
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A latent-class mixture model for incomplete longitudinal Gaussian data

Peer-reviewed author version

BEUNCKENS, Caroline; MOLENBERGHS, Geert; VERBEKE, Geert & Mallinckrodt,

Craig (2008) A latent-class mixture model for incomplete longitudinal Gaussian data.

In: BIOMETRICS, 64(1). p. 96-105.

DOI: 10.1111/j.1541-0420.2007.00837.x

Handle: http://hdl.handle.net/1942/9518



A Latent-Class Mixture Model For

Incomplete Longitudinal Gaussian Data

Caroline Beunckens,1,∗ Geert Molenberghs,1

Geert Verbeke,2 and Craig Mallinckrodt3

1 Center for Statistics, Hasselt University, Agoralaan 1, 3590 Diepenbeek, Belgium.
2 Biostatistical Centre, Catholic University of Leuven,

Kapucijnenvoer 35, 3000 Leuven, Belgium.
3 Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, U.S.A.

∗ email: caroline.beunckens@uhasselt.be

Summary. In the analyses of incomplete longitudinal clinical trial data, there
has been a shift, away from simple methods that are valid only if the data are
missing completely at random (MCAR), to more principled ignorable analyses,
which are valid under the less restrictive missing at random (MAR) assumption.
The availability of the necessary standard statistical software nowadays allows
for such analyses in practice. While the possibility of data missing not at random
(MNAR) cannot be ruled out, it is argued that analyses valid under MNAR are
not well suited for the primary analysis in clinical trials. Rather than either
forgetting about or blindly shifting to an MNAR framework, the optimal place
for MNAR analyses is within a sensitivity analysis context. One such route
for sensitivity analysis is to consider, next to selection models, pattern-mixture
models or shared-parameter models. The latter can also be extended to a latent-
class mixture model, the route taken in this paper. The so-obtained flexible model
is submitted to the test in simulations and applied to data from a depression trial.
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1 Introduction

Repeated measures are often prone to incompleteness, often taking the dropout form. The

nature of the dropout mechanism can affect inference. Since one can never be certain about

the dropout mechanism, certain assumptions have to be made. We will use the terminol-

ogy introduced by Rubin (1976). A non-response process is missing completely at random

(MCAR) if the missingness is independent of both unobserved and observed data, and miss-

ing at random (MAR) if, conditional on the observed data, the missingness is independent

of the unobserved measurements. A process that is neither MCAR nor MAR is non-random

(MNAR). For likelihood inference, and when the parameters describing the measurement

process are functionally independent of the parameters describing the missingness process,

MCAR and MAR are ignorable, in which case the missingness process can be ignored when

interest is in inference for the longitudinal process only. For frequentist inference, the stronger

condition of MCAR is required for ignorability.

Recently, there has been a move away from simple methods, such as complete case analysis

and last observation carried forward analysis, towards such likelihood-based methods as

mixed models (Molenberghs et al., 2004; Jansen et al., 2006). Of course, since non-random

methods allow the missingness to depend on the unobserved or missing values, it is clear that

the MNAR assumption is not verifiable (Laird, 1994; Molenberghs, Kenward and Lesaffre,

1997). Therefore, fitting a single MNAR model will not be trustworthy, which does not mean

we should ignore such models but rather frame them within a sensitivity analysis. So far, we

have used selection-model concepts. Alternatively, pattern-mixture and shared-parameter

models can be used. They are introduced in the next section.

We propose a latent-class mixture model , bringing together features of the selection, pattern-

mixture, and shared-parameter model frameworks. Information from the location and evo-

lution of the response profiles, a selection model concept, and from the dropout patterns, a

pattern-mixture idea, is used simultaneously to define latent groups and variables, a shared-
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parameter feature. This brings several appealing features. First, one uses information in a

more symmetric, elegant way. Second, apart from providing a more flexible modeling tool,

there is room for use as a sensitivity analysis instrument. Third, a strong advantage over

existing methods is that we are able to classify subjects into latent groups. If done with

due caution, it can enhance substantive knowledge and generate hypotheses. Fourth, while

computational burden increases, fitting the proposed method is remarkably stable and ac-

ceptable in terms of computation time for the settings considered here. Clearly, neither the

proposed model nor any other alternative can be seen as a tool to definitively test for MAR

versus MNAR, as amply documented in the sensitivity analysis literature. This is why the

method’s use predominantly lies within the sensitivity analysis context. Such a sensitivity

analysis is of use both when it modifies the results of a simpler analysis, for further scrutiny,

as well as when it confirms these.

The general latent-class mixture model is presented in Section 2. A simulation study is

reported in Section 5. In Section 6, data from a depression clinical trial are analyzed using

a latent-class mixture model within a sensitivity analysis.

2 Latent-Class Mixture Models

Let Yij denote the response for the ith individual, designed to be measured at time tij,

i = 1, . . . , N , j = 1, . . . , ni. Group the outcomes into a vector Y i = (Yi1, . . . , Yini
)′. Define

a dropout indicator Di for the occasion at which dropout occurs, with the convention that

Di = ni + 1 for a complete sequence. Split the vector Y i into observed (Y o
i ) and missing

(Y m
i ) components, respectively.

In principle, one would like to consider the density of the full data f(yi, di|θ,ψ), where

the parameter vectors θ and ψ describe the measurement and missingness processes, respec-

tively. Covariates are allowed but suppressed from notation. This full density function can be

factorized in different ways. The selection model framework is based on (Rubin, 1976; Little
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and Rubin, 1987): f(yi, di|θ,ψ) = f(yi|θ)f(di|yi,ψ). The first factor is the marginal den-

sity of the measurement process and the second one is the density of the missingness process,

conditional on the outcomes. Alternatively, one can consider pattern-mixture models (Little,

1993, 1994) using the reversed factorization f(yi, di|θ,ψ) = f(yi|di,θ)f(di|ψ). This can be

seen as a mixture of different populations, characterized by the observed pattern of missing-

ness. Instead of using the selection modelling or pattern-mixture modelling framework, the

measurement and the dropout process can be jointly modeled by using a shared-parameter

model (Wu and Carrol, 1988; Wu and Bailey, 1989; Ten Have et al., 1998). These methods

assume there exists a vector of random effects bi, conditional upon which the measure-

ment and dropout processes are independent: f(yi, di|bi,θ,ψ) = f(yi|bi,θ)f(di|bi,ψ). We

propose an extension, capturing possible heterogeneity between the subjects not measured

through covariates but rather through a latent variable. We call this model a latent-class

mixture model. Next to one or more so-called shared parameters, bi, the model contains

a latent variable, Qi, dividing the population into g subgroups. This latent variable is a

vector of group indicators Qi = (Qi1, . . . , Qig), defined as Qik = 1, if subject i belongs to

group k, and 0 otherwise. The measurement process as well as the dropout process depend

on this latent variable, directly and through the subject-specific effects bi. The distribution

of Qi is multinomial and defined by P (Qik = 1) = πk (k = 1, . . . , g), where πk denotes the

group or component probability, also termed prior probabilities of the components. These

are restricted through
∑g

k=1 πk = 1.

The measurement process will be modeled by a heterogeneity linear mixed model (Verbeke

and Lesaffre, 1996; Verbeke and Molenberghs, 2000): Y i|qik = 1, bi ∼ N(X iβk +Zibi,Σ
(k)
i ),

where X i and Zi are design matrices, βk component-dependent fixed effects, bi denote the

shared parameters, following a mixture of g normal distributions with mean vectors µk and

covariance matrices Dk, i.e., bi|qik = 1 ∼ N(µk,Dk) and thus bi ∼
∑g

k=1 πkN(µk,Dk).

The measurement error terms εi follow a normal distribution with mean zero and covariance
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matrix Σ
(k)
i and are independent of the shared parameters. The mean and the variance of

Y i are:

E(Y i) = X i

g∑

k=1

πkβk +Zi

g∑

k=1

πkµk, (1)

Var(Y i) = Z ′

i




g∑

k=1

πkµ
2
k −

(
g∑

k=1

πkµk

)2

+
g∑

k=1

πkDk



Zi +
g∑

k=1

πkΣ
(k)
i . (2)

Assuming that the shared effects are ‘calibrated’, i.e.,
∑g

k=1 πkµk = 0, (1) and (2) simplify

to:

E(Y i) = X i

g∑

k=1

πkβk,

Var(Y i) = Z ′

i

[
g∑

k=1

πkµ
2
k +

g∑

k=1

πkDk

]

Zi +
g∑

k=1

πkΣ
(k)
i .

Assuming that the first measurement Yi1 is obtained for every subject in the study, the model

for the dropout process is based on a logistic regression for the probability of dropout at

occasion j, given: (1) the subject was still in the study up to occasion j, (2) bi, and (3)

that the subject belongs to the kth component. Denote this probability by gij(wij, bi, qik),

in which wij is a vector containing all relevant covariates: gij(wij, bi, qik) = P (Di = j|Di ≥

j,wij, bi, qik = 1). We then assume that gij(wij, bi, qik) satisfies logit[gij(wij, bi, qik)] =

wijγk + λbi. The joint likelihood of the measurement and dropout processes will take the

form:

f(yi, di) =
g∑

k=1

P (qik = 1)f(yi, di|qik = 1)

=
g∑

k=1

πk

∫
f(yi, di|qik = 1, bi)fk(bi)dbi

=
g∑

k=1

πk

∫
f(yi|qik = 1, bi,X i,Zi)f(di|qik = 1, bi,wi)fk(bi)dbi, (3)

with f(yi|qik = 1, bi,X i,Zi) the density function of the normal distribution N(X iβk +
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Zibi,Σ
(k)
i ), fk(bi) the density function of N(µk,Dk), and

f(di|qik = 1, bi,wi) =






gidi
(widi

, bi, qik) ×
di−1∏

j=2

[1 − gij(wij, bi, qik)] if incomplete,

ni∏

j=2

[1 − gij(wij, bi, qik)] if complete.

Note that the dropout model can depend, not only on the outcomes, but also on relevant

covariates such as treatment allocation, time, gender, age, etc. Not all models that can be

formulated in this way are identified, so restrictions might be needed. We return to this

point in Section 3.

The latent-class mixture models are based on assuming a latent structure additional to the

measurement and dropout processes and grouping the subjects by means of a latent variable,

thereby accounting for inter-group differences both in terms of their dropout pattern as well

as their measurement profiles.

3 Likelihood Function and Estimation

Estimation of the unknown parameters in the latent-class mixture model described in the

previous section will be based on maximum likelihood. Since it would be very cumbersome

to maximize this likelihood function analytically, the EM algorithm (Dempster, Laird and

Rubin, 1977) is proposed as it is a practical tool for maximum likelihood estimation in the

case of finite mixtures (Redner and Walker, 1984).

Let π be the vector of component probabilities π′ = (π1, . . . , πg) and group all other unknown

parameters of the measurement process in the vector θ, of the dropout process in ψ, and

of the mixture distribution in α. If σ denotes the vector of covariance parameters of all

Σ
(k)
i , δ the covariance parameters of all Dk, µ

′ = (µ1, . . . ,µg), and γ ′ = (γ1, . . . ,γg), then

θ = (β,σ), ψ = (γ,λ) and α = (µ, δ). Now, the vector Ω will be the vector containing all

unknown parameters in the model, i.e., Ω′ = (π′,θ′,ψ′,α′).
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The observed-data likelihood, L(Ω|yo,d), is obtained as follows:

L(Ω|yo,d) =
N∏

i=1

f(yo
i , di|Ω) =

N∏

i=1

∫
f(yi, di|Ω) dym

i

=
N∏

i=1

∫ {
g∑

k=1

πk

∫
f(yi|θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi

}

dym
i

=
N∏

i=1

g∑

k=1

πk

∫
f(yo

i |θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi, (4)

where yo′ = (yo
1, . . . ,y

o
N) is the vector containing all observed response values and d =

(d1, . . . , dN) is the vector of all values of the dropout indicator. This likelihood function is

invariant under the g! possible permutations of the parameters corresponding to each of the

g mixture components. To overcome this, the constraint suggested by Aitkin and Rubin

(1985), π1 ≥ π2 ≥ . . . ≥ πg, are imposed.

Identifiability is a delicate issue. Böhning (1999) shows that a mixture of two normals with

simultaneously different means and different variances is not identifiable. Such problems

arise from latency, now occurring through latent classes, random effects, and missingness.

In line with Böhning (1999) and McLachlan and Peel (2000), one could consider several

variations to the target model. The likelihood values, parameter estimates, and information

matrices can then be studied in view of identifiability. All of this cautions against certain

uncritical uses of the model. For example, one should not place a blind belief in the number of

components resulting when applying the model; this would be a license for mischief. Rather,

the model can play a role as a sensitivity analysis tool. The allocation of subjects to latent

groups can help formulate hypotheses, which then have to be checked against substantive

scientific knowledge and/or in follow up studies. On the other hand, when focusing on certain

inferences, such as testing for treatment effect, the number of components, for example, may

be less essential.

To maximize the log-likelihood function, corresponding to (4), with respect to Ω, the EM

algorithm is used (Dempster, Laird and Rubin, 1977). The underlying latent variable Qi,

representing component membership, will be considered missing. Thus, the response vector
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Y o
i , the dropout indicator Di, and the (unobserved) population indicators Qi, are the so-

called augmented data even though only vectors Y o
i and Di are observed. Since the joint

density of Y o
i , Di and Qi equals

fi(y
o
i , di, Qi1 = qi1, . . . , Qig = qig)

= fi(y
o
i , di|Qi1 = qi1, . . . , Qig = qig) × P (Qi1 = qi1, . . . , Qig = qig)

=
g∏

k=1

[πkfik(y
o
i , di|θ,ψ,α)]qik ,

the joint likelihood L(Ω|yo,d, q) of the augmented data, is

L(Ω|yo,d, q) =
N∏

i=1

g∏

k=1

[πkfik(y
o
i , di|θ,ψ,α)]qik , (5)

with q = (q1, . . . , qn)′ the vector of all hypothetically observed population indicators.

Maximizing `(Ω|yo,d, q), the corresponding log-likelihood, is easier than maximizing the log-

likelihood `(Ω|yo,d). Precisely, the E-step of the EM algorithm computesE[`(Ω|yo,d,Q)|y,d],

where the expectation is over yo and d, In the maximization (M) step, this function is max-

imized. Denote the expected log-likelihood function, the so-called objective function, by O.

The EM algorithm is initiated by means of an initial value Ω(0), after which one oscillates

between the E- and M-steps, until convergence. More details on the EM algorithm can

be found in the electronically available Appendix (see Supplementary Materials). With an

eye on speed of convergence, one might start with the EM algorithm and then switch to

direct likelihood maximization. Of course, the marginal likelihood may take a somewhat

cumbersome form.

4 Classification

One can also classify the subjects into the different latent subgroups of the fitted model.

Through the structure of the latent-class mixture model, the subdivision of the population

in latent groups depends on the number of observed measurements, i.e., on the dropout
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indicator or pattern, as well as on the values of the observed response measurements and

hence can be useful to assess the coherence between the dropout process and the measurement

process. In certain cases such latent groups can have substantive meaning.

The decision to which component of the mixture a specific subject is most likely to belong

will be based on posterior probabilities. We have that P (Qik = 1) = πk, thus the component

probabilities πk, express how likely the ith subject is to belong to group k, without using

information from outcomes and dropout pattern. For this reason, the component probabili-

ties are often called prior probabilities. The posterior probability for subject i to belong to

the kth group is given by

πik = P (Qik = 1|yo
i , di) =

fi (y
o
i , di|Qik = 1)P (Qik = 1)

fi(yo
i , di)

∣∣∣∣∣
Ω̂

=
πkfik(y

o
i , di|θ,ψ,α)

g∑

k=1

πkfik(y
o
i , di|θ,ψ,α)

∣∣∣∣∣∣∣∣∣∣∣
Ω̂

.

This expresses how likely the ith subject is to belong to group k, taking into account the

observed response yi as well as the dropout indicator di of that subject. Using these posterior

probabilities, we classify subject i into component k if and only if πik = maxj{πij}.

Clearly, we should be cautious with the resulting classification, since for a particular subject

i, the vector of posterior probabilities is given by πi = (πi1, . . . , πig) with
∑g

k=1 πik = 1.

For a good comfort level, one of these posterior probabilities for subject i would lie close

to 1. However, a scenario would be that two or more posterior probabilities are almost

equal, of which one is the maximum of all posterior probabilities for that particular subject.

This makes classification nearly random and misclassification is likely to occur. Therefore,

rather than merely considering the classification of subjects into the latent subgroups, it

is instructive to inspect the posterior probabilities in full. Furthermore, we can vary the

number of latent groups g and explore the sensitivity of the classification to the number of

latent subgroups considered.
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5 Simulation Study

An advantage of the latent-class mixture model is its flexible structure, making the model

a helpful tool for analyzing incomplete longitudinal data. However, as already seen in Sec-

tion 3, the estimation of the model parameters is based on a doubly iterative method, which

we might expect to be computationally intensive. To assess whether this disadvantage coun-

terbalances the advantage of model flexibility, and to assess performance, we conduct a

simulation study. Section 5.1 describes a simplification of the latent-class mixture model

used in the simulations and in the application in Section 6. The design and results of the

simulation study are given in Sections 5.2 and 5.3, respectively.

5.1 A Simplification of the Latent-Class Mixture Model

We assume equal covariance matrices for the different mixture components, i.e., D1 = . . . =

Dg = D, and equal residual covariance matrices, i.e., Σ
(1)
i = . . . = Σ

(g)
i = Σi, which leads to

Y i|qik = 1, bi ∼ N(Xiβ + Zibi,Σi), with bi ∼
∑g

k=1 πkN(µk,D). The matrices Σ
(k)
i usually

depend on i only through the dimension of the response vector for subject i, while parameters

are common to all. We further simplify the model in two steps. First, it is assumed that

there is only one subject-specific effect bi, a shared intercept, influencing the measurement

process, not the dropout process. Second, the measurement process is assumed to depend

on the latent variable, not in a direct way, but only through the shared intercept.

5.2 Design of the Simulation Study

We simulated 250 datasets, each containing measurements and covariate information of 100

subjects. The latent variable in the model is assumed to split the subjects into two latent

subgroups with component probabilities π1 = 0.6 and π2 = 1 − π1 = 0.4. There are five

measurement occasions and the outcome follows a linear trend over time with intercept

β0 = 9.4 and slope β1 = 2.25. The shared intercept follows a mixture of two normal

distributions with means µ1 = −4.4 and µ2 = −π1µ1

π2

= 6.6. In line with Section 5.1, the
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variances of these two normal distributions are assumed to be equal and are denoted by d2.

The measurement error variance is σ2.

Four settings will be considered, based on varying d2 and σ2. In the first setting both variance

parameters are relatively small, d = 2.0 and σ = 0.25. While only the measurement error

variance is increased in the second setting, σ = 0.75, both variance parameters are increased

in the third setting, d = 3.5 and σ = 1.00. Up to the third setting, the chosen parameters

result in a bimodal, well-separated mixture distribution. Since this might improve estimation

of the parameters, we consider a fourth, unimodal setting with d = 6 and σ = 2.

Finally, in the dropout model, the logistic regression is based on an intercept only, which

differs for both latent classes, namely, γ1 = −2.5 and γ2 = −1.25, respectively, with corre-

sponding probabilities 0.73 and 0.45 of completing the study.

The latent-class mixture model can now be formulated as follows. For a subject i =

1, . . . , 100, belonging to latent group k = 1, 2, the measurement at time j = 1, . . . , 5 is mod-

eled by Yij = β0 + β1 timej + bi + ε
(k)
ij , with bi ∼ π1N (µ1, d

2) + π2N (µ2, d
2) and ε

(k)
i ∼

N (0, σ2I5). Further, the dropout model is expressed as logit[gij(wij, bi, qik)] = γk.

5.3 Results of the Simulation Study

Table 1 contains the results of the simulation study. Besides comparing the mean estimates

and true values of the parameters through the bias, we also consider the mean squared error

(MSE), simultaneously involving bias and precision.

Let us discuss the four simulation settings in turn. For the first one, there is a clear distinction

between both groups, which owes to the small variance, d2, of the mixture distribution,

relative to the systematic difference between the mean of both groups, µ1 − µ2. Further,

the small measurement error variance, σ2, ensures the within-subject variability to be small,

resulting in almost straight individual profiles. From Table 1, the mean estimates of the

parameters are close to the true values, with biases of the order 10−2 or less. Together
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with small mean squared error values, of which the magnitude does not exceed 10−4, this

indicates the fit of the latent-class mixture model is very close to the simulated data. This

was expected due to earlier observations.

Increasing the measurement error variance in the second simulation setting leads to an

increased within-subject variability. The discrepancy between both latent groups is still

present in the second setting. The bias increases slightly, but remains of the same order. For

the MSE values, we observe a small increase, but its magnitude does not exceed 10−3. So,

we can conclude the model fits the data well, even with a larger within-subject variability.

In the penultimate simulation setting, not only the measurement error variance is increased,

but also the variance in the mixture components. In the third setting, there is no gap in

between both latent groups. The discrepancy between the groups seems to have vanished,

and profiles appear to be homogeneous. Let us look at the results in Table 1 to see whether

this has an influence on the model fit. For some of the parameters, the mean estimates

deviates little from the true value. However, bias and MSE values remain small, the order

of magnitude not exceeding 10−1 and 10−3, respectively.

Finally, in the last simulation setting, in which even larger values for both variance parame-

ters result in simulated data following an unimodal mixture distribution, profiles again seem

to be homogeneous. Remarkably, even in this setting, bias and MSE values remain small,

both with order of magnitude below 10−1.

In all four simulation settings, we ascertain small bias and MSE values. This is true, not

only for the model parameters, but also for derived quantities, such as the treatment effect

at the last time and the area under the curve. Thus the latent-class mixture model does

fit the simulated data well. Moreover, from the four simulation settings we conclude that,

whenever the model is correctly specified, it fits very well; so, this applies even when the

mixture distribution is unimodal. This suggests that, for a real application, the fit is likely

to be good in cases where the researcher has decent insight into the true mean structure.
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Computation time increased from about 30 minutes for fitting the latent-class mixture model

to a simulated dataset of the first setting, to a bit over two hours for fitting one of the

later settings. Thus, fitting the latent-class mixture model is not unreasonable in terms of

computation time, perhaps against initial expectation.

6 Analysis of Depression Trial Data

We apply the latent-class mixture model to a depression trial, arising from a randomized,

double-blind psychiatric clinical trial, conducted in the United States. The primary objective

of this trial was to compare the efficacy of an experimental anti-depressant with a non-

experimental one. In these retrospective analyses, data from 170 patients are considered.

The Hamilton Depression Rating Scale (HAMD17) is used to measure the depression status

of the patients. For each patient, a baseline assessment is available, as well as 5 post-baseline

visits going from visit 4 to 8.

In the two subsequent sections, a latent-class mixture model is fitted to the depression trial

and a sensitivity analysis performed. The latter will establish the latent-class mixture model

as a viable sensitivity tool.

6.1 Formulating a Latent-Class Mixture Model

The latent-class mixture model framework is used to analyze the depression trial, assuming

the patients can be split into g latent subgroups.

The mean structure is determined based on an exploratory analysis. As a result, the het-

erogeneity linear mixed model for the change in HAMD17 score includes as fixed effects

an intercept, the treatment variable, the baseline HAMD17 score, the linear and quadratic

time variable, and the interaction between treatment and time. In the latent-class mixture

model with two group, the parameter values for these fixed effects are assumed to be equal

for both latent subgroups. The measurement error terms are assumed to be independent

and to follow a normal distribution with mean 0 and variance σ2.
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A shared intercept, bi, is included in the measurement model, which follows a mixture of g

normal distributions with different means, µ1, . . . , µg respectively, but with equal variance d2.

Further, the dropout process is modeled based on a logistic regression, including and inter-

cept and time variable, which, in case of the two-group latent-class model, can differ between

both latent subgroups (γ0,1, . . . , γ0,g corresponding to the intercept, and γ1,1, . . . , γ1,g corre-

sponding to the slope). While dependence on covariates was allowed, none were retained

during model building.

At first, the same simplification as used in the simulation study in Section 5 is considered,

i.e., the shared intercept is only included in the measurement model, not in the dropout

model. Afterwards, we extend the model by adding the shared intercept to the dropout

model as well, meaning the dropout model changes from

logit[gij(wij, bi, qik)] = γ0,k + γ1,k tj (6)

to

logit[gij(wij, bi, qik)] = γ0,k + γ1,k tj + λ bi, (7)

where tj is the jth visit.

An overview of the models considered is given in Table 2. Since assessing the number of

components by a classical likelihood ratio test is not valid in the mixture model framework

(McLachlan and Peel, 2000), we calculated the Akaike’s Information Criterion (AIC) and

Bayesian Information Criterion (BIC) for all models.

A model building exercise is performed starting with fitting a one-component latent-class

mixture model, which comes down to a classical shared parameter model, as well as a two-

component latent-class mixture model. Next, we compare these models using the AIC and

BIC criteria, and depending on the choice made by both criteria, we decide whether we fit

a latent-class mixture model with three latent subgroups.

Table 2 shows that when assuming dropout model (6), AIC opts for the model with two
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latent subgroups (Model 2), whereas BIC gives preference to the shared-parameter model

(Model 1). Further, in case of dropout model (7) however, both information criteria select

the shared-parameter model (Model 4). Note that, since the dropout model in Model 1 does

not depend on the shared intercept, the dropout model and the measurement model are

independent, resulting in the MCAR assumption, whereas in Model 2, the dropout model

is linked to the measurement model through the latent classes (MNAR). Overall, the AIC

criterion prefers Model 2, the 2-component latent-class mixture model with no random effect

in the dropout model, whereas BIC picks Model 4, the classical shared parameter model.

Since both criteria select a different model, we will take a more detailed look at the latent-

class mixture model with two components, indicated by AIC, whereas we will consider the

classical shared-parameter model in a sensitivity analysis in the next section.

Parameter estimates with corresponding standard errors and p-values of the two-component

latent-class mixture model are shown in Table 3. Once this latent-class mixture model has

been fitted to the depression trial data, the posterior probabilities can be used to classify

the patients into two subgroups as shown in Section 4. The 170 patients split into 79 and

91 patients classified into the first and second group, respectively. In Figure 1, the left

panel represents the individual profiles of patients classified into the first latent group, and

the right one represents the individual profiles of patients classified into the second group.

Clearly, the first group corresponds to patients with lower HAMD17 scores, that continue

to decrease over time. This means these are the patients getting better. On the other hand,

the second group contains patients with a higher change versus baseline compared to the

patients from the first group. Their changes of HAMD17 score fluctuate around 0, more

specifically somewhere in the region between −10 and 10. In addition, without taking into

account the within-subject variability, their profiles appear more or less time-constant. A

more formal comparison of both latent groups regarding their change of HAMD17 score

versus baseline confirms this association between the classification and the profile over time.
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Furthermore, a formal test for association of baseline values and group classification is not

significant, indicating similar baseline HAMD17 scores for patients in both groups.

Based on this difference in location of the profiles between both groups, this classification of

subjects can be interpreted as being a split into acute versus chronic depression. Patients in

both the acute and chronic groups enter the study with a baseline value indicating depression.

However, the profiles of the patients in the acute group show recovery during the trial,

whereas the depression score of patients in the chronic group remains more or less level.

Further, this difference between both latent groups is not due to treatment, since the classi-

fication of subjects in latent subgroups is independent of their treatment allocation. Indeed,

the estimated odds ratio between the latent classification variable and the treatment allo-

cation is 0.75, which was expected since the observed treatment groups are included in the

mean structure of the measurement model. Moreover, when the treatment variable would

be included in the dropout model, this independence would even increase.

Regarding the incompleteness of the patients in both latent groups, we notice a clear dif-

ference, which is confirmed by chi-square tests for independence, implying a significant as-

sociation between the dropout pattern and the latent classification. The first latent group

mainly contains patients who complete the study, 62 in total. Of the 17 patients who drop

out, merely 2 drop out at visit 6, 3 more at visit 7, and 12 patients missed the last visit only.

The dropout percentage in the second latent group is larger, 48.4% compared to 21.5% in

the first group, or 44 out of 91 patients. Of these incompleters, 17 drop out after the first

visit, 10 more at visit 6, 11 at the penultimate visit, and 6 more at the last visit.

Finally, the latent groups can also be compared by focusing on demographic characteristics

such as age, gender, and origin, yielding no association between the latent classification

with either gender or origin, but a significant association with age. Patients in the acute

group are younger than the patients in the chronic group, with a mean age of 38.5 and

42.4, and corresponding 95% confidence intervals [36.1, 41.0] and [40.0, 44.7], respectively.
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This is important insight, even though it may be hard to disentangle the causal relationship

between age and chronicity. Even though age explains a part of the latent-class structure, it

is relevant to further entertain the connection with chronicity, since this may have important

implications for differentiated, more effective therapy.

However, as mentioned in Section 4, using this classification rule does not render insight into

how sure the classification is in one of the two groups. This will depend on the magnitude

of the maximal posterior probability. Since the latent-class mixture model considered here

only contains two latent groups, we merely need to look at one of the posterior probabilities,

e.g., at the posterior probability that the subject belongs to group 1, πi1. Based on this πi1,

the subjects can be classified following the guidelines of Table 4. If the posterior probability

πi1 lies between 0.45 and 0.55, it is uncertain to which group the subject can be classified.

Only 8 out of 170 patients in the depression trial are in this situation. For most patients, 152

or 89.4%, it is clear into which group they can be classified, since their maximal posterior

probability is above 0.60. Furthermore, aforementioned association of the latent classification

with the location of profiles, the dropout pattern, and patient’s age as well as independence

of baseline values and patient’s origin and gender, is confirmed by testing the independence of

these variables with the posterior probabilities, which can be viewed as continuous variables

ranging from 0 to 1.

6.2 A Sensitivity Analysis

In this section, we apply latent-class mixture models as a sensitivity analysis tool. In ad-

dition to the two-component latent-class mixture model shown in Section 6.1, a classical

shared-parameter model will be fitted to the depression trial, as well as a pattern-mixture

model, and two selection models, based on the selection models introduced by Diggle and

Kenward (1994). All models contain the same fixed effects as in the two-component latent-

class mixture model, i.e., intercept, treatment, time, baseline, time2, and treatment-by-time

interaction.
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The classical shared-parameter model, selected by the BIC criterion in Section 6.1, includes

a shared intercept bi ∼ N(0, d2), conditional upon which the measurement model follows a

normal distribution Yi|bi ∼ N(X iβ + bi, σ
2Ini

), and the dropout process is based on (7).

Next, the Diggle-Kenward (DK) model combines a multivariate normal model for the mea-

surement process with a logistic regression model for the dropout process. More specifically,

the measurement model assumes that the vector Yi of repeated measurements for the ith

subject satisfies the linear regression model Yi ∼ N(X iβ,V i), i = 1, . . . , N . The matrix

V i can be left unstructured or assumed of a specific form. For the depression trial, the

linear mixed model (Verbeke and Molenberghs, 2000) is used to model the measurement

process, with an unstructured covariance matrix. Further, let hij = (yi1, . . . , yi;j−1) denote

the observed history of subject i up to time ti,j−1. The DK model for the dropout process

allows the conditional probability for dropout at occasion j, given that the subject was still

observed at the previous occasion, to depend on the history hij and the possibly unobserved

current outcome yij, but not on future outcomes yik, k > j. In the two models considered

for the depression trial, the logistic dropout model will take the form

logit [P (Di = j | Di ≥ j,hij, yij,Ω)] = ψ0 + ψ1yi,j−1 + ψ2yij. (8)

Regarding the missingness mechanism, the first selection model assumes the MAR assump-

tion to hold, yielding ψ2 = 0, whereas the second one assumes MNAR.

Finally, a pattern-mixture model is fitted, taking the same form as the DK models, except

that there are separate intercepts and slopes for each of the dropout patterns occurring.

Notice that the classification function in the latent-class mixture model is a data driven

approach to define groups, whereas pattern-mixture models use the assumption to define

groups in function of dropout patterns.

Since the main interest of the depression trial was in the treatment effect at the last visit,

Table 5 shows the estimates, standard errors, and p-values for this effect under the five fitted
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models. Clearly, the p-values resulting from all five models are very similar and between

around 0.07 and 0.11, yielding the same conclusion for the treatment effect at visit 8. Thus,

the significance results are not sensitive to the model used, and hence more trust can be put

into the conclusion. This is because a deflated estimate is combined with a reduced standard

error. However, note that using both the two-component latent-class mixture model and the

classical shared-parameter model, the standard error is reduced by 0.3 units, compared to

either selection model, or pattern-mixture model, resulting in a more accurate confidence

interval for the treatment effect at the last visit.

Furthermore, we explore the sensitivity of the treatment-by-time interaction by comparing

the estimates, standard errors and p-values under the five fitted models in Table 5. The

p-values are clearly moving around the significance level of 0.05. Whereas under the latent-

class mixture model and the shared-parameter model the p-value is about 0.03, the p-value

under both selection models and the pattern-mixture model is around 0.07. While one should

be cautious with over-interpretation of p-values, there are contexts, such as regulated clinical

trials, where strict decision rules are implemented. In such a case and when in addition the

treatment by time interaction is the primary effect, the latent-class mixture model and the

shared-parameter model would lead to a claim of significance, whereas this would not be

justified with neither the selection models nor the pattern-mixture model.

7 Concluding Remarks

We have proposed latent-class mixture models to analyze incomplete longitudinal data in

which incompleteness is due to dropout of subjects. Through its structure, the model cap-

tures unobserved heterogeneity between latent subgroups of the population. It is an exten-

sion of the shared-parameter model, in the sense that both the measurement and dropout

processes are allowed to share a set of random effects, conditional upon which both processes

are assumed to be independent. It can, at the same time, be seen as an extension of the
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pattern-mixture model, now with latent rather than explicitly observed groups. As shown

in the simulation study, the flexibility of such latent-class mixture models outweighs the

expected modelling complexity.

Our proposal can be used for flexible modeling, as a sensitivity analysis instrument, and

for further exploration of the latent class membership. Of course, care has to be taken

when interpreting latent classes, since in some applications they may merely be artifacts,

without any substantive grounds. In others, there may be more basis for their existence.

We believe, together with mental health scientists, the two-component classification in our

example, refers to the natural split of the patients, regardless of which treatment they were

allocated to, into the more chronic and the more acute ones. An additional word of caution

is needed regarding the number of latent classes to be considered. This is a tricky but well

documented problem (McLachlan and Peel 2000). A practical way out is to consider several

choices for the number of components, pick the most reasonable one, and assess whether

alternative choices would substantially alter the conclusions.

Evidently, the computational burden of the LCMM increases over non-latent-class models,

but is still reasonable. For example, whereas the MNAR version of the Diggle and Kenward

model takes around one hour and the one-component mixture needs about the same amount

of time, the two-component mixture increases needs around one order of magnitude more.

Furthermore, the performance of the algorithm is remarkably computationally stable, given

sensible starting values (e.g., built from non-mixture classical models). Details on starting

value selection are embedded in an electronically available companion manual.

Supplementary Materials

A Web appendix, referenced in Section 3, and a software manual, referenced in the Con-

cluding Remarks, are available under the Paper Information link at the Biometrics website

http://www.tibs.org/biometrics.
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Table 1: Simulation Study. Results of the simulation study: mean and true value, bias, and mean squared error (MSE) of the
parameters, under the four simulations settings.

Setting 1 Setting 2

Effect Mean True Bias MSE Effect Mean True Bias MSE

Measurement Model Measurement Model

β0 9.37 9.40 −2.84 × 10−2 8.07 × 10−4 β0 9.34 9.40 −5.75 × 10−2 3.31 × 10−3

β1 2.25 2.25 1.30 × 10−4 1.68 × 10−8 β1 2.25 2.25 7.56 × 10−4 5.72 × 10−7

σ 0.25 0.25 −2.49 × 10−4 6.18 × 10−8 σ 0.75 0.75 6.27 × 10−4 3.93 × 10−7

µ1 -4.39 -4.40 1.31 × 10−2 1.73 × 10−8 µ1 -4.36 -4.40 4.48 × 10−2 2.00 × 10−3

d 1.98 2.00 −1.70 × 10−2 2.89 × 10−4 d 1.97 2.00 −2.53 × 10−2 6.38 × 10−4

π1 0.60 0.60 4.60 × 10−4 2.12 × 10−7 π1 0.60 0.60 4.22 × 10−3 1.79 × 10−5

Dropout Model Dropout Model

γ1 -2.52 -2.50 −2.28 × 10−2 5.19 × 10−4 γ1 -2.51 -2.50 −1.26 × 10−2 1.58 × 10−4

γ2 -1.26 -1.25 −1.23 × 10−2 1.53 × 10−4 γ2 -1.27 -1.25 −2.30 × 10−2 5.27 × 10−4

Setting 3 Setting 4

Effect Mean True Bias MSE Effect Mean True Bias MSE

Measurement Model Measurement Model

β0 9.44 9.40 3.83 × 10−2 1.46 × 10−3 β0 9.59 9.40 1.92 × 10−1 3.70 × 10−3

β1 2.25 2.25 1.91 × 10−4 3.66 × 10−8 β1 2.24 2.25 −1.44 × 10−2 2.06 × 10−4

σ 0.99 1.00 −5.45 × 10−3 2.06 × 10−5 σ 2.01 2.00 6.07 × 10−3 3.69 × 10−5

µ1 -4.69 -4.40 −2.86 × 10−1 8.18 × 10−2 µ1 -4.84 -4.40 −4.39 × 10−1 1.93 × 10−1

d 3.43 3.50 −7.00 × 10−2 4.90 × 10−3 d 6.02 6.00 2.03 × 10−2 4.10 × 10−4

π1 0.57 0.60 3.36 × 10−2 1.13 × 10−3 π1 0.52 0.60 −8.06 × 10−2 6.50 × 10−3

Dropout Model Dropout Model

γ1 -2.61 -2.50 −1.07 × 10−1 1.14 × 10−2 γ1 -2.97 -2.50 −4.73 × 10−1 2.23 × 10−1

γ2 -1.27 -1.25 −2.04 × 10−2 4.17 × 10−4 γ2 -1.29 -1.25 −3.89 × 10−2 1.51 × 10−3
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Table 2: Depression Trial. Information criteria AIC and BIC, for models with dropout model
(6) or (7), and g = 1, 2, 3.

Model Dropout Model g # Par −2` AIC BIC

1 γ0,k + γ1,k tj 1 10 4676.07 4696.08 4727.44

2 γ0,k + γ1,k tj 2 14 4662.37 4690.37 4734.27

3 γ0,k + γ1,k tj 3 18 4662.03 4698.03 4754.48

4 γ0,k + γ1,k tj + λ bi 1 11 4669.12 4691.12 4725.61

5 γ0,k + γ1,k tj + λ bi 2 15 4662.02 4692.02 4739.06

Table 3: Depression Trial. Parameter estimates, standard errors, and p-values for the latent-
class mixture model applied to the depression trial.

Effect Estimate s.e. p-value

Measurement Model

Intercept : β0 23.17 3.75 < 0.0001

Treatment : β1 2.69 1.49 0.072

Time : β2 -6.18 1.18 < 0.0001

Time × Treatment : β3 -0.52 0.24 0.028

Baseline : β4 -0.42 0.07 < 0.0001

Time × Time : β5 0.41 0.10 < 0.0001

Measurement Error : σ 4.24 0.13 < 0.0001

Dropout Model

Intercept Group 1 : γ0,1 -8.58 3.57 0.009

Time Group 1 : γ1,1 0.83 0.44 0.056

Intercept Group 2 : γ0,2 -1.35 1.28 0.292

Time Group 1 : γ1,2 -0.05 0.20 0.793

Shared Effects

Mean Shared Intercept Group 1 : µ1 -3.64 0.43 < 0.0001

Variance Shared Intercept : d 2.67 0.50 < 0.0001

Prior probability Group 1 : π1 = π 0.48 0.10 < 0.0001

Loglikelihood -2331.18
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Table 4: Depression Trial. Classification of subjects based on the magnitude of posterior
probabilities πi1.

πi1 Classification # Patients

0.80 → 1.00 Clearly Group 1 61

0.60 → 0.80 Group 1 8

0.55 → 0.60 Doubtful, more likely Group 1 5

0.45 → 0.55 Uncertain 8

0.40 → 0.45 Doubtful, more likely Group 2 5

0.20 → 0.40 Group 2 19

0.00 → 0.20 Clearly Group 2 64
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Table 5: Depression Trial. Estimates, standard errors, and p-values for the treatment effect
at visit 8, as well as the treatment-by-time interaction, for the latent-class mixture model
(Model 4 in Table 2), the shared-parameter model (Model 2 in Table 2), the pattern-mixture
model, and both selection models, assuming either MAR (which equals MCAR) or MNAR.

Treatment at Endpoint Treatment × Time

Model Estimate s.e. p-value Estimate s.e. p-value

Latent-Class Mixture Model -1.44 0.91 0.114 -0.52 0.23 0.028

Shared-Parameter Model -1.69 0.93 0.069 -0.50 0.24 0.035

Pattern-Mixture Model -2.01 1.20 0.096 -0.55 0.31 0.077

MCAR≡MAR Selection Model -2.17 1.25 0.082 -0.58 0.32 0.068

MNAR Selection Model -2.16 1.24 0.081 -0.57 0.31 0.068
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Figure 1: Depression Trial. Classification of the subjects of the depression trial based on a
latent-class mixture model. The left panel corresponds to patients classified into first group,
he right panel to patients classified into second one.
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