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Abstract

Latent transition analysis (LTA) was initially developed to provide a means of measur-
ing change in dynamic latent variables. In this article, we illustrate the use of a cogni-
tive diagnostic model, the DINA model, as the measurement model in a LTA, thereby
demonstrating a means of analyzing change in cognitive skills over time. An example
is presented of an instructional treatment on a sample of seventh-grade students in
several classrooms in a Midwestern school district. In the example, it is demonstrated
how hypotheses could be framed and then tested regarding the form of the change in
different groups within the population. Both manifest and latent groups also are
defined and used to test additional hypotheses about change specific to particular
subpopulations. Results suggest that the use of a DINA measurement model expands
the utility of LTA to practical problems in educational measurement research.
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Introduction

Learning means that change has occurred in some behavior and studying learning

requires statistical models for studying that change. New instructional methods, new

materials, and new policies all need to be studied to determine their short- and long-

term effectiveness. Much early measurement of educational change is similar to that

typified by Bereiter’s (1963) efforts to examine differences in raw scores, such as

between a pretest and a posttest. In that approach, raw score differences are assumed

to convey the weight of the change in an attribute, such as learning. Although this

appears to be a straightforward approach, it unfortunately also leads to some funda-

mentally unsound outcomes. The reliability of change measured in this way, for

example, is composed of the combined unreliability of pretest and posttest scores. In

addition, change scores have a spuriously negative relation to initial scores because

of regression effects. Finally, change may not be measured on the same scale for per-

sons at different initial score levels.

The use of latent variables as found in item response theory (IRT; Hambleton,

Rogers, & Swaminathan, 1991; Lord, 1980; Lord & Novick, 1968) can be helpful in

resolving some of these problems. Andersen (1985) proposed a multidimensional

Rasch model, for example, for repeated testing of the same persons over several occa-

sions. In that model, the item difficulties are assumed to be constant over occasions,

but abilities change. Abilities on all occasions are correlated. Embretson (1991) pre-

sented a multidimensional IRT model to measure both initial ability and learning, and

where learning is the increment in ability between any two successive occasions.

Though these models are multidimensional, the multidimensionality refers not to dif-

ferent ability dimensions but rather to the same unidimensional ability measured at

different times. Andersen’s model and Embretson’s model are both appropriate for

evaluating the increment in unidimensional latent abilities over repeated measures.

They are not as useful, however, for diagnosing the balance of change among several

possibly related abilities or cognitive skills over multiple occasions. This is unfortu-

nate as it this latter kind of information that is potentially most useful for educational

or psychological diagnostic purposes, for example, to provide information to teachers

to help them adjust their instructional emphases and strategies for optimizing student

learning.

Several cognitive diagnostic models have been developed to evaluate examinees’

status relative to mastery or nonmastery on each of a set of cognitive skills (DiBello,

Stout, & Roussos, 1995; Hartz, 2002; Junker & Sijtsma, 2001). These models provide

helpful, fine-grained information regarding individual or population-level learning

weaknesses and strengths. What is missing, however, is a means for using these mod-

els for measuring change in mastery or nonmastery status. The main technical diffi-

culty in this regard stems from the fact that mastery or nonmastery on each cognitive

skill is a binary decision, and binary latent variables cannot be handled well by means

of variance–covariance-based approaches (Collins & Wugalter, 1992). It is not possi-

ble, for example, to simply assume a multivariate normal distribution, such as is the
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case for continuous latent abilities over repeated measures as used by Andersen

(1985) and Embretson (1991).

In the research described here, an existing approach for analyzing change, latent

transition analysis (LTA; Collins & Wugalter, 1992), was combined with a cognitive

diagnostic model and used to account for change in the latent binary variables mea-

sured by cognitive diagnostic models. LTA is typically used for detecting the prob-

abilities that members of different latent groups in the data will remain in those

groups or shift into other latent groups. This kind of analysis is an excellent way to

study changes in development, such as transitions among the stages described in

Piagetian theory. LTA can also be used to study transitions in attitudes, in personality

patterns, in behaviors, and in learning. The LTA in combination with a cognitive

diagnostic model, as described in this article, presents a new method that can accom-

modate a far wider range of research problems, accounting for transition statuses on

multiple latent categorical variables. It will be possible, for example, to study mathe-

matics learning over a wide range of different cognitive skills. It will further be pos-

sible to examine how multiple educational indicators react as a function of particular

changes in educational instruction.

The Latent Transition Analysis Model

LTA was initially developed to study stage sequential change in particular types of

latent variables called dynamic latent variables (Collins & Wugalter, 1992). Dynamic

latent variables include characteristics such as attitudes and personality patterns that

change over time. This technique has also been found to be useful for studying transi-

tions subsequent to interventions, such as cessation in tobacco use and reduction of

inappropriate behavior. LTA can be a useful method for investigating academic

growth when latent variables are categorical (e.g., Boscardin, Muthén, Francis, &

Baker, 2008; Compton, Fuchs, Fuchs, Elleman, & Gilbert, 2008; Trentacosta et al.,

2011).

In this study, we describe the use of LTA combined with a cognitive diagnostic

model to accommodate typically longer educational tests developed to measure mul-

tiple cognitive skills. This new class of models enables a researcher to investigate

hypotheses about the effect(s) of an intervention (e.g., an instructional program or a

change in educational policy) by testing models of changes in the transition probabil-

ities prior to and following an intervention. We provide an example to illustrate the

use of this model from a study of an instructional intervention.

Transitions. Transitions are expressed as probabilities indicating the likelihood of

changing (i.e., transitioning) from one latent status to another. In the cognitive diag-

nostic models described below, two statuses, mastery or nonmastery, are estimated

for each skill. When considered over two time points, this will yield four transition

probabilities between the two occasions: the probability from nonmastery to mastery

(pmjn), from nonmastery to nonmastery (pnjn), from mastery to nonmastery (pnjm),
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and from mastery to mastery (pmjm), where n and m stand for nonmastery and mas-

tery, respectively.

Three groups of parameters are estimated in the LTA with a cognitive diagnostic

measurement model. The first group of parameters is made up of the latent transition

probabilities. This is particularly useful, because it offers the solution to a major type

of research question that can now be addressed with this new model: How do the

latent cognitive skills mastery statuses change from occasion to occasion? The sec-

ond group of parameters estimates the mastery or nonmastery status for each individ-

ual at the first occasion of measurement. The third group of parameters estimates the

relation between the latent statuses and the question. That is, it yields a probability

of a correct or incorrect response to a given item for each of the different latent sta-

tuses. The second and third groups of parameters also provide the solution to another

research question, namely, what is the individual mastery status on each cognitive

skill on each occasion. The answer to this question can provide useful information

about student or patient status at each point in time.

A simple example of the new model is provided here using a single manifest indi-

cator and a single latent variable: Assume a single categorical manifest variable is

measured on T separate occasions, and Yt denotes the response given at occasion

t (where t = 1, . . . , T ). There are D levels or categories for each Yt, and yt is a

particular level or category (where yt = 1, . . . , D). At is a latent variable measured at

time t, C is the number of categories of At, and at is a particular latent class at time t

(where at = 1, . . . , C). The probability of response pattern ~Y = (y1, . . . , yt) is

expressed as follows:

P(~Y ) =
XC

a1:::aT = 1

P(A1 = a1)
YT
t = 2

P(At = atjAt�1 = at�1)
YT
t = 1

P(Yt = ytjAt = at) , ð1Þ

where P(A1 = a1) is the probability of a certain status of the latent variable at the first

occasion,
QT

t = 2 P(At = atjAt�1 = at�1) are the transition probabilities from previous

occasions to current occasions, and
QT

t = 1 P(Yt = ytjAt = at) is the measurement model

incorporating measurement error. Here,
QT

t = 2 P(At = atjAt�1 = at�1) measures the

transition probability between two adjacent time points, the so-called lag-1 effect.

Some studies (Marcoulides, Gottfried, Gottfried, & Oliver, 2008; Nylund, 2007)

have introduced high-order effect (i.e., lag-2) to test the lasting and direct impact

between nonadjacent time points when the longitudinal data include more than two

time points.

Extending the single-indicator LTA model to multiple indicators is straightfor-

ward. In the cognitive diagnostic model, however, we have both multiple indicators

(e.g., multiple items on a test) and also multiple latent variables (e.g., multiple cogni-

tive skills) at each occasion. For simplicity, assume the latent variables (e.g., the cog-

nitive skills) are independent and their growth transition probabilities are also

independent. Let ~At denote all cognitive skills at occasion t and Akt denote the
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cognitive skill k at occasion t with k = 1, . . . , K: Then, the model in Equation (1) can

be extended to

P(~Y ) =
XC

akt = 1

YK
k = 1

P(Ak1 = ak1)
YT
t = 2

YK
k = 1

P(Akt = aktjAk(t�1) = ak(t�1))
YT
t = 1

P(Yt = ytj~At =~at),

ð2Þ

where
QK

k = 1 P(Ak1 = ak1) is the probability of certain statuses of multiple cognitive

skills at the first occasion,
QT

t = 2

QK
k = 1 P(Akt = aktjAk(t�1) = ak(t�1)) represents the tran-

sition probabilities for all cognitive skills from previous occasions to current occa-

sions, and the measurement model P(Yt = ytj~At =~at) is estimated by the DINA

(Deterministic Inputs, Noisy ‘‘AND’’ Gate) model (Haertel, 1989; Junker & Sijtsma,

2001; Macready & Dayton, 1977). The DINA model is a cognitive diagnostic model

for estimating mastery or nonmastery statuses on multiple cognitive skills based on

the raw item responses. This model is discussed below. Parameter invariance is

assumed for the DINA measurement model, that is, P(Yt = ytj~At) is assumed to be

time-homogeneous for 1 � t � T : In this study, we calibrate responses from each

administration simultaneously by the DINA model and assume the item parameters

to be time-homogeneous, that is, estimated as equal for each occasion. Each person’s

skill mastery status, however, is allowed to change over occasions. In addition, tran-

sition probabilities P(Akt = aktjAk(t�1) = ak(t�1)) are assumed to differ for each skill.

DINA Model

The DINA model describes the probability of a correct response as predicted by

examinees’ skill profiles and the item parameters. In this model, the latent variable is

estimated from a vector of 0s and 1s for each examinee, indicating whether or not

examinee i answered item j correctly. To indicate which items would load on which

skills, a Q-matrix was constructed typically based on the judgment of content experts.

The elements of a Q-matrix are specified as qjk = 1 when item j measures skill k or 0

otherwise. The mastery or nonmastery state is specified for an examinee for each

skill in the DINA model as aik = 1 or 0 indicating whether or not examinee i has mas-

tered skill k.

In the DINA model, each item divides the population into two classes, those who

master all required skills for that item and those who miss at least one required skill

for that item. Let jij denote whether examinee i has mastered all required attributes

for item j,

jij =
Y

a
qjk

ik : ð3Þ

As in the signal detection model (Green & Swets, 1966), the jij are detected from

noisy observations Yij by two error probabilities, a ‘‘slipping’’ parameter, sj, indicat-

ing the false negative rate for item j, and a ‘‘guessing’’ parameter, gj, indicating the
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false positive rate for item j. sj is the probability of missing item j for someone clas-

sified as mastering all required skills,

sj = P(Yij = 0jjij = 1), ð4Þ

and gj is the probability of a correct response for someone classified as lacking at

least one required skill,

gj = P(Yij = 1jjij = 0): ð5Þ

Therefore, given examinee parameter jij and item parameters sj and gj, the probabil-

ity of a correct response can be written as

P(Yij = 1ja) = (1� sj)
jij g

(1�jij)

j : ð6Þ

Assuming local independence and independence among examinees, the joint likeli-

hood for all responses under the DINA model is

L(s, g; a) =
YY

P(Yij = 1jjij, sj, gj): ð7Þ

Example: Change in Mastery Status in Mathematics
Achievement Following an Instructional Intervention

Here we present an example to illustrate the application of LTA-DINA, the LTA

with a DINA measurement model, for assessing change subsequent to an instruc-

tional intervention. The example presents a multi-wave experiment designed to

assess the effects of an instructional treatment called Enhanced Anchored Instruction

(EAI; Bottge, Heinrichs, Chan, Mehta, & Watson, 2003) on mathematics achieve-

ment of middle schools with learning disabilities (LD) and without learning disabil-

ities (NLD).

There were two EAI treatments in the larger study. One treatment was presented

in the first semester of the academic year followed by the second treatment in the sec-

ond semester of the same academic year. Results for the second of the EAI instruc-

tional treatments, Fraction of the Cost (FOC), are reported here. The impact of the

EAI intervention on student mathematics achievement was assessed by examining

the different transition probabilities following each of the two instructional treatments

and by examining the different transition probabilities among different examinee

groups.

Procedures
Data. Students in the study were drawn from six mathematics classrooms in a school

district in a small upper Midwestern town. The sample consisted of 50 males and 59

females, all in the seventh grade. Nine of the students were diagnosed with LD. The

remainder of the students were NLD.
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Design of Study. The FOC test (described below) was administered four times, at

Weeks 1, 4, 19, and 24 of the academic year. Two instructional treatments were

administered to these same students during the school year: A 13-day EAI instruc-

tional treatment, called Kim’s Komet (KK), was taught between Weeks 1 and 4, and

an 11-day EAI instructional treatment called FOC was administered between Weeks

19 and 24. Between these two instructional treatments, teachers followed their regu-

lar math curriculum. Four administrations of the FOC test were given. No feedback

about correct answers was given to students about their performance in an effort to

avoid possible memory effects. As results of this study presented in the sequel sug-

gest, this strategy was somewhat successful.

Both KK and FOC instruction used video-based instructions. The KK video por-

trayed two girls competing in pentathlon events. The focus of the KK instruction was

on developing students’ informal understanding of pre-algebra concepts, including

linear functions, line of best fit, variables, rate of change (slope), and reliability and

measurement error. FOC instruction was designed to simulate mathematics problem

solving and was situated in a task requiring students to figure out how they could

afford to buy materials for building a skateboard ramp. The FOC video included

three middle grades students, a student with LD, an average-achieving student, and a

high-achieving student. Previous research suggested that the video format was partic-

ularly useful for students with reading difficulties because, in contrast to text-based

presentation, it allowed them to access and engage in the solving of meaningful prob-

lems along with their classmates (Bottge, Rueda, Serlin, Hung, & Kwon, 2007).

After the KK instruction and prior to the FOC instruction, the mathematics teachers

followed their regular curriculum to teach units on concepts related to geometry and

proportional reasoning. Specifically, the FOC test was given before and after each of

the three instructional sequences in the following order: first FOC test administra-

tion, KK instruction, second FOC test administration, regular instruction, third FOC

test administration, FOC instruction, and fourth FOC test administration. The focus

of this example is to illustrate estimation of the effects of each instruction unit on

students’ learning. As a result, the study focused on lag-1 transition probabilities as

these reflect the effects of each instructional sequence.

Measures. The FOC test consisted of 23 short-answer items designed to assess the

effects of the FOC instruction. Items were scored dichotomously as either correct or

incorrect. The test was administered at each of four time points. Items on the test

were constructed to measure students’ ability to follow a schematic diagram, take

measurements, compute lengths, and determine costs involved in constructing the

skateboard ramp. The reliability of this test was previously reported by Bottge et al.

(2007) as .80. The reliability based on four administrations in this study was .78, .79,

.79, and .78, respectively.

Construction of the Q-Matrix. Construction of the Q-matrix (shown in Table 1) is an

important step for cognitive diagnosis modeling as mis-specification will provide
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misleading results. For the FOC test, four cognitive skills were measured: Number &

Operation, Measurement, Problem Solving, and Representation. A mathematics edu-

cation content expert identified the four skills and indicated which of these four skills

were measured by each item on the FOC test. The results of that analysis were used

to create a 23 3 4 Q-matrix with elements qjk that indicated whether skill k was

required to solve item j.

Research Questions and Model-Based Research Hypotheses

In this section, we describe a hypothesis testing framework that enables us to deter-

mine (1) whether skill mastery statuses changed across the four test administrations

and whether the changes subsequent to each instruction were similar or different and

(2) whether different groups of examinees had different transition probabilities. We

begin by assuming that the four skills are independent and that skill growth is also

independent. We further assume that the transition probabilities are different for each

skill.

With regard to Question 1, we establish a basis of comparison by first assuming

that the population is homogeneous with respect to the transition probability matrix.

Table 1. Q-Matrix for Fraction of Cost Test.

Items Number & Operation Measurement Problem Solving Representation

1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 1 0 0
5 1 1 0 0
6 1 1 0 0
7 1 1 0 0
8 1 1 0 0
9 0 1 0 0

10 0 1 0 1
11 1 1 1 1
12 1 1 1 1
13 1 1 1 1
14 1 1 1 1
15 1 1 1 1
16 0 0 1 0
17 1 1 1 1
18 0 1 0 1
19 1 0 0 1
20 1 0 0 0
21 1 0 0 0
22 1 0 0 0
23 1 0 1 0
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Table 2 presents the transition probability matrix for a two-category latent class tran-

sition over four occasions of measurements. In the table, m indicates mastery, and n

indicates nonmastery. As an example, consider the transition from first to second test

wave (i.e., from pre- to post-KK Instruction). The transition probability matrix is

composed of four components: p21
njn (remaining in nonmastery status), p21

mjm (remain-

ing in mastery status), p21
mjn (transitioning from nonmastery to mastery status), and

p21
njm (transitioning from mastery to nonmastery status). The rows of each transition

matrix are conditional probabilities and, therefore, sum to 1 (e.g., p21
njn + p21

mjn = 1,

p21
njm + p21

mjm = 1). Thus, for each transition matrix, only two transition probabilities

need be estimated.

Three transition probability matrices were constructed to reflect the effects of KK-

instruction (Test Wave 1 to Test Wave 2), regular instruction (Test Wave 2 to Test

Wave 3), and FOC-instruction (Test Wave 3 to Test Wave 4). Four different models

of these three transition probabilities were tested to determine whether effects of the

three different instructional sequences were approximately equivalent or not:

Model A: In this model, the transition probability matrix for each transition is

assumed to not be equal to the others, thereby indicating that the effects of

all three instructional sequences are different.

p21
njn p21

mjn
p21

njm p21
mjm

�����
����� 6¼

p32
njn p32

mjn
p32

njm p32
mjm

�����
����� 6¼

p43
njn p43

mjn
p43

njm p43
mjm

�����
�����

Model B: In this model, the two transition probability matrices prior to the

FOC instruction were assumed to be equal. The transition following FOC

instruction, however, were assumed to be different. That is, the effects of

KK instruction and the regular math instruction were assumed to be the

same, but both differed from the effect of FOC instruction.

p21
njn p21

mjn
p21

njm p21
mjm

�����
�����=

p32
njn p32

mjn
p32

njm p32
mjm

�����
����� 6¼

p43
njn p43

mjn
p43

njm p43
mjm

�����
�����

Table 2. Transition Probability Matrix for a Two-Category Latent Class Transition Over Four
Time Points.

Test Wave 1!
Test Wave 2

(KK instruction)

Test Wave 2!
Test Wave 3

(Regular instruction)

Test Wave 3!
Test Wave 4

(FOC instruction)

p21
njnp

21
mjn

p21
njmp21

mjm

p32
njnp

32
mjn

p32
njmp32

mjm

p43
njnp

43
mjn

p43
njmp43

mjm
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Model C: In this model, the transition probability matrix from pre- to post-KK

instruction is assumed to be equal to the transition probability matrix from

pre- to post-FOC instruction, but not equal to that from pre- to postregular

instruction. That is, the two EAI instructional treatments, that is, KK and

FOC, were assumed to affect the transition probabilities similarly, but both

differed from the effects of regular mathematics instruction.

p21
njn p21

mjn
p21

njm p21
mjm

�����
�����=

p43
njn p43

mjn
p43

njm p43
mjm

�����
����� 6¼

p32
njn p32

mjn
p32

njm p32
mjm

�����
�����

Model D: In this model, all transition probability matrices are assumed to be

equal. That is, all instructional sequences are assumed to have the same

effect on students’ mastery status.

p21
njn p21

mjn
p21

njm p21
mjm

�����
�����=

p32
njn p32

mjn
p32

njm p32
mjm

�����
�����=

p43
njn p43

mjn
p43

njm p43
mjm

�����
�����

With respect to Question 2, that is, whether different groups of examinees had dif-

ferent transition probabilities, the constraint was removed on the population homoge-

neity assumption, such that different populations were allowed to have different

transition probability matrices. The most interesting groups for this study would be

the students with LD or NLD. Unfortunately, the sample of students with learning

disability was very small (i.e., N = 9) and would produce poor precision in estimates

of transition probabilities for that group. Therefore, for purposes of illustration, two

alternative grouping variables were chosen. Gender was chosen as a manifest group

indicator; a latent group indicator reflecting different ability levels was chosen from

a previous study of same data. Cohen (2006) reported two latent classes using a mix-

ture Rasch model (Rost, 1990) analysis of these data. The members of Latent Class 1

were significantly lower in ability (N = 62, M = 24.36, SD = 1.08) than members

of Latent Class 2 (N = 47, M = 0.18, SD = 0.90) (p \ .01). Class 1 was labeled as

the low-ability group and Class 2 as the high-ability group. The nine students with

LD were all classified in the low-ability group. Each of Model A, B, C, and D was

extended to test group heterogeneity (female vs. male; and low-ability group vs.

high-ability group) by estimating different transition probabilities for the different

groups.

Parameter Estimation

A Markov chain Monte Carlo (MCMC) algorithm employing Gibbs sampling was

used to estimate the model parameters. This algorithm was implemented in the

WinBUGS software (Spiegelhalter, Thomas, & Best, 2003) and used to simulate a

Markov chain in which values representing parameters of the model are repeatedly
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sampled from their full conditional posterior distributions over a large number of

iterations. The MCMC algorithm used here samples values in each iteration for each

of the parameters in the model conditional on those parameters already estimated. In

this study, the model parameters were sampled from their full posterior distributions

conditional on the already sampled parameters and examinees’ skill mastery

parameters.

Prior distributions were specified to derive the posterior distribution for each para-

meter. For the priors of the two item parameters gj and sj, Junker and Sijtsma (2001)

used a uniform distribution and de la Torre and Douglas (2004) used a beta distribu-

tions. In this study, we used beta (1, 1), which is equal to a uniform (0, 1). For mas-

tery status estimates, a Bernoulli distribution was specified with the mastery

probability following a uniform prior (0, 1). The transition probability parameters

also were specified by a uniform prior (0, 1).

In MCMC estimation, some information from the initial iterations is discarded as

a burn-in. The remaining iterations are based on a chain that is assumed to have con-

verged to its stationary distribution. Estimates of sampled parameters are then calcu-

lated from these final iterations. The WinBUGS software provides some indices that

help determine whether the chain has converged to a stationary distribution. The

length of a suitable burn-in for the example was determined by analyzing conver-

gence statistics provided by WinBUGS. Based on results of the convergence analysis,

the burn-in length for all parameters was set at 4,000. Estimates of model parameters

were based on the means of the sampled values from 10,000 iterations subsequent to

burn-in.

Results

Item Parameter Estimates in DINA Model

In this study, the same test was administered four times. We assumed that memory

did not play a significant role, as the test was a performance assessment in which stu-

dents were asked to show how they would perform each of the measuring, cutting,

and assembling tasks involved in building the skateboard ramp, and since students

were not given feedback about their correct or incorrect answers after each adminis-

tration. In addition, we assumed item parameter invariance for the DINA model

across four administrations, although population mastery proportions were allowed

to change. Further, item parameters were estimated jointly across four administra-

tions. Mastery proportions for each skill, however, were allowed to be estimated

freely across administrations.

The model-based hypotheses above deal with transition probabilities, and as a

result, the item parameter estimates were not affected much. The item parameter esti-

mates from each hypothesized model were relatively similar to one another, so here

we only present them for Model A (see Table 3). In Table 3, the first two columns
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provide estimates of item parameters gj and sj, respectively. The third column pro-

vides estimates of the diagnostic quality of each item. This estimate was obtained as

(1� sj)=sj

gj=(1� gj)
,

which is the odds ratio between responding positively conditional on jij = 1 and

responding positively conditional on jij = 0. The item with the largest odds ratio is

considered to be the most diagnostic in terms of distinguishing between the two latent

classes, where the two latent classes are defined as one in which members have mas-

tered all skills required by that item (i.e., jij = 1) and a second in which members

have not mastered at least one skill required by that item (i.e., jij = 0).

As can be seen in Table 3, no item had an odds ratio lower than 2 and most were rel-

atively large. Moreover, monotonicity, which is 1 2 s . g held for all items (Junker

& Sijtsma, 2001). This is interpreted to mean that the FOC items were effective at dis-

criminating between examinees in the two latent classes. It also indicates that the entries

in the Q-matrix sufficiently identified the requisite skills needed for the items on the

test. The high odds ratios, furthermore, were due primarily to relatively small guessing

parameters. This follows from the fact that all 23 items from the FOC tests were short

answer items and, therefore, the likelihood of guessing was lower.

Table 3. Item Parameter Estimates for Model A.

Items gj (SE) sj (SE)
(1�sj)=sj

gj=(1�gj)

1 0.336 (0.053) 0.301 (0.026) 4.584
2 0.454 (0.053) 0.223 (0.023) 4.204
3 0.041 (0.017) 0.317 (0.030) 51.024
4 0.074 (0.024) 0.115 (0.021) 96.153
5 0.074 (0.026) 0.035 (0.012) 345.981
6 0.015 (0.010) 0.410 (0.032) 92.561
7 0.084 (0.025) 0.060 (0.016) 172.161
8 0.113 (0.026) 0.103 (0.021) 68.292
9 0.507 (0.052) 0.149 (0.022) 5.534

10 0.239 (0.040) 0.141 (0.038) 19.302
11 0.004 (0.004) 0.529 (0.080) 207.728
12 0.004 (0.003) 0.450 (0.084) 349.669
13 0.003 (0.003) 0.659 (0.076) 160.467
14 0.005 (0.004) 0.371 (0.082) 358.650
15 0.003 (0.002) 0.371 (0.085) 670.044
16 0.049 (0.014) 0.789 (0.046) 5.172
17 0.030 (0.009) 0.607 (0.077) 20.701
18 0.334 (0.031) 0.480 (0.047) 2.169
19 0.011 (0.009) 0.695 (0.041) 40.384
20 0.050 (0.028) 0.471 (0.029) 21.242
21 0.011 (0.011) 0.675 (0.026) 44.059
22 0.017 (0.016) 0.508 (0.029) 55.969
23 0.016 (0.007) 0.870 (0.025) 9.097
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Mastery Probabilities Across Time Points

Table 4 provides frequencies and proportions of examinees who mastered each of the

cognitive skills at each time point. The mastery proportions of Number & Operation

and Measurement increased following first KK instruction (which occurred between

Test Wave 1 and 2), but those for Problem Solving and Representation did not. All

four skills improved substantially at Test Wave 4, following FOC instruction: 100%

mastered Number & Operation, and approximately 95% mastered Measurement and

Representation at the fourth administration. The proportion mastering Problem

Solving, the most difficult of the four skills, increased to 30.28% from an initial value

of 1.83%. The pattern of change in mastery proportions across the four time points

suggested FOC instruction markedly improved the mastery of the four cognitive

skills. In contrast, regular instruction (between Test Wave 2 and 3) had little effect

on the four skills. It also appears that KK instruction had some effect on Number &

Operation and Measurement, but little effect on Problem Solving and Representation.

The patterns of mastery status across the four test administrations provide an indi-

cation of the effectiveness of the FOC instruction. Table 5 presents frequencies and

probabilities of the mastery patterns observed in the FOC data for each of the four

test waves. A pattern indicating mastery for all four skills at a single test administra-

tion is represented in Table 5 as (1, 1, 1, 1). Similarly, a pattern indicating nonmas-

tery of the first two skills and mastery of the second two skills is represented as (0, 0,

1, 1). The four skills can potentially generate 24 mastery status patterns where a pat-

tern is indicated by a 0 for nonmastery and a 1 for mastery. In real data, however, dif-

ferential difficulties of particular skills can sometimes result in some patterns not

being observed, as was the case in this example. In Table 5, patterns (0, 0, 1, 0),

(0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 1, 0), and (0, 1, 1, 1) are missing. Furthermore, only 1

or 2 examinees exhibited patterns (1, 0, 1, 1) or (1, 1, 1, 0).

Examination of the observed patterns clearly indicates that no examinee mastered

the third skill, Problem Solving, without first mastering the other three skills. The

mastery patterns suggest that mastery of problem solving does not occur in the

absence of mastery of the other skills. From Table 4, it seems clear that Problem

Solving was the most difficult to master, followed by Representation, Number &

Operation, and finally Measurement. As a result, the patterns (1, 1, 0, 0), (1, 1, 0, 1),

(1, 0, 0, 0), and (0, 0, 0, 0) were the most frequently observed over the measures.

Table 4. Frequency and Proportion of Mastery of Each Skill at Each Time Point.

Skills Time Point 1 Time Point 2 Time Point 3 Time Point 4

Number & Operation 51 (46.79%) 78 (71.56%) 85 (77.98%) 109 (100.00%)
Measurement 55 (50.46%) 77 (70.64%) 74 (67.89%) 104 (95.41%)
Problem Solving 2 (1.83%) 2 (1.83%) 3 (2.75%) 36 (30.28%)
Representation 31 (28.44%) 18 (16.51%) 27 (24.78%) 103 (94.50%)
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Following FOC instruction, mastery of skills improved such that lower frequencies

were observed for patterns with zero or one skill mastered, such as (0, 0, 0, 0), (1, 0,

0, 0), (0, 1, 0, 0), and (0, 0, 0, 1). In addition, following instruction, patterns with

more skills mastered, such as (1, 1, 1, 1), increased in frequency. These results pro-

vide support for the effectiveness of the FOC instruction.

Model Comparisons

Models B and C were nested in Model A, and Model D was nested in Models A, B,

C; therefore, a likelihood ratio test could be used to compare the fit of each model to

the data. However, inspection of the posterior mean of the deviances from

WinBUGS indicated that those for the augmented models were slightly larger than

for the compact models. As an example, Model A had a higher deviance

(DevianceA = 6,590) than Model D (DevianceD = 6,580). This situation is somewhat

unusual. Spiegelhalter (2006) suggested that this outcome occurs because of the

addition of a covariate that is either uncorrelated with or less correlated with the

dependent variable. As a result, the posterior mean deviance should not be used as a

measure of the fit to the data. In this study, therefore, we used the Deviance

Information Criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002)

instead of likelihood ratio tests.

DIC is composed of a Bayesian measure of fit called the posterior mean of

deviance �D and a penalty for model complexity, pD:

DIC = �D + pD, ð8Þ

where pD = �D� D(û), and D(û) is the deviance of the posterior model. The model

with the smallest DIC is selected as the model that would best predict a replicate data

set of the same structure (Spiegelhalter et al., 2002).

Table 5. Frequencies and Proportions of Mastery Status Patterns Over Four Skills at Each
Time Point.

Pattern Time Point 1 Time Point 2 Time Point 3 Time Point 4

(0, 0, 0, 0) 37 (33.94%) 12 (11.01%) 12 (11.01%) 0 (0%)
(0, 0, 0, 1) 4 (3.67%) 0 (0%) 0 (0%) 0 (0%)
(0, 1, 0, 0) 7 (6.42%) 18 (16.51%) 5 (4.59%) 0 (0%)
(0, 1, 0, 1) 10 (9.17%) 1 (0.92%) 7 (6.42%) 0 (0%)
(1, 0, 0, 0) 13 (11.93%) 17 (15.60%) 21 (19.27%) 0 (0%)
(1, 0, 0, 1) 0 (0%) 3 (2.75%) 2 (1.83%) 4 (3.67%)
(1, 0, 1, 1) 0 (0%) 0 (0%) 0 (0%) 1 (.92%)
(1, 1, 0, 0) 20 (18.35%) 44 (40.37%) 44 (40.37%) 5 (4.59%)
(1, 1, 0, 1) 16 (14.68%) 12 (11.01%) 15 (13.76%) 64 (58.72%)
(1, 1, 1, 0) 1 (0.92%) 0 (0%) 0 (0%) 1 (.92%)
(1, 1, 1, 1) 1 (0.92%) 2 (1.83%) 3 (2.75%) 34 (31.19%)
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To answer the first research question, we compared DICs from Models A, B, C,

and D (see Table 6). Model B was a better fit than the other three models, although it

was not substantially different than Model A. Recall that Model B was the hypothesis

that FOC instruction affected the transition differently from either the KK instruction

or the regular classroom instruction, and both KK instruction and regular instruction

affected the transition similarly. In other words, the transition probabilities were

equivalent before FOC instruction but changed following FOC instruction.

This transition pattern actually was also observed in the transition probability

matrices based on Model A (see Table 7). The observed transition probabilities for

each skill from Test Wave 1 to 2 and from Test Wave 2 to 3 were quite similar, but

clearly different than those from Test Wave 3 to 4. From Test Wave 3 to 4, the tran-

sition probabilities from nonmastery to mastery status (shown in bold) became sub-

stantially larger for each skill. This was particularly noticeable for the harder skills

of Problem Solving and Representation, suggesting that the FOC instruction had

stronger effects on fractions computation than the other two types of instruction.

To answer the second research question about population homogeneity or hetero-

geneity, that is, whether different groups of examinees had different transition prob-

abilities, we compared models A, B, C, D under the homogeneity assumption to that

under the heterogeneity assumption based on gender or initial ability level.

The DIC values of Models A, B, C, D based on gender heterogeneity were all

higher than those based on homogeneity assumption, suggesting no gender difference

on the pattern of change across four test administrations. Table 8 also indicates that

the transition probability matrices for different gender were quite similar.

The comparison between ability heterogeneity assumption and homogeneity

assumption found: (1) under either assumption, Model B appears best fit compared

with other models; (2) Model B with ability heterogeneity assumption had lower

DIC than that with the homogeneity assumption. Under both assumptions, results

Table 6. Model Comparison.

Assumptions Models �D D(û) pD DIC

Homogeneity Model A 6,590 6,356 234 6,824
Model B 6,589 6,357 232 6,821
Model C 6,620 6,395 225 6,845
Model D 6,580 6,331 249 6,829

Gender heterogeneity Model A 6,593 6,350 243 6,836
Model B 6,589 6,333 256 6,845
Model C 6,598 6,349 249 6,847
Model D 6,584 6,325 259 6,843

Ability heterogeneity Model A 6,594 6,362 232 6,826
Model B 6,593 6,373 220 6,813
Model C 6,604 6,365 239 6,843
Model D 6,589 6,336 253 6,842
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suggested that effects of the FOC instruction were different than that of either the

KK or regular instruction, although some differences were observed on the transition

probabilities between the two latent groups. The most substantial difference was that

the higher ability group had higher transition probabilities from nonmastery to mas-

tery status from Test Wave 1 to 2 in Number & Operation (.76 vs. .38) and in

Measurement (.72 vs. .46; see Table 9). This suggests that the high-ability latent

group improved their learning on Number & Operation and on Measurement at the

very beginning, following the KK instruction.

Table 8. Transition Probability Matrices for Males and Females.

Transitions

Gender Skills t1!t2 t2!t3 t3!t4

Males Number & Operation :49 :51
:07 :93

� �
:51 :49
:12 :88

� �
:12 :88
:03 :97

� �

Measurement :67 :33
:13 :87

� �
:54 :46
:13 :87

� �
:11 :89
:04 :96

� �

Problem Solving :85 :15
:82 :18

� �
:88 :12
:60 :40

� �
:63 :37
:52 :48

� �

Representation :73 :27
:62 :38

� �
:55 :45
:48 :52

� �
:15 :85
:17 :83

� �

Females Number & Operation :55 :45
:06 :94

� �
:55 :45
:09 :91

� �
:08 :92
:03 :97

� �

Measurement :60 :40
:06 :94

� �
:77 :23
:12 :88

� �
:15 :85
:06 :94

� �

Problem Solving :89 :11
:84 :16

� �
:84 :16
:54 :46

� �
:64 :36
:51 :49

� �

Representation :78 :22
:63 :37

� �
:77 :23
:55 :45

� �
:09 :91
:21 :79

� �

Table 7. Transition Probability Matrices for Model A.

Skills t1!t2 t2!t3 t3!t4

Skill 1: Number & Operation :55 :45
:03 :97

� �
:66 :34
:06 :94

� �
:05 :95
:01 :99

� �

Skill 2: Measurement :71 :29
:03 :97

� �
:82 :18
:05 :95

� �
:12 :88
:03 :97

� �

Skill 3: Problem Solving :93 :07
:87 :13

� �
:90 :10
:54 :46

� �
:65 :35
:51 :49

� �

Skill 4: Representation :83 :17
:54 :46

� �
:74 :26
:12 :88

� �
:07 :93
:12 :88

� �
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Table 10 and Figures 1 to 4 further illustrate the differences in the mastery prob-

ability profiles across measures for the two latent classes. For Problem Solving and

Representation, both latent classes had similar patterns of change in mastery propor-

tions. Furthermore, as can be seen in Figures 3 and 4, these proportions did not

increase much until after the FOC instruction.

The main differences between the two classes still occurred in Number &

Operation and Measurement (see Figures 1 and 2): The mastery proportions of low-

ability group increased sharply compared with those of high-ability group. This is

Table 9. Transition Probability Matrices for Two Latent Classes.

Transitions

Latent class Skills t1!t2 t2!t3 t3!t4

Low-ability group Number & Operation :62 :38
:10 :90

� �
:57 :43
:16 :84

� �
:06 :94
:03 :97

� �

Measurement :54 :46
:35 :65

� �
:67 :33
:30 :70

� �
:11 :89
:09 :91

� �

Problem Solving :83 :17
:81 :19

� �
:86 :14
:56 :44

� �
:61 :39
:52 :48

� �

Representation :76 :24
:71 :29

� �
:51 :49
:49 :51

� �
:15 :85
:15 :85

� �

High-ability group Number & Operation :24 :76
:07 :93

� �
:42 :58
:07 :93

� �
:18 :82
:02 :98

� �

Measurement :28 :72
:11 :89

� �
:41 :59
:08 :92

� �
:17 :83
:02 :98

� �

Problem Solving :90 :10
:80 :20

� �
:85 :15
:55 :45

� �
:68 :32
:49 :51

� �

Representation :57 :43
:51 :49

� �
:81 :19
:54 :46

� �
:08 :92
:21 :79

� �

Table 10. Mastery Proportions in Each Skill at Each Time Point.

Skills
Latent
classes

Time
Point 1

Time
Point 2

Time
Point 3

Time
Point 4

Number &
Operation

Low-ability group 17.70% 61.30% 69.40% 100.00%
High-ability group 85.10% 85.10% 89.40% 100.00%

Measurement Low-ability group 21.00% 61.30% 51.60% 91.90%
High-ability group 89.40% 83.00% 89.40% 100.00%

Problem Solving Low-ability group 0.00% 1.60% 3.20% 33.90%
High-ability group 4.30% 2.10% 2.10% 31.90%

Representation Low-ability group 17.70% 14.50% 24.20% 93.50%
High-ability group 42.60% 19.10% 25.50% 95.70%
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reasonable given that Class 2, the higher ability group, had higher initial mastery

probabilities in these two skills and, therefore, little room for improvement compared

with the lower ability group.

As indicated above, the higher ability class had a higher transition probability

from nonmastery to mastery in Number & Operation and in Measurement from Time

1 to Time 2 (see Table 9). One might then ask why was the increase in mastery pro-

portion lower as shown in Figures 1 and 2? Actually, these two facts are not
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80%

100%

Time 1 Time 2 Time 3 Time 4
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Class 2

Figure 1. Profile of mastery proportions over four time points for Number & Operation.
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Figure 2. Profile of mastery proportions over four time points for Measurement.
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necessarily incompatible. The change in mastery proportions is not only dependent

on the transition probability from nonmastery to mastery status, but it is also depen-

dent on the transition probability from mastery to mastery status as well as the pro-

portions of nonmastery and mastery status at the previous time point. Consider the

transition from Time 1 to Time 2 as example. This can be expressed as

p2
m � p1

m = (p21
mjn � p1

n + p21
mjm � p1

m)� p1
m: ð9Þ

Thus, even though the higher ability class had higher transition probabilities from

nonmastery to mastery status (p21
mjn) in the two skills from Time 1 to Time 2, it also

had lower nonmastery proportions (p1
n) and higher mastery proportions (p1

m) at Time

1; therefore, its increase in mastery proportion (p2
m � p1

m) from Time 1 to Time 2

could be lower than that of lower ability class.

In essence, the main ability difference between the two latent classes only

occurred in two easier skills, in which the lower ability class had significantly lower

initial mastery level. As is evident in the graphs in Figures 1 and 2, however, the

lower ability class actually learned as well as the higher ability class following the

FOC the instruction. They also had higher rates of increase on the Number &

Operation and Measurement skills because they had more room to improve before

reaching mastery. In contrast, the two latent groups did not show differences in either

initial or final mastery levels for the two harder skills. The similarity in growth pat-

tern of the two latent classes (as shown in Figures 3 and 4) indicates they both did

not change much until after the FOC component of the EAI intervention. This indi-

cated that both latent groups benefited from the FOC intervention. Overall, the

results suggest that the EAI intervention was at least equally and possibly even more

effective for members of the lower ability latent class. The fact that the nine LD
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Figure 3. Profile of mastery proportions over four time points for Problem Solving.
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students were all classified into the low-ability latent class might have contributed to

the heterogeneity in the transition between the latent classes.

Discussion

LTA was initially developed to study stage sequential change over time in particular

types of latent variables called dynamic latent variables (Collins & Wugalter, 1992).

Applications to educational problems have been lacking in part because of the cate-

gorical nature of the latent variables considered. In this article, we extend the LTA to

an LTA-DINA by including a DINA cognitive diagnostic measurement model and

demonstrate its use in the analysis of effects of an instructional intervention. The

combination of these two models provides several advantages compared with other

growth modeling methods.

The use of the DINA model permits one to make relatively fine-grained assess-

ments of students’ responses to test items. Including this model in an analysis of

change provides a means of analyzing different latent components to determine

where the change might occur for different groups of examinees. Individuals with

the same raw scores or even the same ability estimates can easily have different

skills mastery profiles. Similarly, groups may differ in terms of raw scores or ability

estimates, but may have common patterns of growth for some skills. This was the

case for the two latent classes in the example. The transition probabilities estimated

by the LTA-DINA were similar for the two latent classes in some skills, even though

the classes differed in ability.

Differences in proportions of mastery of different cognitive skills also seemed to

reflect differential difficulties in learning of the four cognitive skills. For example,
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Time 1 Time 2 Time 3 Time 4

Class 1

Class 2

Figure 4. Profile of mastery proportions over four time points for Representation.
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Problem Solving was the most challenging of the four cognitive skills, even for the

high-ability members of Class 2.

The DINA model is capable of diagnosing individual- or group-level weaknesses

and strengths in terms of mastery and nonmastery status on a set of latent cognitive

skills. It is also capable of diagnosing whether each item was an effective measure of

the cognitive skills measured on the test. Furthermore, information provided by the

model can be used to assess whether or not the Q-matrix was appropriately defined.

Higher guessing parameters or higher slipping parameters serve to lower the diagnos-

tic quantity index as indicated in the odds ratio

(1� sj)=sj

gj=(1� gj)
,

or nonmonotonicity (1� s\= g): Deleting or revising items of low diagnostic quality

or non-monotonicity, or refining the Q-matrix may be used to help improve the qual-

ity of information obtained from the test.

LTA-DINA also provides a transition probability matrix instead of a single quan-

tity to index change. LTA-DINA permits determining not only the proportions mov-

ing from nonmastery to mastery status but also the proportions moving from mastery

to nonmastery, staying at nonmastery or staying at mastery statuses. Successful

instruction should have (1) high proportions of students moving from nonmastery to

mastery status and (2) low proportions moving from mastery to nonmastery status.

This was most evident in the transition matrices for Number & Operations,

Measurement, and Representation. For Problem Solving, the transitions from non-

mastery to mastery status were not as large as for the other three cognitive skills, and

the transition from mastery to nonmastery status were much larger than for the other

three cognitive skills. The reason for this appears to be in the differential difficulty

of the four cognitive skills. Problem Solving was clearly more difficult and, there-

fore, less likely to show change in mastery status for this sample. This specific infor-

mation was evident in the proportions mastering Problem Solving in the total sample

and in the latent classes.

An important component of this use of an LTA-DINA model was the capability

for testing the likelihood of different assumptions about the nature of change at the

level of cognitive skills. That is, it was possible to test different hypotheses about the

form of the transition probabilities for specific groups of examinees. As the models in

this example were all nested, it was possible to use a likelihood ratio test to determine

best fit to the data. It should be possible to test other, non-nested models, possibly

using measures of model fit such as AIC (Akaike, 1974) or BIC (Schwarz, 1978).

Including the DINA model in an LTA-DINA provides an analysis of changes that

focuses on patterns of mastery of each of the cognitive skills measured by the test. As

such, the LTA-DINA model provides richer information about instructional effects at

both an individual and group level.

The sample size in the example was small, quite likely affecting the precision of

estimates, although the diagnostic quantity indices indicated the items were effective
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for the DINA model as specified in the Q-matrix. The independence assumption

among skills in the example is actually tenuous as skills are always correlated to

some extent. Furthermore, examinees in this study took the same test four times with

the likely result that some form of memory effects may have been present.

MCMC has been shown to be useful for estimation of complex IRT models (Patz

& Junker, 1999). It is also possible to estimate the LTA-DINA model using maxi-

mum likelihood estimation. The commercially available software Mplus (Muthén &

Muthén, 1998-2012) does provide an option to use maximum likelihood estimation

and also includes an option to estimate LTA. Templin (2006) has shown how the

DINA model can be estimated using this software. In the future, exploring how to

implement LTA with DINA as measurement model in Mplus will be potentially pos-

sible and valuable.
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