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A latent variable model for chemogenomic profiling

Patrick Flaherty, Guri Giaever, Jochen Kumm, Michael I. Jordan and Adam P. Arkin

ABSTRACT
Motivation: In haploinsufficiency profiling data, pleiotropic genes 
are often misclassified by clustering algorithms that impose the con-
straint that a gene or experiment belong to only one cluster. We 
have developed a general probabilistic model that clusters genes and 
experiments without requiring that a given gene or drug only appear 
in one cluster. The model also incorporates the functional annotation 
of known genes to guide the clustering procedure.
Results: We applied our model to the clustering of 79 chemogenomic 
experiments in yeast. Known pleiotropic genes PDR5 and MAL11 are 
more accurately represented by the model than by a clustering pro-
cedure that requires genes to belong to a single cluster. Drugs such 
as miconazole and fenpropimorph that have different targets but sim-
ilar off-target genes are clustered more accurately by the model-based 
framework. We show that this model is useful for summarizing the rela-
tionship among treatments and genes affected by those treatments in 
a compendium of microarray profiles.

1 INTRODUCTION
Haploinsufficiency profiling (HIP) in Saccharomyces cerevisiae is
used to identify genes that, when deleted, confer sensitivity on small
molecules in vivo. Specifically, this genome-wide screen employs
the heterozygous deletion collection to identify strains that exhibit a
significant inhibition of growth in the presence of compound. It has
been demonstrated that drug-induced haploinsufficiency is effective
in identifying the gene product that is the target of a compound.

The results from studies of HIP have demonstrated its efficacy
in uncovering the mechanisms of action of individual compounds
(Giaever et al., 1999, 2004; Lum et al., 2004). In these studies,
the S.cerevisiae heterozygous deletion library is used to measure
the sensitivity of each strain as quantified by the fitness defect
score (defined in the Methods section) in response to drug treatment
(Giaever et al., 2004). The current study focuses on these chemo-
genomic experiments as a corpus to discover common targets and
associated cellular functions for multiple classes of drugs.

∗To whom correspondence should be addressed.

The two main contributions of this paper are as follows:

• A statistical model for chemogenomic experiments that incor-
porates gene function information and properly handles pleio-
tropic genes.

• An analysis of HIP chemogenomic experiments using the stat-
istical model to summarize the relationship among treatments
and genes affected by those treatments.

The dataset used in this study comprises 79 experiments, each
measuring the fitness defects of all heterozygous yeast deletion
strains in the presence of 1 of 13 different drugs. The assay was
performed at a variety of drug concentrations and most concentra-
tions are replicated at least once. In each experiment, all 5918 strains
of yeast, each deleted for one copy of a specific gene, was assigned
a fitness defect score (Giaever et al., 2004).

The drugs used in this study span a wide range of clinical applica-
tions. Table 1 shows a brief summary of the compounds and the genes
encoding their putative target proteins, if known. The applications
of these drugs include cholesterol lowering medications (lovastatin
and atorvastatin), anticancer agents [5-fluorouracil (5-FU), metho-
trexate], an agricultural fungicidal agent (fenpropimorph), sys-
temic and topical antifungal medications [caspofungin, itraconazole,
miconazole, fluconazole, amphotericin B and 5-fluorocytosine (5-
FC)] and two drugs that have other applications (dyclonine and
alverine-citrate).

Numerous computational and experimental studies have used the
analysis of compendia to discover consensus patterns in experiments
and to uncover functional information (Bergmann et al., 2003; Eisen
et al., 1998; Hughes et al., 2000). The underlying statistical problem
that is addressed in many of these analyses is that of finding clusters
in data. A variety of classical clustering algorithms, including hier-
archical clustering (HC) (Eisen et al., 1998) and self-organizing maps
have been deployed for this purpose.

It is important to note, however, that many clustering algorithms
are based on an underlying assumption that each data point belongs
to only a single cluster—a mutual exclusivity assumption that may
not be a good match to biological reality. In particular, the implicit
assumption that a gene can belong to only one cluster clashes with
the fact that a gene often has multiple functions in the cell. Similarly,
an assumption that a drug can belong to only one cluster neglects
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Table 1. Drug targets and applications

Drug Application Target Topic Replicates

2
11

5-Fluorocytosine Antifungal Cdc21, RNA, DNA 2
5-Fluorouracil Anticancer Cdc21, RNA, DNA 2
Alverine-citrate Anticholinergic Unknown, (Erg24) 6 3
Amphotericin B Antifungal Ergosterol 7 4
Atorvastatin Anticholesterol Hmg1, Hmg2 3 5

Antifungal Cell wall 1 5Caspofungin
Dyclonine Anesthetic Erg2 6 6
Fenpropimorph Plant antifungal Erg2, Erg24 6 5
Fluconazole Antifungal Erg11 5 2

Antifungal Erg11 5 8
Anticholesterol Hmg1, Hmg2 3 4
Anticancer Dfr1 8, 9 16

Itraconazole
Lovastatin
Methotrexate
Miconazole Antifungal Erg11 5 8

Thirteen drugs with a wide variety of clinical applications were tested in this compendium
(Bennett, 2001; Chabner et al., 2001; Coelho et al., 2001; Giaever et al., 2004; Katzung,
1998). The putative targets in yeast, if known, are shown in the third column. The LLDA
model uses an allocation of topics to cluster experiments and these clusters tend to reflect
the known class structure of these drugs. The topic(s) most associated to each drug are
shown with the number of replicates in the compendium for that drug.
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the fact that different drugs can have similar off-target effects. In this
paper, we present a model-based approach to clustering that avoids
such mutual exclusivity assumptions.

The singular value decomposition (SVD) method has also been
used for clustering biological data (Peterson, 2003). While the SVD
does not make a ‘mutual exclusivity’ assumption, it also is not a
model-based approach. We return to a comparison with SVD in the
discussion.

We refer to the model underlying our clustering methodology as
Labeled Latent Dirichlet Allocation (LLDA). The LLDA model is an
instance of a general family of probabilistic models, known as prob-
abilistic graphical models. Probabilistic graphical models provide a
general Bayesian framework for representing joint probability dis-
tributions over collections of variables, and for computing posterior
distributions on subsets of those variables (Jordan, 1999). Graph-
ical models have been successfully employed in other applications
(Alexandersson et al., 2003; Jaakkola and Jordan, 1999; Jansen et al.,
2003; Segal et al., 2003b); the model that we present here is designed
specifically to identify consensus targets and mechanisms of drug
action in HIP experiments. A component of the model is a set of
‘allocation variables’ that link experiments and genes, such that the
computation of the posterior probability distributions over these vari-
ables defines model-based clusters. The framework also facilitates
the incorporation of external information into the clustering proced-
ure; in particular, we show how to incorporate Munich Information
Center for Protein Sequences (MIPS) functional annotations (Mewes
et al., 2002) as part of the model.

2 LABELED LATENT DIRICHLET
ALLOCATION MODEL

The key entities in the LLDA model are a set of discrete random
variables that we refer to as ‘topics’. Associated with each topic is a
pair of probability distributions: a probability distribution over genes
and a probability distribution over MIPS function categories. These
distributions, in essence, define the biological meaning of each topic.
The notion of ‘topic’ is similar to the notion of ‘cluster’ in traditional
treatments; we use a different terminology to emphasize that there
is no assumption that the topics partition the set of genes. Thus the
same gene can have high probability under each of several topics. An
experiment is represented by a set of choices, or ‘allocations’, among
the available topics. Here again, there is no mutual exclusivity—the
same topic can have a high probability of being allocated to each of
several experiments.

After fitting the LLDA model to the experimental data, we find that
genes showing a significant growth inhibition or fitness defect in a
group of experiments are assigned a high probability to the topics that
are allocated to those experiments. Experiments with similar fitness
defect profiles have similar distributions over topics in the LLDA
model. The genes were ranked according to their probability under
each topic in the model and the highly ranked genes comprise the
consensus sensitive genes for the drugs allocated that topic.

3 METHODS
3.1 Microarray dataset
As a control set, cells were grown for 20 generations in standard optimal
(YPD) medium and genomic DNA was isolated. Using universal PCR primers
we amplified barcode tags from the genomic DNA. The PCR product was
hybridized to custom Affymetrix TAG3 microarray chips. These 36 stand-
ardized control chips provided the average control intensity for each position
on the microarray corresponding to a tag in the pool. The specifics of the
deletion cassette used and the 79 experiments that were performed by grow-
ing the pool of heterozygous deletion strains for 20 generations with the drug
being tested are described elsewhere (Giaever et al., 2004).

3.2 Data analysis
A fitness defect score for each strain in each experiment was computed by
the method described in other work (Giaever et al., 2004). The fitness defect
score quantifies the square difference between the amount of strain in the
population and that expected under standard optimal conditions. The profiles
for each experiment were standardized to lie between 0 and 100. Then the
fitness defect scores for each gene were rounded to the nearest integer.

The LLDA model can be represented as a graphical model (Jordan, 2003).
In this formalism, each node represents a random variable. The connectivity
of the graph implies a factorization of the joint probability distribution among
the random variables. In Figure 1, we have used black nodes to represent fully
observed random variables, gray nodes for partially observed variables and
unshaded nodes for unobserved random variables. The box or ‘plate’ indicates
that the structure contained within is replicated the number of times indicated
in the corner of the plate. This replication handles the repeated measurements
of the data. The number of the fitness defect scores is denoted, Nd, and the
number of experiments is denoted, D, in the LLDA model.

Each node in the graphical model is endowed with a conditional probab-
ility distribution. The central object of the model, the topic, is represented
by Z and is an unshaded node indicating it is a latent or unobserved random
variable. The fully observed variable S represents a gene and is distributed as
a multinomial with parameter conditional on the choice of topic. We denote
this conditional probability relationship as S|Z = i ∼ Multi(βi ), where βi is
the multinomial parameter associated with topic i. The conditional probab-
ility of a partially observed label variable is denoted similarly as L|Z = i ∼
Multi(πi ). This variable encodes the MIPS category assigned to the gene
represented by the S variable. For some genes the MIPS category is known
and for others it is not, rendering the node partially observed. The topic node
Z is also distributed as a multinomial with parameter θ , Z|θ = Multi(θ).
The remaining unshaded node, θ , is a latent Dirichlet random variable that
depends on the parameter α. This variable allows the distribution over topics
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Table 2. Top 15 genes in each topic ranked by probability

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

1 YBR293W YPR143W HMG1 SAM50 PDR5 ERG24 DIA4 DFR1 DFR1
2 NGL1 NOP4 ERG13 MGM1 SET6 SET6 POP1 FOL2 FOL2
3 GLC7 YPL044C PDR5 YKL023W PDR16 TVP18 FUN12 YBT1 FOL1
4 FEN2 DIS3 FEN2 DRE2 ERG11 MAL11 GCD2 LST4 YBT1
5 LCB1 RRP6 UPC2 APE3 MAL11 YPR090W FKS1 YKT6 YAP6
6 CUP5 MTR4 YGR205W MPS2 TVP18 SBE22 RIT1 YOR227W YOR072W
7 YBR113W MAK21 YLF2 YNL184C YOR345C UMP1 YAR047C YOR225W WHI2
8 YCR025C FUI1 NRP1 BRE4 YDR467C YDR467C ARC18 SPI1 YLR281C
9 YCR024C RRP42 FKS1 VHT1 YPR090W YLR173W SEC28 YGR054W YLR312C

10 CTP1 YPR142C TOA1 YDR514C HFI1 SCL1 GAL1 YKL207W SIP3
11 IMG2 MAK5 YCR025C CTP1 YOR331C YPR089W MEF2 YOR072W CDA2
12 RET2 MAS2 YBR281C YML122C VID22 KRE33 GCD1 GDI1 EXG1
13 ATG15 GLC7 EXG1 XDJ1 NCP1 YGR205W SAM4 ELC1 RPS30A
14 YBR284W RRP45 YML122C IRA2 PDR1 NEO1 YLR312C RFT1 YLR280C
15 FUN12 ITR1 YLR296W FMP13 PAC2 MRPL35 RPC25 WHI3 YIL064W

Each topic is composed of a group of genes in the heterozygous deletion library that show a sensitivity or fitness defect to the drug. Each gene is permitted to be a member of more
than one topic and the genes are ranked according to the probability assigned to that gene according to a parameter of the LLDA model. The table shows the top 15 genes ranked by
probability for each topic in the model.

Fig. 1. As a graphical model, the labeled latent Dirichlet allocation model
has four main component random variables. Each mode (L, S, Z, θ ) in the
model represents a random variable. Nodes shaded in black represent fully
observed data. Gray indicates partially observed data and unshaded nodes
are latent or unobserved random variables. The edges connecting the nodes
correspond to a particular conditional independence structure assured for the
random variables. The structure chosen here is designed for the chemogen-
omic experiments in order to cluster the fitness defect profiles using function
category assignments for each gene. The variable S represents the gene, L

represents the function category label, Z represents the topic and θ is a latent
Dirichlet random variable.

to vary with each experiment. Detailed comparative analyses of the effects
of this modeling choice are presented elsewhere (Blei et al., 2003).

The parameters of the model were estimated by an iterative variational
expectation–maximization (EM) procedure (Dempster et al., 1977; Jordan,
1999). This iterative solution procedure requires a random initialization.
Local optima are unavoidable due to the non-convexity of the log-likelihood
function. The variational EM algorithm was repeated 10 times using random
initial conditions and the best performing parameters were selected. To select
the number of topics we used a minimum description length score (Hansen
et al., 2001). Further details regarding the statistical inference procedures are
provided in the Supplementary Information.

The distribution of MIPS functions for each experiment was computed by
marginalizing the joint probability distribution (PDF) in the model over genes

and topics. The function category distribution for each gene was obtained by
marginalizing the joint PDF over the topics. The drug function distributions
were inferred by marginalizing over topics for each posterior distribution
given the experiment.

4 RESULTS
Only a small number (72) of genes have probability >0.01 in any
topic. Nine genes are assigned with probability >0.01 in more than
one topic: FEN2, GLC7, FOL2, MAL11, YBT1, TVP18, PDR5,
DFR1 and SET6. More than 10 genes appear in the list of top 15
genes, ranked by probability, in more than one topic. For different
drug treatments there is little overlap in topics used to describe those
experiments, except for some interesting cases that we describe in
detail below:

4.1 Consensus sensitive genes for classes of drug
Using a minimum-description length score we found that nine topics
yielded the most accurate model. Given this choice of the number
of topics, the parameters of the model were estimated from the 79
individual drug experiments. Table 2 shows the top 15 genes sorted
by decreasing probability for each topic and Figure 2 shows the
posterior probability distribution over topics, for each experiment
in the compendium. Only 3734 of a total of 5918 strains scored as
significant in at least one experiment by the fitness defect analysis
(Giaever et al., 2004), and are included in this model.

Since our analysis is a model-based approach we can use func-
tion annotations for each gene from the MIPS catalogue to assist in
the formation of topics. A conditional dependence among the topic,
function category and gene is incorporated in the model reflecting the
expectation that drugs often impact only a few cellular functions. This
conditional dependence constrains the topics to contain genes that
have a large fitness defect for the experiments allocated that topic.
The topics also tend to be cohesive in the impacted cellular functions.
Genes ranked highly in each topic tend to be involved in the same
cellular functions and are descriptive of the drugs allocated that topic.
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Fig. 2. Experiments cluster based on the topics that are allocated to them.
Each row represents the normalized fraction of topic allocated to the experi-
ment. Topic 5 is allocated to the azole class drugs. Dyclonine, fenpropimorph
and alverine-citrate target the ergosterol pathway at a different point than the
azole drugs and are represented by topic 6. Topic 2 is allocated to 5-FU and
5-FC experiments. 5-FU is an anticancer and 5-FC is an antifungal because
humans lack a cytosine deaminase that converts 5FC into 5FU. Amphotericin
B experiments are allocated topic 7. Topic 3 is mainly allocated to the anti-
cholesterol drugs, lovastatin and atorvastatin. Topics 8 and 9 are allocated
to the highly replicated methotrexate experiments and the antifungal caspo-
fungin is allocated topic 1. Clustering using the LLDA model does not require
that genes or experiments be allocated to mutually exclusive groups.

4.1.1 The azole drugs affect drug transporters, Erg11 and genes
represented in topic 5 The azoles (itraconazole, miconazole and
fluconazole) generally have a large allocation of topic 5. This topic
contains the pleiotropic drug resistant genes PDR5 and PDR16

known to confer sensitivity on the azoles when deleted, a gene of
uncharacterized function, SET6, and the established target ERG11
(van den Hazel et al., 1999; Wills et al., 2000). Interestingly, several
other genes, not previously known to confer sensitivity on the azoles,
were also uncovered (Table 2).

4.1.2 Fenpropimorph, alverine-citrate and dyclonine affect ERG24
and genes represented in topic 6 These therapeutically distinct
compounds are found to cluster by being allocated the same topic
in the LLDA model. Fenpropimorph, a morpholine antifungal, is
thought to target ERG2 and ERG24 (Baloch et al., 1984; Lai et al.,
1994; Marcireau et al., 1990), and the target of alverine-citrate,
an anticholinergic is not known. Dyclonine is a human anesthetic
thought to affect the ergosterol pathway through ERG2 (Hughes
et al., 2000). Interestingly, these three drugs all have a similar chem-
ical backbone which may explain their similar fitness defect profiles
(Giaever et al., 2004). ERG24, the top gene in topic 6, is a putative
target of fenpropimorph but the topic is also allocated to alverine-
citrate and dyclonine. The ERG2 strain is expected to be sensitive
to fenpropimorph but is not observed to be in these in vivo experi-
ments (Giaever et al., 2004). Most of the experiments on these three
drugs are allocated topic 6, but one dyclonine experiment is allocated
topic 4 almost exclusively. A closer examination of that experiment
reveals a very different fitness defect profile than the other dyclonine
experiments. This experiment is a possible outlier, perhaps, due to
poor hybridization or a microarray protocol error. Both topics 5 and
6 contain MAL11, TVP18 and SET6 in the top 15 genes. The top-
ics also differ significantly because topic 5 contains the target of the
azole antifungals, ERG11, but not ERG24 and vice versa.

4.1.3 Amphotericin B affects genes involved in cell membrane
and wall integrity, represented in topic 7 Amphotericin B binds
ergosterol-like lipids in the membrane and increases membrane per-
meability (Katzung, 1998). Topic 7 is allocated to experiments on
this drug and includes genes involved in cell membrane integrity
and membrane-associated proteins. Interestingly, ARC18, in topic
7, is a member of the Arp2/3 actin polymerization complex. The
fitness defect of these strains in amphotericin B is consistent with
the observation that cortical patch mobility, mediated by the Arp2/3
complex, is required for cell wall remodeling (Machesky and Gould,
1999). Highlighting the interaction between cell wall and cell mem-
brane where amphotericin B is thought to bind, FKS1, which is
involved in cell wall organization and biogenesis, is in the topic list
and has been found to co-localize with the Arp2/3 complex (Utsugi
et al., 2002). The observation of a fitness defect of these four genes
demonstrates the necessity of the stability of the coupling between
the cell wall and the cell membrane for survival in amphotericin B.
Furthermore, the sensitivity of POP1, categorized as a protein syn-
thesis gene, indicates that there is more to the mechanism of action
to be understood.

4.1.4 Statin compounds affect HMG1, ERG13, UPC2 and genes
represented in topic 3 Atorvastatin and lovastatin are cholesterol
reduction medications. Of the known targets, Hmg1 and Hmg2, the
HMG1 heterozygous deletion strain is the only one that shows a
significant fitness defect to the drugs. This is consistent with the
observation that the Hmg1 protein contributes the majority of the
HMG-CoA reductase activity in the cell (Basson et al., 1986). Fur-
thermore, HMG-CoA reductase is the rate-limiting step in the sterol
biosynthesis pathway in yeast (Basson et al., 1986). ERG13 is also
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significantly sensitive to both drugs, according to this analysis, and is
a novel discovery further discussed elsewhere (Giaever et al., 2004).
Consistent with an effect on the ergosterol pathway, the fifth highest
ranking gene, UPC2, is a transcription factor that regulates ergosterol
biosynthesis (Vik and Rine, 2001). PDR5 also appears in the top 15
genes in this topic but would not have, had it been constrained to be
assigned to only one cluster of genes.

4.1.5 Flurouracil and 5-fluorocytosine affect FUI1, genes involved
in RNA production and genes represented in topic 2 While humans
lack the cytosine deaminase required to convert 5-FC into 5-FU,
yeast contain this enzyme (Zhang et al., 2003). Therefore, the effect
of both drugs in yeast is similar and the experiments are, indeed,
allocated to the same topic. Both drugs are thought to act via three
mechanisms: (1) inhibition of thymidylate synthase, (2) direct incor-
poration into DNA and (3) direct incorporation into RNA (Longley
et al., 2003). The first annotated gene in this topic, NOP4, codes for
a protein involved in RNA binding and rRNA processing. The next
gene in order, YPL044C, is antisense to NOP4 and the deletion of this
gene may disrupt the function of NOP4. Indeed many of the genes
in this topic (RRP6, RRP42 and RRP45) are involved in ribosomal
RNA processing. Ribosomal RNA processing genes are generally
classified by MIPS to be involved in the transcription process. Sur-
prisingly, we do not observe the putative target (Lum et al., 2004)
CDC21 as being sensitive. Although this does not preclude CDC21
as a target, these results suggest that direct incorporation into the
RNA may be the primary mechanism of action. Other studies sup-
port this finding (Giaever et al., 2004; Lum et al., 2004; Scherf et al.,
2000).

4.1.6 Methotrexate affects YBT1, YAP6, DFR1, FOL1/2 and genes
in topic 8 and 9 The anticancer drug methotrexate, a folic acid
antagonist (Katzung, 1998), is primarily allocated topics 8 and 9.
An investigation of the genes that group into topics 8 and 9 reveals
the ABC transporter YBT1, which is the yeast homolog of a known
methotrexate transporter (Zeng et al., 2001). The pleiotropic drug
resistant genes PDR5/PDR16 are sensitive to the azole class of drugs
but not to methotrexate, suggesting that the mechanism by which
yeast exports methotrexate and azole drugs are distinct. YAP6, the
fifth gene in topic 9 which codes for a transcriptional regulator, is
hypothesized to be involved in pleiotropic drug resistance (Furuchi
et al., 2001). The target of methotrexate, Dfr1, is the first item in both
topics 8 and 9. The FOL1 and FOL2 deletion strains are also sensitive
to the drug. FOL1 and FOL2 are involved in folic acid biosynthesis
and act upstream of DFR1 in the targeted pathway.

4.1.7 Caspofungin affects LCB1 and genes represented in topic 1
Caspofungin is a semisynthetic compound that is a derivative of a
natural product and is a recently approved echinocandin antifungal
(Letscher-Bru and Herbrecht, 2003). Experiments on caspofungin in
this study have a large allocation of topic 1. Caspofungin is thought
to target proteins involved in the β(1,3)-d-glucan synthase activity,
which is involved in the synthesis of cell wall glucan (Letscher-Bru
and Herbrecht, 2003). Specifically, mutation of the FKS1 gene con-
fers resistance to caspofungin, and FKS1 is thought to be a large
subunit of the target of the drug (Douglas et al., 1994, 1997). Cur-
rently, the mechanism of caspofungin is not completely understood
(Letscher-Bru and Herbrecht, 2003). The HIP profiles and model
implicate LCB1 as sensitive to the compound. Further experimenta-
tion may reveal whether or not this gene is involved in the mechanism

of action. This protein is involved in the first step of the biosynthesis
of sphingolipids, an essential component of the cell membrane (Wills
et al., 2000).

4.2 Model sensitivity
In any clustering model, we must control the tradeoff between more
detailed resolution for each experiment and better high-level pattern
discovery in the whole corpus. By choosing to focus more on pattern
discovery over all experiments, we may miss a gene that is somewhat
sensitive to an individual treatment. A closer examination of the
dyclonine experiments reveals that the NEO1 heterozygous deletion
strain has a fitness defect for the drug, but is only ranked 14th in
the distribution for topic 6. NEO1 is a neomycin-resistance gene
involved in intracellular protein transport. Since the objective of the
LLDA model is to uncover genes that show sensitivity to groups of
drugs, it is robust to the individualities of each experiment that are
evident with a detailed examination. This robustness is advantageous
in filtering experimental false positives, as well in identifying higher
order patterns in the compendium.

In any microarray experimental study, the fitness defect profiles
of some experiments show variability; several such experiments are
included in the methotrexate and itraconazole replicates. They are
evident by the relative spread of their topic allocations. Also, one
each of the dyclonine and caspofungin experiments does not clearly
group with the other replicates. They are allocated topic 4 and are
the only experiments allocated that topic. We have observed that
selection of proper concentration of the drug is critical to yield mean-
ingful results. The cells may not be inhibited enough at these lower
concentrations to observe significantly sensitive strains. Similarly,
non-specific effects may appear with too much drug.

4.3 Drug function prediction
We use the estimate of the posterior topic distribution, given the
fitness defect scores for an experiment in the LLDA model, to com-
pute the distribution over function categories for each experiment
in the dataset. Figure 3 shows that the strains that are sensitive to
5-FU are likely to be involved in transcription. There is evidence
the mechanism of action is specific to the disruption of rRNA pro-
cessing (Longley et al., 2003). The following highly ranked genes
in topic 2 are indeed classified by the MIPS function ontology to be
involved in rRNA processing: NOP4, DIS3, MTR4 and RRP42. The
model predicts that amphotericin B affects protein synthesis and that
methotrexate is an anti-metabolite. The miconazole, itraconazole
and fluconazole experiments show an enhancement for transport
facilitations—most probably due to the pleiotropic drug resistance
genes PDR5 and PDR16. Amphotericin B is allocated topic 7 which
is enriched for genes involved in protein synthesis including DIA4
and GCD2. While there is no convenient base distribution to com-
pare each experiment beyond the naïve uniform distribution, this plot
allows for a qualitative comparison of the functions a drug impacts
in the cell.

4.4 Comparison with hierarchical clustering
In this section, we present a comparison of the results from the LLDA
model with the results from HC. While any such comparison is neces-
sarily qualitative, the pattern of differences revealed by the empirical
results has proved useful in attempting to understand the practical
consequences of the different perspectives on clustering taken by
LLDA and HC.
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Affected Function Distribution for each Treatment

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1. 5-fluorocytosine 15.6uM
2. 5-fluorocytosine 15.6uM
3. 5-fluorouracil-IV 19.2uM
4. 5-fluorouracil-IV 38.5uM

5. 5-fluorouracil 19.2uM
6. 5-fluorouracil 19.2uM
7. 5-fluorouracil 19.2uM
8. 5-fluorouracil 19.2uM
9. 5-fluorouracil 38.5uM
10. 5-fluorouracil 4.8uM

11. 5-fluorouracil 76.9uM
12. 5-fluorouracil 76.9uM

13. 5-fluorouracil 9.6uM
14. alverine-citrate 500uM
15. alverine-citrate 500uM
16. alverine-citrate 500uM

17. amphotericin 0.3125uM
18. amphotericin 0.3125uM

19. amphotericin 0.62uM
20. amphotericin 0.62uM

21. atorvastatin 125uM
22. atorvastatin 125uM
23. atorvastatin 62.5uM
24. atorvastatin 62.5uM
25. atorvastatin 62.5uM

26. caspofungin 0.001uM
27. caspofungin 0.001uM
28. caspofungin 0.001uM
29. caspofungin 0.001uM

30. caspofungin 0.0066uM
31. dyclonine 250uM
32. dyclonine 500uM
33. dyclonine 500uM
34. dyclonine 500uM
35. dyclonine 500uM
36. dyclonine 500uM

37. fenpropimorph 1.17uM
38. fenpropimorph 2.34uM
39. fenpropimorph 2.34uM
40. fenpropimorph 4.69uM
41. fenpropimorph 4.69uM

42. fluconazole 32.6uM
43. fluconazole 32.6uM
44. itraconazole 2.2uM
45. itraconazole 4.4uM
46. itraconazole 4.4uM
47. itraconazole 4.4uM
48. itraconazole 4.4uM
49. itraconazole 8.8uM
50. itraconazole 8.8uM
51. itraconazole 8.8uM
52. lovastatin 154.5uM
53. lovastatin 154.5uM
54. lovastatin 154.5uM

55. lovastatin 77.2uM
56. methotrexate 125uM
57. methotrexate 125uM
58. methotrexate 125uM
59. methotrexate 125uM
60. methotrexate 250uM
61. methotrexate 250uM
62. methotrexate 250uM
63. methotrexate 250uM
64. methotrexate 250uM
65. methotrexate 250uM
66. methotrexate 250uM
67. methotrexate 250uM
68. methotrexate 250uM
69. methotrexate 250uM
70. methotrexate 250uM
71. methotrexate 500uM
72. miconazole 0.025uM
73. miconazole 0.025uM

74. miconazole 0.05uM
75. miconazole 0.05uM
76. miconazole 0.05uM
77. miconazole 0.05uM

78. miconazole 0.1uM
79. miconazole 0.1uM
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energy

cell cycle and dna
processing

transcription

protein synthesis

protein fate (folding,
modification, destination)

cellular transport and
transport mechanisms

cell rescue, defense and
virulence

regulation of / interaction
with cellular environment

cell fate

control of cellular
organization

transport facilitation

Fig. 3. The LLDA model is used to infer the function categories affected by
each experiment. Methotrexate is a known anti-metabolite and most replicates
show a large fraction of the metabolism function. The azole drug experiments
(itraconazole, fluconazole and miconazole) have a large allocation of meta-
bolism genes and a larger fraction of drug transporters than the other drugs in
the compendium. 5-FU experiments are enriched for the transcription func-
tion. The fitness defect profiles for these experiments show that ribosomal
RNA processing genes (classified as transcription genes by MIPS) exhibit a
growth defect with the drug.

Figure 4a shows a HC of all 79 experiments based on the same data
used for the LLDA model. Figure 4b shows a dendrogram over 27
relevant genes also clustered using HC. All HC dendrograms were
generated by average linkage of the correlation distance using the R
statistical language (R Development Core Team, 2004). HC was also
computed using Euclidean and Manhattan distance metrics as well
as complete linkage clustering. The linkage method and distance
metric were chosen here to yield the best clustering of all combina-
tions tested. We have found three important differences between
HC and LLDA. First, HC often separates experiments involving the
same treatment, when the concentration of the compound is varied.
Second, genes that show a fitness defect for compounds with different
targets are clustered with only one of those targets by HC. Third, the
greedy agglomeration of genes into clusters by HC leads genes that
are affected by the same treatment to be separated from the target,
when they are more similar to each other than to the target.

With regards to the first point, consider the dendrogram shown
in Figure 4a for the clustering of experiments. Four methotrexate

treatments (58, 61, 67, 71 shown in orange) are separated from a
much larger cluster (57, 59, 62, 60, 63, 68, 66, 69, 65, 70, 64).
Similarly, four azole treatments (42, 48, 49, 50 shown in green)
are distant from the other replicates (43, 45, 46, 51, 78, 79, 44,
77, 75, 74, 76, 47). LLDA and HC both capture the similarity
among alverine-citrate, dyclonine, fenpropimorph and the azoles.
LLDA discriminates between the two groups of treatments because
ERG11 has a large fitness defect in the azole treatments, but not
in the other treatments. Two fenpropimorph experiments (40, 41
shown in red) are distant from the other replicates in the dendrogram,
possibly because they are at a higher concentration than the other fen-
propimorph experiments. Non-specific genes are affected when the
concentration of drug is increased too much. Many genes with a
small fitness defect score can increase the Euclidean, Manhattan or
correlation distance between otherwise similar experiments.

The second point—that genes that show a fitness defect for com-
pounds with different targets are clustered with only one of those
targets by HC—is demonstrated in Figure 4b. SET6 and PDR5 are
distantly separated from ERG11 but are close to ERG24. MAL11
and TVP18 are close to ERG11, but far from PDR5 and SET6.
These pleiotropic genes (PDR5, SET6, TVP18 and MAL11 shown
in green) exhibit a fitness defect in both the azole treatments and
the alverine-citrate, dyclonine and fenpropimorph treatments. Genes
affected by the same drugs should be clustered together, but this is
not the case for pleiotropic genes using HC. The HC algorithm asso-
ciates the pleiotropic genes with the closest target, but not with both
targets.

The final observation is that the profiles of some genes are more
similar to each other than to the target gene, even though they are all
affected by the same drug. Figure 4b shows the target of methotrexate,
DFR1, is distantly separated from other genes that are sensitive to
methotrexate: YBT1 and FOL1/2 (shown in orange). These three
genes are closer to each other than to the target of methotrexate,
when the distance is measured using all of the treatments.

5 DISCUSSION
HIP allows us to detect putative molecular mechanisms underlying
the action of particular drugs. Our objective is to screen many novel
and well-known compounds using this technique to learn more about
the mechanisms by which they act. For example, some compounds
such as dyclonine, alverine-citrate and fenpropimorph have similar
chemical structures and do cluster in the model based on their com-
mon fitness defect profiles. Other compounds such as methotrexate
and 5-FU operate by very different mechanisms as evidenced by
their dissimilar fitness defect profiles, and are appropriately allocated
different topics.

The graphical model used here allows us to model the HIP pro-
files of each experiment as an allocation of topics. The genes and
experiments are not partitioned into mutually exclusive clusters. This
allows the model to represent the similarities among compounds and
also allows the sets of genes affected by different drugs to overlap
in a model-based analysis. Incorporating MIPS annotation of genes
into the LLDA model enables us to incorporate known functional
classifications in a probabilistically well-founded manner, providing
additional guidance for the clustering. The model is not only lim-
ited to MIPS as an annotation source; it can also similarly employ
Gene Ontology annotations (Ashburner et al., 2000) or any other
classification scheme for genes.
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Fig. 4. The dendrogram of average linkage HC of experiments with a correlation distance is shown in (a). A subset of genes are clustered in (b) using the
same method. (a) Hierarchical clustering separates fenpropimorph experiments (40, 41 shown in red) from the other experiments with the same drug. Several
azole experiments (42, 48, 49, 50 shown in green) and methotrexate experiments (shown in orange) are also distantly separated from replicate treatments.
(b) In the dendrogram for the HC of genes, pleiotropic genes are shown in green. Genes that are haploinsufficient in methotrexate are shown in orange. The
targets of fenpropimorph and the azoles, ERG11 and ERG24, are shown in gray. ERG11 is separated from PDR5 and SET6 even though all three strains have
a fitness defect in azole treatments. The pleiotropic gene, SET6, is also haploinsufficient in fenpropimorph and is closer to that drug’s target, ERG24, than it is
to the azole target, ERG11. Since HC is a greedy agglomerative procedure, pleiotropic genes such as SET6 only associate with one of the two targets. Other
pleiotropic genes MAL11 and TVP18 are separated from SET6 and PDR5 even though they all have a fitness defect in the azoles, dyclonine, fenpropimorph
and alverine-citrate. The constraints imposed by HC prevent SET6, PDR5, MAL11 and TVP18 from being close to both ERG11 and ERG24 in the tree.

This model successfully clusters different groups of drugs that
target various components of the ergosterol pathway (topics 3, 5
and 6 in Fig. 2). The LLDA model also groups together drugs with
similar chemical backbones, doing so because of the commonality
in their fitness defect profiles. In most cases, the known targets for
various drug classes are found within the top 15 genes associated
with each topic. In addition, some previously uncharacterized genes,
such as SET6, which is ranked highly in topics 5 and 6, may be
related to the mechanisms of actions of the associated drugs. This
statistical modeling tool is most useful as new drugs are screened
against the deletion library to classify small molecules that operate
by a novel mechanism, or are similar to a mechanism that has already
been screened.

This compendium study includes 79 experiments, and the meth-
ods and statistical models developed are scalable to many hundreds
of chemogenomic experiments. Though the focus of this study is
on induced haploinsufficiency experiments, the LLDA model and
the graphical model framework are also readily applicable to more
traditional expression datasets and other high-throughput genomic
screens. We expect that the large-scale genomic studies that explore
changes in gene expression when cells are exposed to drug are
complementary to those of haploinsufficiency screens.

The LLDA model can be understood as a member of a gen-
eral family of methods known as bi-clustering methods—a family
which includes the SVD when the SVD is viewed as a cluster-
ing method (Alter et al., 2000; Cheng and Church, 2000; Hofmann
and Puzicha, 1998; Lazzeroni and Owen, 2002; Tanay et al., 2002).
Viewing a dataset as a matrix (e.g. genes by treatments), these meth-
ods differ from classical clustering techniques in that they treat the
rows and columns symmetrically. This symmetry provides a dual
notion of ‘cluster’; in particular, for each column cluster one can
group those row variables that are highly associated with that cluster
(large ‘weights’); these groupings will overlap in general. We view
LLDA as a particular natural expression of this idea. In partic-
ular, in LLDA the symmetry is a direct consequence of Bayes’
theorem and the ‘weights’ are posterior probabilities. Moreover,
the probabilistic framework underlying LLDA has advantages in
terms of extensibility; as we have seen, LLDA naturally incorporates
functional labels within the clustering procedure.

Focusing on specifically probabilistic approaches, LLDA is also
related to the notion of a ‘module network’ due to Segal et al. (2003b).
Module networks and LLDA are both instances of the general family
of probabilistic graphical models; both involve probabilistic cluster-
ing of genes. The specific assumptions underlying these models are
different, however, reflecting different data-analytic goals. In par-
ticular, module networks make a mutual exclusivity assumption—a
gene can only appear in a single module. [This assumption can be
removed via a further extension of the module network framework;
see Segal et al. (2003a)].

In summary, we have presented a model-based approach to
the analysis of data from HIP experiments. While simple, the
model properly handles gene pleiotropy, a biological phenomenon
that is often overlooked when off-the-shelf clustering methods are
applied to biological data. Our results demonstrate the utility of the
compendium-based analysis of HIP experiments to reveal treatments
that have related mechanisms of action.
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