included in

one year, which is too short for a city as large as Bucharest to

suffer important transformations. All the classes have a similar

evolution until the end of July, when some of the regions,

corresponding to five classes, continue to transform while the

rest of them tend to remain unchanged.

The spectral evolution is characterized by a higher degree

of change, from 0.7 to 0.93. The dynamic evolution computed

based on the KLD is similar for all the classes until July 3 when

all begin to be defined by a different variation. The dynamic

evolution computed based on the CI is more uniform for all the

classes, with small differences between the image pairs.

The specific of texture changes consists of dividing this

dynamic evolution in two groups of classes. The first has a

higher and constant degree of change. The second group is

characterized by smaller values and a marked variation.

The presented approach is innovative in the field of SITS

modeling, and the related ground truth is more difficult to

obtain. Precise knowledge about the exploration areas is re-

quired. A comparison with a human-based already existing

classification can be very helpful for the interpretation of certain

areas. Table III presents a comparison between the obtained

results (Fig. 6) and the Corinne Land Cover (CLC) map (Fig. 8),

Fig. 7. Dynamic evolution corresponding to each of the 15 classes in Fig. 6
computed based on the following similarity measures: (a) CC, (b) KLD, (c) CI,
and (d) NCD.

offering information about how much the LDA and CLC classes

fit. The table provides the number of pixels that have identical

labels. An increase in the number of pixels ensures a higher

degree of similarity between the LDA and CLC classes.

It is important to mention that the two classifications present

the Earth surface from different perspectives. The Corinne clas-

sification divides the analyzed area in four types of static areas

according to a general land use: urban area, forest, water, and

agriculture. The method proposed in this paper offers a more
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TABLE III
COMPARISON BETWEEN LDA CLASSIFICATION AND CLC MAP

Fig. 8. CLC map for the analyzed area (Bucharest and surroundings,
Romania).

generous distribution of land cover classes based on the regions’

dynamic evolution. As we can see in the following figures, one

static CLC class can be split into several dynamic LDA classes.

We have identified several urban classes, forest types, and

agricultural fields. Our method is able to distinguish between

several residential areas inside the city, due to the variation of

the vegetation component encapsulated in the resolution cell

(Figs. 11 and 12). It can also separate different agricultural

classes according to the vegetation evolution, the type of crop,

Fig. 9. Area a) in Fig. 8. The first tile represents the result of our classification
for area a); the rest of the tiles are extracted from the initial SITS.

Fig. 10. Area b) in Fig. 8. The first tile represents the result of our classifica-
tion for area b); the rest of the tiles are extracted from the initial SITS.

Fig. 11. Area c) in Fig. 8. The first tile represents the result of our classifica-
tion for area c); the rest of the tiles are extracted from the initial SITS.
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Fig. 12. Area d) in Fig. 8. The first tile represents the result of our classifica-
tion for area d); the rest of the tiles are extracted from the initial SITS.

Fig. 13. Area e) in Fig. 8. The first tile represents the result of our classifica-
tion for area e); the rest of the tiles are extracted from the initial SITS.

Fig. 14. Area f) in Fig. 8. The first tile represents the result of our classification
for area f); the rest of the tiles are extracted from the initial SITS.

the soil processing, and the granularity of parceling (Figs. 13

and 14), as well as forested areas based on the tree types.

In order to exemplify our statements, we take out six tiles

from the analyzed scene, comparing the CLC map with our

results, and present the corresponding region in all the images

of the initial SITS. The positioning of the tiles in the scene is

shown in Fig. 8. The corresponding LDA classification and the

patches extracted from the SITS are shown in Figs. 9–14.

The first analyzed area, i.e., area a), was labeled in the CLC

map mostly as a forest area. The method described in this

paper was able to separate four classes of the forest dynamic

evolution. The classification corresponding to this area is given

in the first image in Fig. 9, while the rest of the images illustrate

the same area within the initial SITS.

The second area, i.e., area b), is included in the CLC water

class. Our results in Fig. 10 treat it as a single class, too.

However, another specific property of the proposed method

consists of grouping in the same class areas with different

physical interpretations but with the same type of dynamic

evolution, such as water and out-of-crop regions (blue class in

Fig. 6).

The next two areas, i.e., areas c) and d), were both labeled as

an urban area in the CLC map. The proposed method retrieves

regions with distinct features inside (Figs. 11 and 12). This

is due to the vegetation in the city, the type of buildings, and

the distance between them. All the structures integrated in a

resolution cell affect the dynamic of the land cover. In Fig. 16,

we see two very high resolution (VHR) images representing

the areas c) and d), where we can actually observe regions

containing different types of buildings.

The last two analyzed areas, i.e., areas e) and f), present

agricultural areas according to the CLC map. The proposed

method differentiates between a wide range of dynamic evo-

lution classes inside these areas based on the type of crop, the

parceling characteristics, or the harvesting period (Figs. 13 and

14). Even if we cannot assign a particular knowledge-based

label concerning the type of crop evolution due to the private

nature of the information, we are however able to identify the

bare land annotated as class 15 in the resulted map (Fig. 6).

Moreover, the results shown in Fig. 13 illustrate the latent

character of the methodology introduced in this paper. Us-

ing the change information computed with the four similarity

measures, the LDA model was able to retrieve similar areas

that a user with no specific knowledge background cannot

find. We can observe in this tile that the blue area (class 6)

represents agriculture. However, we can also view in Fig. 6

that this class is also assigned to lakes and rivers. The expla-

nation is given by several studies regarding the nature of the

soil covering the south southeast side of Romanian territory,

including the scene analyzed in this paper. It is stated in [23]

that Bucharest is surrounded by a specific form of relief called

microdepression [24]. Its main characteristic refers to the fact

that it is impermeable and has the shape of a funnel. Therefore,

it retains water for a prolonged period of time until that drains or

evaporates.

The LDA classification is supported in this direction by the

weather forecast for the period when the SITS was acquired,

i.e., May–September 2007 (Table IV). This information was
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TABLE IV
MAY–SEPTEMBER 2007 WEATHER FORECAST FOR BUCHAREST. ACQUISITION DATES (IN RED) FOR THE IMAGE IN THE ORIGINAL SITS
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Fig. 15. VHR images illustrating (left) area a) and (right) area b) with
surroundings.

Fig. 16. VHR images [21] illustrating (left) area c) and (right) area d) with
surroundings.

Fig. 17. VHR images illustrating (left) area e) and (right) area f) with
surroundings.

extracted from weather archives [25]. We should consider that

this information is just a forecast and not a fact, explaining, in

the presence of microdepressions, the discrepancy between the

acquisition date and the rain periods. There are also paper news

from the summer of 2007 describing high temperatures and also

heavy rain alerts [26].

In the absence of precise ground truth, we can use a series

of VHR images in order to support a better visual inspection of

the considered region. Images in Figs. 15 and 17 were extracted

from Google Earth and were acquired in 2007, the time of the

analyzed SITS.

The tiles shown in Figs. 15–17 help sustain the variety of

classes extracted using the proposed algorithm. As can be

noticed, an increase in resolution allows us to observe a larger

variety of structures that can strongly influence the land cover

dynamics.

VI. CONCLUSION

The method described by the authors has offered a new

approach for SITS analysis based on the dynamic evolution of

the Earth’s surface which comes to complement the temporal

information extracted by previously known algorithms. We

applied four algorithms of change detection using four different

similarity measures that capture the differences between pairs

of consecutive acquisitions to extract new features for describ-

ing the evolution of scene dynamics. The complementarity of

the CC, the KLD, the CI, and the NCD is ensured by the infor-

mation derived from the basic data characteristics (radiometry,

spectral, and texture).

The idea behind the proposed approach consists of the con-

version of the original Landsat SITS in a new image time series.

After computing the differences between consecutive images

in the original data set using all four similarity measures, the

resulting change maps were gathered in a new image stack

called the CMTS. Therefore, a pixel is no longer characterized

by the static information of the original scene but expresses the

dynamics of the structures enclosed in the resolution cell. This

evolution can be observed using temporal signatures such as

those in Fig. 7.

The CMTS was analyzed by applying a latent discov-

ery method scene classification initially developed for text

analysis—LDA. Several text–image analogies have been used.

The LDA model has the ability to group words located at distant

positions in the feature space, as well as to extract classes that

have high semantic meaning. However, it is important to note

that the LDA model cannot be entirely viewed as a clustering

or classification method, as much as an algorithm for discover-

ing heterogeneous groupings enclosing semantic meaning. The

method has the advantage of good performances even for small

amounts of training data with no precise information about the

classes to be obtained. The main characteristic refers to its

ability of retrieving latent information that a user is not able

to find easily.

The purpose of the presented case study was to analyze the

evolution of the Earth surface by the changes that occurred,

considering the influence of seasons on vegetation, the crop

lifetime, and human activities. The LDA modeling is an ef-

ficient method to build a figurative classification of the scene

dynamic evolution.

The results were compared to the CLC classification. The

main difference is that, while CLC defines a number of four

static classes, the proposed algorithm is able to identify a

wide range of classes with dynamic evolution. Our method can

distinguish between several urban areas and types of forests and

can also separate different agricultural classes according to the

vegetation evolution, types of crop, soil processing, granularity

of parceling, and harvesting period. The LDA model revealed

the latent information encapsulated in the scene, similarly la-

beling the microdepressions filled with water by heavy rains

and the lakes or rivers. They are all characterized by alike

evolutions, as they contain water.

A major drawback of this method is the lack of reliable

ground truth related to the dynamic evolution of the land cover.

For this reason, the validation may often be based on VHR

images outside the database, acquired in the same time interval.

The competence of the proposed methodology to retrieve

latent information from a low-resolution Landsat image time

series has been demonstrated. It can be applied also for medium

SITS, but it is not extendable for high-resolution and VHR
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SITSs. The change detection algorithms require the images to

be very well superposed in order to obtain fair relevant results.

When increasing the spatial resolution, a multitude of details

become available, and the coregistration is extremely difficult.

Moreover, the high-resolution and VHR sensors usually acquire

images with different incidence angles and at a different mo-

ment of the day every time they survey an area. Given this

matter, the shape of objects and that of their shadows can have

significant variations, affecting the change detection process. It

is thus very unlikely to obtain a perfectly coregistered VHR

SITS, such that the method proposed in this paper can be

applied for its analysis. It is possible, however, to obtain an im-

age time series that fulfills these requirements, but the process

involves great expenses to be considered.
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2004.

[24] A. Gherghina, F. Grecu, and P. Molin, “Morphometrical analysis of
microdepressions in the central Baragan plain (Romania),” Revista de

geomorfologie, vol. 10, pp. 31–38, 2008.
[25] [Online]. Available: www.freemeteo.com
[26] [Online]. Available: http://vremea.meteoromania.ro/taxonomy/term/206
[27] F. Petitjean, J. Inglada, and P. Garcarski, “Satellite image time series

analysis under time warping,” IEEE Trans. Geosci. Remote Sens., vol. 50,
no. 8, pp. 3081–3095, Aug. 2012.
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