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families; for more common alleles, the marginal approach 

has better power. These results appear to reflect the ability 

of the algorithm to accurately assign families to the two 

classes and the relative weights of segregating and non-seg-

regating families to the test of linkage. An application of 

Bayes rule is used to estimate the family-specific probability 

of segregating. High predictive value positive values for seg-

regating families, particularly for  MCP , suggest that the 

method has considerable value for identifying segregating 

families. The method is illustrated for gene expression phe-

notypes measured on 27 candidate genes previously dem-

onstrated to show linkage in a sample of 14 families. 

 Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 In conventional quantitative-trait locus (QTL) map-
ping studies, families are selected into the sample on the 
basis of phenotypic variation among the offspring. This 
selection ensures that the offspring, and by definition 
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 Abstract 

 In a quantitative trait locus (QTL) study, it is usually not fea-

sible to select families with offspring that simultaneously 

display variability in more than one phenotype. When mul-

tiple phenotypes are of interest, the sample will, with high 

probability, contain ‘non-segregating’ families, i.e. families 

with both parents homozygous at the QTL. These families 

potentially reduce the power of regression-based methods 

to detect linkage. Moreover, follow-up studies in individual 

families will be inefficient, and potentially even misleading, 

if non-segregating families are selected for the study. Our 

work extends Haseman-Elston regression using a latent class 

model to account for the mixture of segregating and non-

segregating families. We provide theoretical motivation for 

the method using an additive genetic model with two dis-

tinct functions of the phenotypic outcome, squared differ-

ence  (SqD)  and mean-corrected product  (MCP) . A permuta-

tion procedure is developed to test for linkage; simulation 

shows that the test is valid for both phenotypic functions. 

For rare alleles, the method provides increased power com-

pared to a ‘marginal’ approach that ignores the two types of 
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their parents, have high probability of displaying allelic 
variation at the QTL. We define segregating families as 
those with at least one parent who is heterozygous at the 
QTL. When multiple phenotypes are of interest, it is dif-
ficult to select families that simultaneously segregate for 
all phenotypes. These studies are likely to include some 
families where both parents are homozygous at one or 
more of the QTL of interest. The offspring in these ‘non-
segregating’ families lack genetically determined varia-
tion in phenotype. Since non-segregating families do not 
contribute to the linkage signal, their inclusion in the 
sample should reduce the power of the analysis to detect 
linkage compared to a sample of the same size composed 
of segregating families. Additionally, there is little to be 
gained from including material from non-segregating 
families in subsequent follow-up studies. The research 
described here was motivated by the Genetics of Gene 
Expression study, a genome-wide linkage study per-
formed initially in 14 pedigrees from the Centre d’Etude 
du Polymorphisme Humain (CEPH) collection  [1] . The 
phenotypes of interest were mRNA expression levels of 
several thousand genes measured on each individual us-
ing microarray technology  [2] . In these analyses we an-
ticipate that many QTL will be characterized by non-seg-
regating families as pedigrees were not selected for simul-
taneous variation in all of the phenotypes.

  Here, we propose to measure linkage with an exten-
sion of Haseman-Elston regression based on a latent class 
model to take into account segregating and non-segregat-
ing families. Latent class analysis is a model-based meth-
od for clustering data into unobserved, or latent, classes, 
assuming that the marginal or observed distribution of 
data is a mixture of two or more distributions  [3] . Latent 
class methods have previously been used in population-
based genetic studies to identify subclasses of disease 
phenotypes, and to infer population substructure  [4–12] . 
However, we are unaware of previous applications of la-
tent class methodology to family-based linkage studies. 
Our method provides an objective test for linkage in the 
presence of combinations of segregating and non-segre-
gating families. Through an application of Bayes rule, we 
estimate the probability that individual families are seg-
regating, and thus, identify families that are likely to be 
informative in follow-up statistical and molecular studies 
of putative regulators of gene expression. This is a unique 
aspect of our approach, one that, to our knowledge is not 
addressed by current methods.

  We briefly introduced a latent class approach to this 
problem in an earlier study of  trans  regulators of gene ex-
pression  [13] . Here we describe in detail an improvement 

on the original testing approach using examples of  cis  
regulation of gene expression as motivation. We justify 
the new method theoretically and explore its operating 
characteristics in a simulation study. In the Methods sec-
tion, the latent class extension to Haseman-Elston regres-
sion is developed along with a method for fitting the 
model. The modified hypothesis test is presented along 
with the approach for identifying subjects from segregat-
ing families. In separate Results sections, we first de-
scribe analytic findings and a simulation study and then 
illustrate the approach with an example of the analysis of 
several selected phenotypes from the motivating study. 
We conclude with a Discussion of the methods.

  Methods 

 Overview 
 We demonstrate the potential importance of the problem of 

non-segregating families in the population and review the addi-
tive genetic model and the principles of regression-based linkage 
analysis. A latent class model extends regression-based linkage to 
account for heterogeneity in outcome due to segregating and non-
segregating families. We explore the properties of two phenotype 
functions in the context of the two-class model and develop test-
ing and estimating procedures.

  Occurrence of Non-Segregating Families 
 For a single QTL with two alleles, let  H  and  L  denote the high-

and low-expression alleles, with population frequencies  p  and  q  = 
1 –  p  respectively. Under Hardy-Weinberg equilibrium, the pro-
portion of segregating families ( � ) in the population is

  �  = 4 p  3  q  + 4 p  2  q  2  + 4 pq  3  = 4 pq (1 –  pq ) (2.1)

 The proportion of non-segregating families is 

   1 –  �  = (1 – 2 pq ) 2  (2.2)

  a value which exceeds 0.25 for all values of  p , with larger rates oc-
curring as one allele becomes less common. Even with relatively 
common alleles, 1 –  �  is substantial; for example with  p  = 0.10, 
close to two thirds of the families in the population are non-seg-
regating. Non-segregating families are unlikely to be included in 
a sample of families ascertained using a proband. However, sam-
ples selected without regard to phenotype should frequently con-
tain non-segregating families. 

 Genetic Model 
 We consider each expression phenotype independently. Let 

 W  ij  denote the phenotypic value for offspring  j  ( j  = 1, ...,  n  i ) in the 
 i -th family ( i  = 1, ...,  N ), where  n  i  ( n  i   6  2) is the number of off-
spring in family  i  and  N  is the number of families in the sample. 
We use an additive genetic model, without considering domi-
nance, i.e.

   W  ij  =  �  +  �   �   G  ij  +  F  i  +  e  ij  (2.3)
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  where  �  is the average phenotypic value of a heterozygote (geno-
type  HL ),  �  is the additive effect of the  H  allele,  G  ij  is the number, 
minus one, of  H  alleles carried by individual  j  ( G  ij  = {–1, 0, 1}),  F  i  
is a family-level random effect, and  e  ij  is an individual error term 
 [14] . We assume the  F  i  are independent of the  G  ij  and are indepen-
dent and identically distributed with mean zero and variance  �  

2
  F  

while the  e  ij  are independent of  G  ij  and  F  i  and are independent and 
identically distributed with mean zero and variance �  

2
e   . 

 Consider the  k -th ( k  = 1, ...,  m  i ,  m  i  = (n
2

i) sibling pair, or sibpair, 
comprised of individuals  j  and  j �  . Let  X  ik  be the number of alleles 
shared IBD at the QTL by sibpair  k  in family  i . The covariance of 
phenotypic values for a sibpair, or phenotypic covariance, is a lin-
ear function of their IBD sharing, i.e.

   Cov [ W  ij ,  W  ij �    �   X  ik ] =  � 
2
 F    +  �   2  pqX  ik                                            (2.4)

   [15] . Equation (2.4) assumes that IBD sharing at the QTL,  X  ik , is 
known, whereas in practice IBD sharing is approximated at single 
nucleotide polymorphism (SNP) markers. Let  Z  ik  denote the 
number of alleles shared IBD at a SNP marker, where  �  is the re-
combination fraction between the marker and the QTL (0  ̂    �   ̂   
1/2). Here  �  = 0 indicates that the marker and the QTL do not re-
combine while  �  = 1/2 indicates that the marker and the QTL are 
unlinked. The phenotypic covariance in this case is 

    Cov [ W  ij ,  W  ij �    �   Z  ik ] =  � 
2
 F    + 4 �  2  pq  � (1 –  � ) +  �  2  pq (1 – 2 � ) 2   Z  ik             (2.5)

  Extension of Haseman-Elston Regression 
 Let  Y  ik  denote the squared difference ( SqD ) in phenotype for 

siblings  j  and  j �   in sibpair  k  in family  i 

   Y  ik  = ( W  ij  –  W  ij �  ) 
2  (2.6)

  Haseman and Elston  [15]  describe a ‘marginal’ regression-based 
test of linkage. Here  Y  ik  is regressed on IBD sharing at the QTL, 
 X  ik . Subsequent efforts to increase the power of the method led to 
the use of other functions of phenotypic values, including the 
family mean-corrected product ( MCP ) and weighted sums of the 
SqD and squared sums  [16–22] . In addition to  SqD , we considered 
 MCP , where 

    Y  ik  = ( W  ij  –  W  i    �  ) ( W  ij �   –  W i    �  ) 

  and 

1

1 in

i ijj
i

W W
n�

   denotes the mean phenotypic value for the  i -th family.  Table 1  
shows that in the marginal model, the expectation of these func-
tions are linear combinations of phenotypic covariance and vari-
ance terms. 

 The expectations in  table 1  are evaluated by substituting the 
appropriate expressions for the variance and covariance terms 
from  table 2 . The appendix provides further details of the deriva-
tions. The expected value of the phenotype function, either the 
 SqD  or  MCP , is a linear function of the number of alleles shared 
IBD at the marker,  Z  ik  with the general form

   E [ Y  ik   �   Z  ik ] =  �  +  �  Z  ik  (2.7)

  For  SqD  the marginal intercept is  �  = 2�  
2
 e        + 8 �  2  pq  [ �  2  –  �  + 1/2]; 

for  MCP  the closed-form solution for the intercept is complicated 
but is readily computed numerically. The specific values of the 
‘marginal’ slope,  � , in terms of the genetic model appear in  table 3 . 
For both phenotype functions the terms from the genetic model 
that contribute to the slope come exclusively from the condition-
al covariance terms in Equation (2.5). The slope for  SqD  is inde-
pendent of sample size and the slopes for  SqD  and  MCP  are iden-
tical up to the multiplicative term 

3 2

2

2 4

2 1

n n n

n n

   where here, for the purpose of the derivation only, the number of 
subjects per family,  n , was set to be constant for all families. Note 
from  table 3  that  �  = 1/2 implies  �  = 0 under both models. 

 To extend the model in Equation (2.7), let  C  i  be a binary vari-
able indicating whether family  i  belongs to a segregating ( C  i  =  S ) 
or non-segregating ( C  i  =  N  ) ‘class’ of families. The expectation of 
the phenotype functions conditional on class appear in  table 1 . 
When evaluated in terms of the genetic model using the terms in 
 table 2 , the expectations of the phenotype function conditional on 
class are again linear functions of the number of alleles shared 
IBD at the marker,  Z  ik , i.e.

   E [ Y  ik    �    Z  ik ,  C  i  =  S ] =  �   S   +  �   S    Z  ik  or  E [ Y  ik    �    Z  ik ,  C  i  =  N  ] =  �   N   +
 �   N     Z  ik                                                                                                (2.8)

Table 1. P arameters of the marginal and two-class model for SqD and MCP phenotype functions for a constant number of siblings per 
family (n)

Model Phenotype Expectation
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  For  SqD  the class-specific intercepts are 

22

2
2 2 1

2
1

e
pq

� � �
� �

 and  �   N    = 2�  
2
 e       ; for  MCP  the closed-form intercept terms are more 

complex but can be computed.  Table 3  presents the slopes for the 
two classes for both  SqD  and  MCP . 

 Estimation 
 Let  f ( Y  ik ) be the marginal density and let  f ( Y  ik   �   C  i ) be the den-

sity conditional on class membership of the  i -th family. To fit the 
model, we assume independence of sibpairs within a family, con-
ditional on latent class. The conditional densities are assumed to 
be normal with constant variances,  f ( Y  ik   �   C  i  =  S )  �   N ( 	   S   ik ,  �  2 ), 

where  	   S   ik  =  E [ Y  ik   �   Z  ik ,  C  i  =  S ] from Equation (2.8) and  table 1 . 
Similarly,  f ( Y  ik   �   C  i  =  N  )  �   N ( 	   N   ik ,  �  2 ), where  	   N   ik , =  E [ Y  ik   �   Z  ik ,  C  i  
=  N  ]. Thus, the marginal density,   f  (  Y   i   �    Z   i ), for a vector of sibpairs 
with squared phenotypic difference   Y   i  = ( Y  i  1 ,  ...,   Y  im i  ) and IBD 
sharing   Z   i  = ( Z  i  1 , ...,  Z  im i  ) is 

1

1

,

1 ,  

i

i

m

i i ik ik i
k

m

ik ik i
k

| f Y |Z C

f Y |Z C

�

�

f Y Z                                       

(2.9)

 In essence, the latent class approach is a method for fitting two 
class-specific Haseman-Elston regression models, while account-
ing for the uncertainty in the latent class designations of individ-
ual families. 

Table 2. C ovariance and variance terms

Class Term Results

Table 3.  Slopes parameterized using the genetic model

Model Parameter P henotype

SqD MCP

N

S 



A Latent Class Model for Linkage Hum Hered 2010;70:75–91 79

 The likelihood was maximized using a general quasi-Newton 
procedure implemented in SAS PROC TRAJ (v.9 using the NO-
VAR option;  [23] ). There are several issues to consider. First, seg- 
regating and non-segregating classes are not explicitly designated 
by the maximization procedure; this information is inferred by 
designating the segregating class as the one with the minimum of 
the two class-specific estimates of the slopes. Second, the two-
class model sometimes fails to converge. Even when both types of 
families are present in the population, a given sample may contain 
only one type of family, and in this case the algorithm is expected 
to fail to converge to a two-class solution. In practice, the two-
class model also fails to converge at times when both segregating 
and non-segregating families are present.

  Because the two-class model sometimes failed to converge, we 
incorporated the possibility of fitting the marginal model from 
Equation (2.7) into the estimation. Let  D  indicate convergence of 
the two-class model. Convergence occurs ( D  = 1) if the following 
three conditions are satisfied: (1) The numerical convergence cri-
teria of the estimation procedure are met. (2) The class-specific 
parameter estimates are distinct, i.e. the slope and/or intercepts 
differ by a specified constant, here set to 0.01. (3) The estimate of 
the proportion of families that are segregating,  �̂   is non-zero and 
less than 1.0.

  Otherwise,  D  = 0 and the marginal model from Equation (2.7) 
is fit using maximum likelihood, implemented here with PROC 
TRAJ by specifying a model with one class and with signifiance 
assessed using permutation. In addition to estimates of the slope 
and intercept terms, the estimation procedure directly yields  �̂ , 
the maximum likelihood estimate of  �  which, in turn, yields an 
estimate of  p  through simple rearrangement of Equation (2.1).

  Lastly, using Bayes rule and assuming normal densities, the 
family-specific probability of membership in the segregating class 
is 

 (2.10)

                                                                                                          (2.11)

1

2 2

2
1

,

,
 

, 1 ,

1 1
1 exp   

2

i

i i i

ik ik ik

ik ik i ik ik ik k

n

ik ik
k

P C |

f Y |Z C

f Y |Z C f Y |Z C

r r

�

� �

�

� �

Y Z

 where  r   N   ik  =  y  ik  –  	   N   ik  and  r   S   ik  =  y  ik  –  	   S   ik  are class-specific residu-
als: if  D  = 1, estimates of  	   S   ik ,  	   N   ik ,  �  2  and� are used to estimate 
the family-specific probabilities of segregation in Equation (2.11). 
If  D  = 0 then this probability is not estimated. For any gene, if the 
magnitude of the residuals is small relative to  �  2 , then individual 
families show little variation in  P ( C  i  =  S   �   Y  i ,  Z  i ) with values being 
largely driven by the term 

1 �

�

 On the other hand, if the data from a particular family are well fit 
by one of the conditional means, then the residuals for the other 
class will be large and this will tend to drive  P ( C  i  =  S   �   Y  i ,  Z  i ) toward 
zero or one. 

 Hypothesis Testing 
 For the marginal Haseman-Elston model in Equation (2.7), 

the one-sided test for linkage is

   H  0 :  �  = 1/2 versus  H  1 :  �   !  1/2 (2.12)

  or equivalently 

    H  0 :  �  = 0 versus  H  1 :  �   !  0 (2.13)

  where  � ,  p , and  q  are assumed to be fixed. 

 For the two-class model, the hypothesis regarding  �  in Equa-
tion (2.12) remains of interest. However since  �   N   = 0, the hypoth-
esis regarding the slope is now

   H  0 :  �   S   = 0 versus  H  1 :  �   S    !  0 (2.14)

  The estimated test statistic,  � ̂       S, for the hypothesis tests defined in 
Equation (2.13) and Equation (2.14) is defined as 

if 1

if 0

ˆmin D
ˆ

ˆ D

�
�

�

                                                           
(2.15)

 where 
~
 � ̂  = (   � ̂            N  � ̂       S      ) denotes the vector of estimated slopes from the 

two-class model and  � ̂        is the estimated slope for the marginal re-
gression. When  D  = 1 we infer that the minimum of the two 
slopes, min (

~
 � ̂ ), estimates the slope in the segregating class. When 

 D  = 0 the marginal slope is our best estimate of the slope in the 
segregating class, even in light of the possibility that  � ̂        estimates 
the slope in the non-segregating class, or a mixture of segregating 
and non-segregating families. The test is carried out using a per-
mutation procedure that retains the correlation structure of sib-
pairs within families. Specifically the observed value of  � ̂       S is de-
termined. Then we re-fit the two-class model to data where the 
vector of sibpair outcomes for each family,  y  i  = ( y  i  1 ,  y  i  2 , ...,  y  im i  ), is 
permuted while holding the IBD sharing constant. The permuta-
tion test statistic,  � ̂          S

(  t  )      is recomputed for the  t  = 1, ...,  
  permuta-
tions. The one-sided permutation p value is 

1

T t

t
ˆ ˆI

P
T

� ��

 where  I ( � ) is the indicator function. 

 Results: Analytic Findings and Simulation Study 

 Analytic Comparison of   SqD   and   MCP   
 To use the two-class model for inference, the Newton-

Raphson algorithm must converge to a solution that iden-
tifies two distinct classes. While the test for linkage is 
based on the slope in the segregating class, differences 
between the intercepts as well as the slopes for the segre-
gating and non-segregating classes potentially contribute 
to the ability of the algorithm to converge to a two-class 
model. For both  SqD  and  MCP ,  �   S   and  �   N   are indepen-
dent of IBD sharing with differences between segregating 
and non-segregating classes even in the absence of link-
age ( �  = 1/2) that increase with increasing  p  (result not 
shown). For the slopes,  table 3  shows that the slope for the 
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non-segregating families,  �   N   , is zero for both  SqD  and 
 MCP  while, for segregating families, the  �   S   are identical, 
except for the multiplicative term 

3 2

2

2 4

2 1

n n n

n n

 which has an upper bound of 1/2 in very large families. 
 �   S   is zero when the marker is unlinked ( �  = 1/2) and non-
zero under linkage (0  !   �   !  1/2). Unlike the intercepts, 
the slopes contribute no information useful for discern-
ing classes in the absence of linkage. Intuitively, as segre-
gating families become rare, the ratio for the marginal 
and segregating slopes should become large. Indeed, the 
ratio of slopes is identical to the proportion of segregating 
families; using the results in  table 1  for either  SqD  or  MCP  
and Equation (2.1) 

4 1  pq pq
�

�
�

                                                               (3.1)

 Simulation Study 
 Parameters of the Simulation Study 
 Simulation was used to assess the operating character-

istics of the proposed permutation test for the two-class 
model compared to a permutation test based on the mar-
ginal model. The simulation study also described the
capacity of the approach to discriminate between segre-
gating and non-segregating families. Using the genetic 
model, parental alleles were drawn from two unlinked 
(independent) loci, using a Bernoulli( p ) distribution and 
assuming Hardy-Weinberg equilibrium. One of the al-
leles was arbitrarily designated as the QTL and the other 
as an ‘Unlinked SNP’ or null marker. We then simulated 
the random transmission of alleles from parent to each of 
eight offspring, or in a limited number of cases to four 
offspring. We determined the true IBD status of all sib-
pairs. Phenotypic values were determined conditional on 
the QTL at each locus and assuming the additive genetic 
model from Equation (2.3) and a normal distribution for 
 F  i  and  e  ij  , with variances 0.3 and 0.2, respectively. To as-
sess type I error rate, we fit the latent class model to each 
set of simulated data using IBD sharing at a ‘null’ marker, 
i.e. a marker independent of phenotype. We simulated 
500 sets of data, varying the number of families,  N , the 
additive allelic effect,  � , and the allele frequency  p . Allele 
frequencies of  p  = 0.025, 0.2, and 0.5 were chosen to rep-
resent a range from rare to common alleles. We comput-
ed the nominal type I error and power as well as the mean 
and empirical variance of the estimated slope in the seg-
regating class. We also assessed the discriminative ability 

of the proposed method conditional on achieving conver-
gence for the two-class model; specifically, we assessed 
the predictive value positive  (PVP)  (the probability that a 
member of the nominal segregating class was a segregat-
ing family), sensitivity (probability of assignment of a 
segregating family to the nominal segregating class) and 
specificity (probability of assignment of a non-segregat-
ing family to the nominal non-segregating class) by as-
signing a family to either the segregating or non-segre-
gating class based on whether the probability in Equation 
(2.11) exceeded 0.50.

  Type I Error and Power 
  Table 4  shows the results for  N  = 14; similar patterns 

were observed for a more limited study for  N  = 28 with 
the same number of sibs per family. The type I error rate 
is well controlled; for a nominal type I error rate of 0.05, 
and a simulation error of 0.0097, the empirical error 
ranged from 0.046 to 0.068 for  SqD  and from 0.036 to 
0.056 for  MCP . Power demonstrates two distinct patterns. 
For the two-class model, when segregating families are 
rare ( p  = 0.025;  �  = 0.095),  MCP  has better power than 
 SqD ; when segregating families are common ( p  = 0.2;
 �  = 0.54 or  p  = 0.5;  �  = 0.75),  SqD  has better power than 
 MCP . In marginal models, as expected from theoretical 
results  [16, 17] ,  MCP  has better power than  SqD  across the 
range of simulations. The question of whether the mar-
ginal or the two-class model has better power again de-
pends on the frequency of the segregating families. At low 
allele frequencies, the two-class model with  MCP  had the 
highest power; at high allele frequencies, the marginal 
model, again using  MCP , had the highest power.

  Discrimination of Segregating and Non-Segregating 
Families 
 With respect to discriminating between segregating 

and non-segregating families under the two-class model, 
 PVP  values for  MCP  consistently exceeded those of  SqD . 
For  p  = 0.025,  PVP  values for  MCP  were 35–80%, and 
while these values are somewhat low, they represent a 
substantial enrichment in segregating families in the 
nominal segregating class compared to the 9.5% expected 
for the entire sample at this allele frequency. In contrast, 
 PVP  values for  SqD  were 16–25% at  p  = 0.025, indicating 
that the nominal segregating class was dominated by 
non-segregating families. At higher allele frequencies 
discrimination is excellent;  PVP  values for  MCP  were at 
least 97% for  p   6  0.2/ �   6  0.54 and at least 87% for  SqD .



A Latent Class Model for Linkage Hum Hered 2010;70:75–91 81

  Factors Affecting Relative Power and Detection of 
Segregating Families 
 To better understand these patterns,  table 5  along with 

 figures 1  and  2  explore the impact of factors including the 
rate of convergence to a two-class solution, and the com-
position of the nominal segregating class. This in turn 
leads to a discussion of how bias in  �  ̂   S  and its empirical 
standard error may impact relative power.

  Probability of Converging to a Two-Class Solution 
 First consider convergence rates ( P ( D  = 1)) ( table 5 ). At 

the ‘null marker’, two classes of families are present and 
this variation is reflected in the distribution of the phe-
notype, but there is no association between IBD sharing 
and phenotypic variation. Here differences in intercepts 
potentially provide information about class membership, 
while at the QTL we expect both intercepts and slopes to 
contribute to discrimination between classes. For 14 fam-
ilies, rates of fit for the two-class model ( P ( D  = 1)) at the 
null marker ranged approximately between 95 and 97% 
for  SqD  and between 35 and 38% for  MCP . Convergence 

rates for both phenotypes were similar to convergence 
rates in simulations where there was no genetically based 
heterogeneity and where we generated only a random in-
tercept and held  �  = 0 (results not shown). Thus the inter-
cepts in practice provide little discriminatory informa-
tion. Importantly, the probability of observing families 
from both classes (both segregating and non-segregating 
families) is 0.753 when  p  = 0.025/ �  = 0.095, and over 0.98 
at the two higher allele frequencies. Focussing on  p  = 
0.025/ �  = 0.095 it is clear that  SqD  frequently finds two 
classes when only one exists. The results for the simula-
tion where  �  = 0 indicate  SqD  does so independently of 
any genetic information.  SqD  may converge more fre-
quently than  MCP  because of the shape of the distribu-
tion. For example,  SqD  had skewness/kurtosis values of 
around –2.8/11 compared to –0.8/8.6 for  MCP  when  �  = 
1.0 and  p  = 0.2.

  At the  QTL ,  SqD  continued to have higher conver-
gence rates than  MCP . Here,  SqD  converged to a two-class 
model in over 95% of simulations while MCP converged 
at more reasonable rates of 58–73% at  p  = 0.025 and over 

Table 4. T ype I error rate, at an unlinked SNP, or null marker, and power, at the QTL, for the hypothesis tests 
based on the two-class and marginal tests along with PVP for the two-class approach

p � n Power/type I error PVP, %

two-class m arginal

SqD MCP SqD MCP SqD MCP

Unlinked SNP (null marker)
0.025 0.095 0.8 0.052 0.056 0.058 0.054 9.7 8.5
0.025 0.095 1.0 0.046 0.052 0.048 0.060 9.4 8.1
0.025 0.095 1.2 0.052 0.056 0.064 0.064 9.6 8.5
0.200 0.54 0.8 0.060 0.060 0.066 0.068 52.6 54.5
0.200 0.54 1.0 0.054 0.056 0.050 0.058 51.5 53.3
0.200 0.54 1.2 0.068 0.036 0.048 0.058 52.5 53.5
0.500 0.75 0.8 0.056 0.054 0.046 0.056 74.0 75.9
0.500 0.75 1.0 0.036 0.050 0.038 0.038 74.9 74.4
0.500 0.75 1.2 0.040 0.046 0.028 0.022 74.7 73.3

QTL
0.025 0.095 0.8 0.232 0.288 0.200 0.242 15.5 34.8
0.025 0.095 1.0 0.336 0.448 0.312 0.338 22.9 69.5
0.025 0.095 1.2 0.490 0.584 0.440 0.482 24.6 79.6
0.200 0.54 0.8 0.766 0.696 0.894 0.934 87.0 97.0
0.200 0.54 1.0 0.928 0.784 0.980 0.990 93.5 99.0
0.200 0.54 1.2 0.950 0.862 0.990 0.996 97.9 99.7
0.500 0.75 0.8 0.910 0.788 0.988 0.998 96.6 99.4
0.500 0.75 1.0 0.950 0.884 1.00 1.00 98.7 99.5
0.500 0.75 1.2 0.960 0.900 1.00 1.00 99.6 99.7

Res ults shown are for 14 families, 8 sibs per family, and 500 simulations.
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97% at higher allele frequencies. Again, we note that  SqD  
converged at rates of 95–99% when  p  = 0.025 even when 
the probability of at least one segregating family in the 
sample was only 0.753.

  Composition of Nominal Segregating Class 
 With respect to the composition of the nominal segre-

gating class based on the posterior probabilities from 
Equation (2.11),  SqD  consistently shows higher sensitivity 
and  MCP  consistently shows higher specificity at the 
 QTL . The net result, seen in  table 4 , is that the PVP for 
MCP is higher. However, while the nominal segregating 
class for MCP is highly enriched in segregating families, 
its low sensitivity means that a large proportion of segre-
gating families in MCP are assigned to the non-segregat-
ing class. This observation appears important in under-
standing relative power.

  Power of  MCP  versus  SqD  in the Two-Class Model 
 We first consider the relative power of MCP and SqD 

for the two-class model ( table 4 ) and suggest why  MCP  is 
more powerful at low allele/segregating family frequency. 

When the algorithm fits the slopes for the two-class mod-
el, each family contributes to the estimates from both 
classes, with the relative contribution weighted by the 
goodness of fit of the family-level data to each class. With 
the caveat that the weights in the fitting algorithm are 
continuous rather than binary, we gain some insight into 
the relative weighting of families to the slopes by consid-
ering the composition of the nominal segregating family 
class.  Figure 1  shows that for  SqD , min ( �  ̂  ), the estimated 
slope in the segregating class from the two-class fit (Equa-
tion (2.15)), underestimates  �   S  , the true parameter, when 
 p  = 0.025, a finding consistent with the result that the 
nominal segregating class for  SqD  at  p  = 0.025 is domi-
nated by non-segregating families ( PVP   ̂   25%). In con-
trast for  MCP   �  ̂   S     , the estimated slope in the segregating 
class from the two-class fit (Equation (2.15)), substantial-
ly overestimates  �   S   when  p  = 0.025. The bias may reflect 
the fact that the nominal segregating class is dominated 
by segregating families while sensitivity for  MCP  at this 
allele frequency is no greater than 55%, suggesting that 
the contribution of a few segregating families to the slope 
estimate, probably those with extreme slopes, is large 

Table 5. Convergence rates (P(D = 1)), sensitivity and specificity at an unlinked SNP or null marker, and
the QTL

p � n P(D = 1), % Sensitivity, % Specificity, %

SqD MCP SqD MCP SqD MCP

Unlinked SNP (null marker)
0.025 0.095 0.8 95.6 36.2 53.9 52.9 48.4 45.2
0.025 0.095 1.0 95.6 35.2 52.0 50.0 49.0 46.2
0.025 0.095 1.2 96.4 37.1 53.1 50.6 49.2 45.9
0.200 0.54 0.8 96.4 35.8 49.4 51.8 48.7 49.0
0.200 0.54 1.0 97.4 35.2 49.0 54.9 46.1 43.3
0.200 0.54 1.2 96.0 36.0 49.8 53.5 47.9 44.8
0.500 0.75 0.8 96.0 38.4 49.8 50.1 48.8 51.9
0.500 0.75 1.0 96.8 37.2 49.7 49.3 51.5 49.2
0.500 0.75 1.2 97.2 34.6 49.8 47.6 50.5 49.7

QTL
0.025 0.095 0.8 95.6 58.3 69.7 25.6 48.6 93.8
0.025 0.095 1.0 95.6 71.8 74.0 41.4 73.3 97.6
0.025 0.095 1.2 96.4 73.2 80.1 55.3 75.6 98.3
0.200 0.54 0.8 96.4 97.0 48.4 25.7 91.7 99.1
0.200 0.54 1.0 96.0 99.4 50.8 33.5 95.9 99.6
0.200 0.54 1.2 99.8 99.6 54.1 42.4 98.6 99.8
0.500 0.75 0.8 96.0 99.4 40.0 22.1 95.9 99.6
0.500 0.75 1 96.8 99.5 41.9 29.5 98.4 99.6
0.500 0.75 1.2 97.2 99.7 44.4 33.5 99.5 99.7

Results for sensitivity and specificity include only those simulations where the two-class model converged 
(D = 1). Results shown are for 14 families, 8 sibs per family, and 500 families.
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while those segregating families with less extreme slopes 
make little contribution to the estimate of  �   S  . Underesti-
mation of  �   S   by  SqD  and overestimation by  MCP  is con-
sistent with the finding that  MCP  is more powerful than 
 SqD  at low allele frequency for the two-class model.

  We next suggest an explanation for why  SqD  is more 
powerful at higher allele/segregating family frequency. 
Because we do not have closed-form solutions for vari-
ance estimates, we focus on relative power using  MCP  at 
 p  = 0.025 as the baseline. At higher allele frequencies ( p  = 
0.2 or  p  = 0.5), the nominal segregating classes for both 
 SqD  and  MCP  are dominated by segregating families. 
Sensitivity, while lower than at  p  = 0.025, is higher for 
 SqD . For both phenotypes, min (  �  ̂     ), the slope estimate in 
the segregating class, overestimates  �   S  . Since the magni-
tude of the relative bias is larger for  MCP  ( fig. 1 ), we sug-
gest that the precision of the estimate, rather than the bias 
may explain why  SqD  has better power than  MCP  for the 
two-class model at higher allele frequencies ( table 4 ). We 
consider increases in the mean slope and the empirical 
standard deviation (SD) at the higher allele frequency rel-
ative to  p  = 0.025. Specifically for each phenotype we 
computed two ratios, the slope ratio is the mean of the 
slope estimates at  p  = 0.2 versus  p  = 0.025, and the SD ra-
tio is the empirical SD of the slope estimates at  p  = 0.2 
versus  p  = 0.025. Intuitively, we hypothesized that larger 
slope ratios would tend to yield a larger increase in power, 
while larger SD ratios would have an opposite effect, 
yielding a smaller increase or decrease in power.  Figure 2  
(top row) illustrates the ratios. For the nominal segregat-
ing class, the slope ratio was higher and the SD ratio was 
smaller for  SqD  compared to  MCP . Slope ratios were 2.5 
to 3.1-fold larger for each value of  �  for  SqD  and 1.8 to 2.0-
fold larger for  MCP . In contrast, ratios for the empirical 
SD were 1.3 to 1.6-fold larger for  SqD  and 1.7 to 1.9-fold 
larger for  MCP . Similar patterns were observed for  p  = 
0.500 versus  p  = 0.025. Thus, while MCP is highly spe-
cific across allele frequencies, the variance of the slope 
estimate in the segregating class is relatively higher than 
 SqD  for more common versus rare alleles. We speculate 
that compared to  SqD ,  MCP ’s low sensitivity effectively 
reduces the size of the nominal segregating class when 
allele frequencies are larger, and this inflates the standard 
error and reduces power relative to  SqD .

  Power of Marginal versus Two-Class Model 
 Lastly, we seek to understand why, for each phenotype, 

the two-class model had better power than its marginal 
counterpart at low allele frequency while the marginal 
model had better power at higher allele frequency. We 

focus on  MCP  as this was the phenotype with the best 
absolute power. At  p  = 0.025 the ratio of population slopes 
for the segregating class ( �   S  ) and the marginal model ( � ) 
is 10.5, reflecting the fact that only 9.   5% of families in the 
population are segregating (Equation (3.1)); in fact the ob-
served slope ratio for the segregating versus marginal 
models for  MCP  was even higher, ranging from 11.7 to 21. 
The power of the two-class model at low allele frequency 
appears to reflect, at least in part, the large contribution 
of non-segregating families to the marginal slope along 
with the enrichment of segregating families in the nomi-
nal segregating class of the two-class fit and, for  MCP , the 
upward bias of  �  ̂   S     , in cases where the two-class  MCP  
model converges.

  At higher allele frequency, we speculate that the high-
er power of the marginal approach, compared to the two-
class approach, reflects a smaller contribution of non-
segregating families to the marginal slope, along with 

p
B

ia
s 

(%
)

SqD

B
ia

s 
(%

)

MCP
200

100

0

–100

200

100

0

–100

0.025 0.200 0.500

p

0.025 0.200 0.500

C
o

lo
r 

v
e

rs
io

n
 a

v
a

il
a

b
le

 o
n

li
n

e

  Fig. 1.  Relative bias of SqD and MCP slope estimates as a function 
of allele frequency p for  �  = 0.8 (solid line, red), 1.0 (dashed line, 
blue) and 1.2 (dash-dot line, black) in the nominal segregating 
class of the two-class model (colors refer to online version; white, 
grey, and black, respectively, in the print version). Relative bias is 
the difference between the mean of the estimated slope and its 
expectation expressed as a percentage of the expectation. Hori-
zontal dashed line indicates absence of bias. 
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poor sensitivity of the two-class model, i.e. a relatively 
poor ability to classify segregating families as such. For 
 MCP  at p = 0.2 the ratio of population slopes for the seg-
regating class in the two-class model and the marginal 
model,  �   S  / � , is 1.9, a value much smaller than at  p  = 0.025. 
However, the ratio of observed slopes ranged from 3.5 to 
4.6, again reflecting the unbiasedness of the marginal 
slope and the upward bias of  �  ̂   S     . Since the slope estimates 
for the segregating class in the two-class model continue 
to be much higher than for the marginal model, we sug-
gest that the precision of the slope estimate may explain 
why the marginal model has better power than the two-
class model at higher allele frequencies ( table 4 ). Because 
we do not have closed-form solutions for the variance of 
the slope estimate, we use  p  = 0.025 as a reference and 
considered relative values of the slopes and standard de-
viations. For the marginal model the slope ratio is the 
mean of the estimated  �  at  p  = 0.2 versus  p  = 0.025, and 
the SD ratio is the empirical SD of the slope estimate at
 p  = 0.2 versus  p  = 0.025.  Figure 2  (bottom row) shows the 
slope and SD ratios for the marginal and two-class mod-
els for  MCP  at different values of  � . As described above, 
slope ratios for the MCP two-class model are 1.8 to 2.0; 
 figure 2  shows that for the marginal model the slope ra-
tios are much larger, on the order of 6.0 to 8.0. In contrast 

for the two-class model, the SD ratios are 1.7 to 1.9, and 
for the marginal model, they are only slightly higher, 2.0 
to 2.5. Thus the relative increase in the slope for the mar-
ginal model compared to the two-class model appears to 
outpace the relative increase in SD. A comparison of the 
marginal  MCP  model to the two-class  SqD  model yields 
similar results. We hypothesize that at larger allele fre-
quencies, the low sensitivity of the two-class model re-
duces the size of the nominal segregating class, effective-
ly inflating the standard error of the slope estimate. This 
in turn reduces the power of the two-class model relative 
to the marginal model. The relative power of the mar-
ginal and two-class approaches appears to reflect trade-
offs between the relative magnitude of the slope in the 
segregating class and the overall population, and the in-
ability of the two-class model to assign the majority of 
segregating families to the nominal segregating class.

  Effect of Reduced Number of Sibs per Family 
At the suggestion of the reviewers, we briefly explored 

the impact of a smaller number of sibships. Results of a 
simulation with 28 families and four sibs per family are 
shown in  table 6  for  �  = 1 at the QTL. The type I error rate 
was controlled and appeared somewhat conservative for 
both phenotypes (not shown). The results were similar to 
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those described although both the marginal and two-class 
models yielded hypothesis tests with lower power. Addi-
tionally, for the smaller number of sibships, the marginal 
model had substantially, better power than the two-class 
model, except for  p  = 0.025 for the  SqD  function. For the 
two-class model,  SqD  consistently had better power than 
 MCP . As with the larger sibship size,  MCP  consistently 
had better specificity and worse sensitivity than  SqD , and 
this yielded better PVP for the  MCP  phenotype. The PVP 
values were consistently lower than for the larger sibship 
sizes, but still exceeded 90% for  MCP  for  p   6  0.20.

  We were unable to carry out the permutation test suc-
cessfully using fewer than four sibs per family. It appeared 
that because the number of permutations was small (six 
per family for three sibs per family), that the within-fam-
ily permutation did not yield sufficient variation to dif-
ferentiate between the results under the null and alterna-
tive hypotheses, leading to a test with literally no power. 
While the permutation procedure could not be used, we 
were still able to fit the two-class model, and this infor-
mation could be used to classify families.

  Results: Application to the CEPH Study 

 Description of the CEPH Study 
 The motivating study is fully described in Morley et

al.  [2] . Briefly, 3,554 gene expression phenotypes were an-
alyzed for linkage in a genome-wide study of cell lines 
from 14 Utah pedigrees with seven to nine offspring. Us-
ing a recent modification of Haseman-Elston regression 
 [21] , 142 phenotypes yielded sufficient linkage evidence 
to achieve genome-wide significance (p values  ̂   4.3  !  
10 –7 ). These expression phenotypes were further classi-
fied based on location of the linked SNP marker relative 

to each expression phenotype. Target genes with expres-
sion mapped to within 5 Mb of their genomic location 
were classified as  cis -regulated; otherwise genes were 
classified as  trans -regulated. Here, we illustrate the two-
class approach using 27 expression phenotypes which 
demonstrated statistically significant evidence of linkage 
to a  cis  regulator in the original study  [2] . We selected the 
single SNP closest to the start of transcription of each of 
these 27 genes. While we identified a single SNP for the 
analysis, we used  Merlin  to estimate the number of alleles 
shared IBD at the SNP marker using genotype data from 
all SNPs on the chromosome containing the target gene 
using  [24] .  Merlin  is a multipoint algorithm which uses 
information from SNPs in the neighborhood of the SNP 
of interest to infer IBD status. Genotype data from grand-
parents, parents, and offspring were used in the IBD cal-
culations, although only outcome data from the offspring 
were used in the latent class analysis. This approach sug-
gests that IBD sharing at the QTL for these data should 
be well approximated by IBD sharing at a nearby genetic 
marker.

  Hypothesis Tests 
  Table 7  shows the full set of parameter estimates for 

the  MCP  function ordered by  � ̂ , their estimated probabil-
ity of membership in the segregating class. p values for 
hypothesis tests for both  SqD  and  MCP  are shown for 
both the marginal and two-class models. For both func-
tions, the two-class model converged for all genes. The 
slope estimates followed the expected pattern:  �  ̂   N          was 
very close to zero, and  �  ̂   for the marginal model was in-
termediate to  �  ̂   S      and  �  ̂   N      . Estimates of minor allele fre-
quencies,  p̂ , for those genes where the latent class model 
converged ranged from 0.018 to 0.127; these values cor-
respond to estimated prevalences of segregating families 

Table 6. P ower, convergence rates (P(D = 1)), sensitivity and specificity at the QTL

p � Power PVP, % P(D = 1), % Sensitivity, % Specificity, %

two-Class m arginal

SqD MCP Sq D MCP SqD MCP SqD MCP SqD MCP SqD MCP

0.025 0.095 0.270 0.132 0.252 0.198 14.2 14.7 99.0 56.8 54.9 23.8 66.4 94.9
0.200 0.54 0.444 0.160 0.856 0.846 87.4 93.9 99.8 88.8 28.0 09.0 95.4 99.3
0.500 0.75 0.554 0.326 0.972 0.980 97.8 99.2 99.6 95.8 24.9 10.1 99.2 99.8

Res ults for sensitivity and specificity include only those simulations where the two-class model converged (D = 1). Results shown 
are for 28 families and 4 sibs per family across 500 simulations for � = 1.
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Table 7. R esults of latent class analysis for expression phenotypes

Gene Estimates p values

�̂ �̂N �̂S �̂ p̂ marginal t wo-class

MCP SqD MCP SqD

CHI3L2 0.801 0.603 3.741 0.071 0.018 <0.001 <0.001 0.005 0.009

CTBP1 0.038 0.013 0.253 0.071 0.018 <0.001 <0.001 0.001 <0.001

CTSH 0.030 0.021 0.151 0.071 0.018 <0.001 <0.001 <0.001 0.011

PPAT 0.044 0.025 0.332 0.071 0.018 <0.001 <0.001 0.005 0.044

SMARCB1 0.023 0.008 0.179 0.071 0.018 <0.001 0.003 0.001 <0.001

ZNF85 0.106 0.005 0.922 0.071 0.018 <0.001 0.001 0.001 0.354

POMZP3 0.216 0.148 1.072 0.071 0.018 <0.001 <0.001 <0.001 0.007

VAMP8 0.019 0.009 0.094 0.131 0.033 <0.001 0.011 0.042 0.038

CPNE1 0.062 0.023 0.330 0.143 0.036 <0.001 <0.001 0.002 0.001

CSTB 0.032 0.014 0.135 0.143 0.036 <0.001 0.001 0.007 0.010

ICAP-1A 0.048 0.010 0.179 0.143 0.036 <0.001 <0.001 0.001 0.001

S100A13 0.053 0.002 0.336 0.143 0.036 <0.001 0.013 0.006 0.044

GSTM1 0.098 0.054 0.282 0.180 0.045 <0.001 <0.001 0.114 0.027

LOC388796 0.090 0.028 0.289 0.217 0.055 <0.001 <0.001 0.023 <0.001

IRF5 0.072 0.032 0.204 0.220 0.055 <0.001 <0.001 0.061 0.006

EIF3S8 0.022 0.009 0.057 0.233 0.059 <0.001 <0.001 0.071 0.036

RPS26 0.014 0.003 0.051 0.250 0.063 <0.001 <0.001 0.067 0.093

PSPHL 0.685 0.056 2.165 0.282 0.071 <0.001 <0.001 0.038 0.001

TM7SF3 0.074 0.008 0.282 0.286 0.072 <0.001 0.001 0.048 0.002

DDX17 0.091 0.002 0.267 0.294 0.074 <0.001 <0.001 0.154 0.013

HSD17B12 0.021 0.007 0.057 0.306 0.077 <0.001 <0.001 0.021 0.001

TCEA1 0.010 –0.002 0.037 0.311 0.079 0.005 0.046 0.130 0.212

IL16 0.026 0.002 0.083 0.324 0.082 0.010 0.023 0.156 0.040

CGI-96 0.074 0.017 0.176 0.360 0.091 <0.001 <0.001 0.046 0.008

GSTM2 0.070 0.001 0.165 0.434 0.112 <0.001 <0.001 0.131 0.035

LOC64167 1.047 –0.002 2.190 0.490 0.127 <0.001 <0.001 0.050 0.004

Co mplete results are shown for the MCP phenotype. p values for the SqD phenotype also shown with bold values indicating the 
smaller of the two p values. Nominal segregating and non-segregating families for genes in bold are illustrated in figure 3.

Table 8. E stimated probability of membership in the segregating class for individual families for genes in figure 3

Gene C EPH family identifier

1333 1340 1341 1345 1346 1347 1362 1408 1416 1418 1421 1423 1424 1454

SMARCB1 0.010 0.006 0.003 0.002 0.002 0.004 0.009 0.006 0.004 0.004 0.018 0.793 0.000 0.002
ZNF85 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
POMZP3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
CGI-96 0.166 0.124 0.175 0.171 0.564 0.689 0.544 0.614 0.285 0.141 0.713 0.164 0.150 0.105
PSPHL 1.000 0.000 0.000 0.006 0.000 0.000 0.000 0.997 0.000 0.000 1.000 0.000 0.000 0.993
TM7SF3 0.035 0.707 0.012 0.127 0.055 0.627 0.008 0.037 0.874 0.711 0.021 0.016 0.038 0.101
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of between 0.07 and 0.49. Values of  p̂  were generally high-
er for  SqD  ranging up to  p̂    = 0.276 and  � ̂  = 0.64 (results 
not shown). As expected for genes that reached strict sta-
tistical significance for linkage in the genome-wide study 
reported in  [2] , permutation p values in the test based on 
the marginal model were generally small ( ! 0.001). p val-
ues for the two-class hypothesis test in Equation (2.13) 
were generally larger than for the marginal model, but 
were less than 0.05 in 19 out of 27 genes for  MCP  and for 
24 out of 27 genes for  SqD . Based on the simulation study, 
we predicted that p values would be smaller for  MCP  than 
for  SqD  at the lower allele frequencies with a reversal in 
this pattern at the higher allele frequencies. Indeed, we 
observed eight genes with  p̂    = 0.018 and  � ̂  = 0.071, and of 
these genes the p value was smaller for  MCP  than for  SqD  
in seven cases. Of the 13 genes with the highest allele fre-
quencies, specifically with  p̂   1  0.05 and  � ̂   1  0.20, the p 
value was larger for  MCP  than for  SqD  in 11 cases.

  Designation of Segregating Families 
  Figure 3  illustrates  MCP  for each family in six example 

genes with estimated allele frequencies,  p̂   , ranging from 
0.018 to 0.091. Note that the scale for  MCP  differs among 
genes. Families were designated as segregating if esti-
mates of the class-specific probabilities  P ( C  i  = S  �    Y   i ,   Z   i ) 
from Equation (2.10) exceeded 0.50; data for these fami-
lies appear in red (grey in the print version). Class-specif-
ic probabilities of membership in the segregating class 
appear in  table 8 . As expected individual families differed 
in their designation as a segregating family across genes. 
Typically, families with the largest range in  MCP  values 
were designated as segregating while families with the 
smallest range in  MCP  values were designated as non-
segregating. For  PSPHL  and  TM7SF3 , the two-class ap-
proach also designated several families as segregating 
that had smaller ranges in MCP than families that were 
designated as non-segregating. For these six genes, the 
probability of membership in a segregating class tended 
to approach 1.0 or 0.0 for most families. However, for 
 CGI-96  and  TM7SF3  there was more uncertainty in the 
designation of a segregating versus a non-segregating 
family. In interpreting these results, we keep in mind the 
simulation study indicating that while we have reason-
able confidence that families assigned to the nominal 
segregating class are indeed segregating, the low sensitiv-
ity for  MCP  means that we may have falsely assigned seg-
regating families to the non-segregating class.

  Discussion 

 Using a novel latent class model, we have developed 
and evaluated an estimation and testing procedure that 
accounts for heterogeneity in outcome due to segregating 
and non-segregating families. The approach provides an 
objective test for linkage which may be valuable when the 
prevalence of segregating families in the sample is small, 
as well as information that can be used to identify segre-
gating families, which in turn may inform the selection 
of families or individuals for future study. In our motivat-
ing study, multiple measures of gene expression were the 
phenotypes of interest. However, the method could also 
be used in studies where multiple continuous endpoints 
are collected but families are selected into the study with-
out regard to phenotypic variation in the outcome of
interest. One limitation to performing the latent class 
analysis with a large number of markers is that the per-
mutation procedure proposed here is computationally
intensive; to obtain the resolution needed to make mul-
tiple comparison adjustments the computational burden 
would be even larger. For illustrative purposes, we ig-
nored the issue of multiple comparisons but in practice 
this adjustment would be important, particularly if a 
large number of candidate loci were examined.

  For large sibships, the hypothesis test for  MCP  is some-
what more powerful than  SqD  in marginal, regression-
based linkage analyses  [17, 22] . For the two-class ap-
proach, simulation suggests that  SqD  is more powerful 
than  MCP  for higher allele frequency whereas  MCP  is 
more powerful than  SqD  for rare alleles. However, the 
marginal  MCP  model was more powerful than both la-
tent class procedures at higher allele frequencies, despite 
ignoring the distinction between information from seg-
regating and non-segregating families. The two-class 
procedure has several steps, and there are a number of 
factors at each step that may contribute to this finding. 
Our results suggest that factors that may contribute to 
this finding include the skewed distribution of the origi-
nal phenotypes, which in turn results in higher specific-
ity for  MCP  and higher sensitivity for  SqD . While the
results describing power are complex, the ability of the 
two-class approach using the  MCP  to identify segregating 
families was consistent and impressive, with PVP values 
that consistently exceeded 95% at higher allele frequen-
cies. For the marginal model, additional phenotype func-
tions have been proposed. For example, correction by the 
best linear unbiased predictor (BLUP) of the population 
mean was shown to perform better than correction by the 
family mean  [22] . However, since the means in the segre-
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gating and non-segregating classes differ, the marginal 
BLUP should be biased for the conditional means. An-
other phenotype function uses residuals to obtain an
optimally weighted function of the squared sum and 
squared difference and was used in the original analysis 
of these data  [2, 21] . Like the BLUP-based approach, this 
function relies on marginal residuals and is not well suit-
ed for use as the outcome in the two-class model without 
modification. In limited studies we found that phenotype 
functions which depend on marginal moments gave un-
expected results, including introducing bias or reducing 
the ability of the algorithm to detect the latent classes.

  We used maximum likelihood to fit the two-class 
model, assuming normality with separate means but 
equal variances in the two classes. We further assumed 
that sibpairs within a family are independent, condition-
al on the latent class. Each of these three assumptions 
(normality of the phenotype functions, equality of vari-
ance and conditional independence) are undoubtedly vi-
olated, and it is perhaps not surprising that the slope es-
timates in the two-class model are highly biased. Early in 
our study, we found that when the two-class algorithm 
converged, the maximum likelihood estimates of the 
variance seriously underestimated the empirical variance 
of the slope in the segregating class. This finding is con-
sistent with results from the simulation study, essentially 
ruling out the possibility of using a Wald-type test [Bas-
tone, unpubl. data]. An additional problem in the devel-
opment of a valid hypothesis test arose as a result, of the 
algorithm failing to consistently converge to a two-class 
solution. As a result the test statistic involves both the es-
timated slope from the two-class model, and in the event 
of non-convergence, the estimated slope in the marginal 
model. Permutation was used to address these issues. The 
mixture distribution of the test statistic was estimated 
under the null hypothesis using permutation. The proce-
dure yields valid type I error rates, and allows the proce-
dure to be used irrespective of the bias in the estimate, 
and whether a two-class model can be fit to the observed 
data. In developing this approach, we initially used a per-

mutation procedure where we accepted the null hypoth-
esis when the two-class model failed to converge  [13, 26] . 
In simulation studies, this approach yielded acceptable 
type I error rates, but, obviously, failed to detect linkage 
in any gene where the two-class model did not fit and 
yielded lower power than the procedure detailed here.

  In practice one of the limitations of this study is the 
computational burden of the permutation procedure and 
in practice the computational burden would be even larg-
er when multiple markers are used. Permutation provides 
a valid test when assumptions about the distribution of 
the outcome and the conditional independence are vio-
lated. Morever, for the method proposed here, the test 
statistic has a mixture distribution that is not easily mod-
elled parametrically. However, permutation is computa-
tionally intensive and is not feasible for either trios or 
where there is a single sibpair. Within the framework of 
the two-class model, generalized estimating equations 
(GEE) provide a framework for incorporating correlation 
into the covariance matrix for each family while relaxing 
the normality and homogeneity of variance assumptions 
 [25–27] . GEE requires correct specification of the vari-
ance just as ordinary least square (OLS), and so accomo-
dating heterogeneous variances in GEE is explicitly done 
in the same way with variance weights just as with OLS 
under a linear model. We have made some initial progress 
in using GEE to fit the two-class model. By incorporating 
more reasonable assumptions into the model, estimation 
using GEE, perhaps in combination with a sequential 
testing procedure to account for the two sizes of models 
that are potentially fit, might allow us to develop a semi-
parametric test and, at least in larger samples, avoid the 
need for permutation.

  While the development of a valid hypothesis test in-
volved a number of complications, the results of the clas-
sification procedure are highly encouraging given the 
importance of accurately identifying segregating families 
in the presence of heterogeneity. Our simulation results 
suggest that the method using MCP is clearly capable of 
identifying segregating families with very high PVP 
when these families are relatively common. In cases 
where segregating families are rare, PVP values are lower, 
but still provide substantial improvements in informa-
tion compared to randomly selecting families for follow-
up. We note that families with larger sibships can be bet-
ter classified using this approach. One limitation of our 
method is that the sensitivity for detection of segregating 
families is low. In our experience, the identification of 
segregating families is generally of greater interest than 
the identification of non-segregating families. We cau-

  Fig. 3.     MCP  for selected families with  � ̂  ranging from 0.07 to 0.29. 
For each gene, families designated as segregating, based on a pos-
terior probability for membership in the segregating class of at 
least 0.5, are shown in red (grey in the print version). Note the 
larger scale for the dependent variable for  PSPHL  and  POMZP3  
compared to the other four genes. Posterior probability for mem-
bership in the segregating class are shown in table 7. 
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tion that the two-class approach described here would 
not be appropriate for a study where accurate identifica-
tion of both types of families was needed. As with the 
hypothesis testing problem, it is possible that improved 
sensitivity could be achieved by more reasonable assump-
tions in the model, perhaps by using a GEE framework.

  Other family-based linkage methods have been ex-
tended to account for heterogeneity using mixture mod-
els, including parametric linkage methods for qualitative 
traits and the variance components method for quanti-
tative traits  [28–30] . Our latent class extension of Hase-
man-Elston regression is not limited to distinguishing 
between segregating and non-segregating families. A 
similar approach could be used to model the genetic, or 
locus-based, heterogeneity of a complex trait such as a 
quantitative measure of disease, even when families are 
selected on the basis of phenotype and all families are as-
sumed to be segregating. In contrast to the model-based 
approaches, ordered subset analysis and recursive parti-
tioning are data-driven methods that have been applied 
to linkage problems in the presence of heterogeneity  [31–
34] . These approaches provide a test for linkage and as-
sign families to classes but, unlike the method proposed 
here, do not include an approach for quantifying the un-
certainty of class assignment through the posterior prob-
ability of membership in the segregating class.

  Lastly, we note that large marker sets are now widely 
used in human gene-mapping. Incorporating an ap-
proach into the methods described here, that would allow 
us to test for linkage with multiple loci, is a topic of fur-
ther study. 
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  Appendix 

 Expectation of Squared Difference   (SqD)   
 For the marginal model,  table 1  shows the expectation of the 

 SqD  function conditional on IBD sharing as  [15] :

   E ( W  ij  –  W  ij �    �   Z  ik ) 
2  = 2[ E ( W  ij   �   Z  ik ) –  E ( W  ij  W  ij 
    �   Z  ik )]

         = 2[ Var ( W  ij ) –  Cov ( W  ij  W  ij �    �   Z  ik )]

  The terms from  table 2  needed to derive the slope in  table 3  and 
intercept in terms of the genetic model are the variance of  W  ij , 
which follows directly from the genetic model (Equation (2.3)), 
as well as the conditional covariance. Using the definition of  W  ij  
and results previously derived by Haseman and Elston  [15] , the 
covariance of  W  ij  and  W  ij �    at the QTL conditional on member-
ship in sibpair  k  is: 

    Cov ( W  ij   W ij �     �   X  ik ) =  �   2  F  +  �   2  Cov ( G  ij  G  ij 
  �   X  ik )
                             =  �   2  F  +  �  2  E ( G  ij  G  ij
   �   X  ik ) –  E ( G  ij ) 

2 
                             =  �   2  F  +  �  2  pqX  ik 

  Considering sharing at the SNP marker leads directly to the term 
in Equation (2.5). Similarly, conditioning on class in addition to 
IBD sharing yields: 

    E ( W  ij  –  W  ij 
    �   Z  ik  C  i ) 
2  = 2[ Var ( W  ij   �   C  i ) –  Cov ( W  ij  W  ij 
    �   Z  ik  C  i )]

  For each class,  Cov ( W  ij  W  ij   �   Z  ik  C  i ) is derived in Appendix B of Bas-
tone  [26] . 

 Expectation of Mean Corrected Product   (MCP)   
 For the marginal model,  table 1  shows the expectation of the 

 MCP  function conditional IBD on sharing as:

   E [– ( W  ij  –   W   i ) ( W  ij 
   –  W    i )  �   Z  ik ] =  Var ( W    i   �   Z  ik )
  +  Cov ( W  ij  W  ij 
    �   Z  ik ) – 2 Cov ( W  ij   W     i   �   Z  ik )                                   (A.1)

  Note that 
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 where  jj �    �   k �   denotes a sibpair belonging to a sibpair other than 
 k . To derive  Cov ( W  ij  W  ij �    �   jj �    �   k �  ) the marginal covariance of a 
sibpair can be written as: 
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 Using the information from Equations (A.3), (A.2) and (A.4) with 
Equation (A.1) yields the following result: 
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E W P W P |Z Var W

Cov WW

n

n n

n n n
Cov WW |Z

n n

�

�

 In this form the terms from  table 2  can be substituted to yield the 
slope terms in  table 3 , and a computer program to numerically 
determine the intercepts. Similarly, 
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 For each class,  Cov ( W  ij  W  ij' 

 

 �   C  i ) is derived in Appendix B of Bas-
tone  [26] . 

 References 

  1 Dausset J, Cann H, Cohen D, Lathrop M, 
Lalouel JM, White R: Centre d’Etude du 
Polymorphisme Humain (CEPH): collabor-
ative genetic mapping of the human genome.
Genomics 1990;   6:   575–577. 

  2 Morley M, Molony CM, Weber TM, Devlin 
JL, Ewens KG, Spielman RS, Cheung VG: Ge-
netic analysis of genome-wide variation in 
human gene expression. Nature 2004;   430:  
 743–747. 

  3 Clogg CC: Latent Class Models; in Arminger 
G, Clogg CC, Sobel ME (eds): Handbook of 
Statistical Modeling for the Social Behavior-
al Sciences. New York, Plenum Press, 1995. 

  4 Pritchard JK, Rosenberg NA: Use of un-
linked genetic markers to detect population 
stratification in association studies. Am J 
Hum Genet 1999;   65:   220–228. 

  5 Pritchard JK, Stephens M, Donnelly P: Infer-
ence of population structure using multilo-
cus genotype data. Genetics 2000a;155:   945–
959. 

  6 Pritchard JK, Stephens M, Rosenberg NA, 
Donnelly P: Association mapping in struc-
tured populations. Am J Hum Genet 2000b;
67:   170–181. 

  7 Koch R, Julius U, Jaross W, Schroeder HE: 
Estimation of the heritability of latent vari-
ables which are included in a structural mod-
el for metabolic syndrome. Hum Hered 2001;  
 52:   171–176. 

  8 Satten GA, Flers D, Yang Q: Accounting for 
unmeasured population substructure in 
case- control studies of genetic association 
using a novel latent-class model. Am J Hum 
Genet 2001;   68:   466–477. 

  9 Todd RD, Rasmussen ER, Neuman RJ, Reich 
W, Hudziak JJ, Bucholz KK, Madden PA, 
Heath A: Familiality and heritability of sub-
types of attention deficit hyperactivity dis-
order in a population sample of adolescent 
female twins. Am J Psychiatry 2001;   158:  
 1891–1898. 

 10 Keel PK, Fichter M, Quadflieg N, Bulik CM, 
Baxter MG, Thornton L, Halmi KA, Kaplan 
AS, Strober M, Woodside DB, Crow SJ, 
Mitchell JE, Rotondo A, Mauri M, Cassano 
G, Treasure J, Goldman D, Berrettini WH, 

Kaye WH: Application of a latent class analy-
sis to empirically define eating disorder phe-
notypes. Arch Gen Psychiatry 2004;   61:   192–
200. 

 11 Nyholt DR, Gillespie NG, Heath AC, Meri-
kangas KR, Duffy DL, Martin NG: Latent 
class and genetic analysis does not support 
migraine with aura and migraine without 
aura as separate entities. Genet Epidemiol 
2004;   26:   231–244. 

 12 Purcell S, Sham P: Properties of structured 
association approaches to detecting popula-
tion stratification. Hum Hered 2004;   58:   93–
107. 

 13 Bastone LA, Putt ME, TenHave TR, Chueng 
VG, Spielman RS: Genetic heterogeneity and 
trans regulators of gene expression. BMC 
Proc 2007;   1(suppl 1):S80. 

 14 Falconer DS, Mackay TFC: Quantitative Ge-
netics, fourth edition, Harlow. Prentice Hall, 
1996. 

 15 Haseman JK, Elston RC: The investigation of 
linkage between a quantitative trait and a 
marker locus. Behav Genet 1972;   2:   3–19. 

 16 Wright FA: The phenotypic difference dis-
cards sib-pair QTL linkage information. Am 
J Hum Genet 1997;   60:   740–742. 

 17 Wright FA: Information perspectives of the 
Haseman-Elston method. Hum Hered 2003;  
 55:   132–142. 

 18 Drigalenko E: How sib pairs reveal linkage. 
Am J Hum Genet 1998;   63:   1242–1245. 

 19 Elston RC, Buxbaum S, Jacobs KB, Olson JM: 
Haseman Elston revisited. Genet Epidemiol 
2000;   19:   1–17. 

 20 Forrest WF: Weighting improves the ‘New 
Haseman-Elston’ method. Hum Hered 2001;  
 52:   47–54. 

 21 Shete S, Jacobs KB, Elston RC: Adding fur-
ther power to the Haseman-Elston method 
for detecting linkage in larger sibships: 
weighting sums differences. Hum Hered 
2003;   55:   79–85. 

 22 Wang T, Elston RC: A modified revisited 
Haseman-Elston method to further improve 
power. Hum Hered 2004;   57:   109–116. 

 23 Jones BL, Nagin DS, Roeder K: A SAS proce-
dure based on mixture models for estimating 

developmental trajectories. Sociol Methods 
Res 2001;   29:   374–393. 

 24 Abecasis GR, Cherny SS, Cookson WO, Car-
don LR: Merlin-rapid analysis of dense ge-
netic maps using sparse gene flow trees.
Nat Genet 2002;   30:   97–101. 

 25 Liang KY, Zeger SL: Longitudinal data anal-
ysis using generalized linear models. 
Biometrika 1986;   73:   3–22. 

 26 Bastone LA: Methods for the genetic analysis 
of complex continuous traits, University of 
Pennsylvania, Philadelphia, PA. PhD Disser-
tation, 2007. 

 27 Reboussin BA, Liang KY, Reboussin DM: Es-
timating equations for a latent transition 
model with multiple discrete indicators. Bio-
metrics 1999;   55:   839–845. 

 28 Hodge SE, Anderson CE, Neiswanger K, 
Sparkes RS, Rimoin DL: The search for het-
erogeneity in insulin-dependent diabetes 
mellitus (IDDM): linkage studies, two-locus 
models, genetic heterogeneity. Am J Hum 
Genet 1983;   35:   1139–1155. 

 29 Ott J: Linkage analysis and family classifica-
tion under heterogeneity. Ann Hum Genet 
2003;   47:   311–320. 

 30 Ekstrom CT, Dalgaard P: Linkage analysis of 
quantitative trait loci in the presence of het-
erogeneity. Hum Hered 2003;   55:   16–26. 

 31 Hauser ER, Watanabe RM, Duren WL, Bass 
MP, Langefeld CD, Boehnke M: Ordered sub-
set analysis in genetic linkage mapping of 
complex traits. Genet Epidemiol 2004;   27:   53–63. 

 32 Shannon WE, Province MA, Rao DC: Tree-
based recursive partitioning methods for 
subdividing sibpairs into relatively more ho-
mogeneous subgroups. Genet Epidemiol 
2001;   20:   293–306. 

 33 Costello TJ, Swartz MD, Sabripour M, Gu X, 
Sharma R, Etzel CJ: Use of tree-based models 
to identify subgroups increase power to de-
tect linkage to cardiovascular disease traits. 
BMC Genet 2003;   4(suppl 1):S66. 

 34 Xu W, Schulze TG, De Paulo JR, Bull SB, Mc-
Mahon FJ, Greenwold CMT: A tree-based 
model for allele-sharing-based linkage anal-
ysis in human complex diseases. Genet Epi-
demiol 2006;   30:   155–169. 

  


