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Abstract

Motivated by the large number of languages
(seven) and the short development time (two
months) of the 2009 CoNLL shared task, we
exploited latent variables to avoid the costly
process of hand-crafted feature engineering,
allowing the latent variables to induce features
from the data. We took a pre-existing gener-
ative latent variable model of joint syntactic-
semantic dependency parsing, developed for
English, and applied it to six new languages
with minimal adjustments. The parser’s ro-
bustness across languages indicates that this
parser has a very general feature set. The
parser’s high performance indicates that its la-
tent variables succeeded in inducing effective
features. This system was ranked third overall
with a macro averaged F1 score of 82.14%,
only 0.5% worse than the best system.

1 Introduction

Recent research in syntax-based statistical machine
translation and the recent availability of syntac-
tically annotated corpora for multiple languages
(Nivre et al., 2007) has provided a new opportunity
for evaluating the cross-linguistic validity of statis-
tical models of syntactic structure. This opportu-
nity has been significantly expanded with the 2009
CoNLL shared task on syntactic and semantic pars-
ing of seven languages (Hajič et al., 2009) belonging
to several different language families.

We participate in this task with a generative,
history-based model proposed in the CoNLL 2008
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shared task for English (Henderson et al., 2008) and
further improved to tackle non-planar dependencies
(Titov et al., 2009). This model maximises the joint
probability of the syntactic and semantic dependen-
cies and thereby enforces that the output structure be
globally coherent, but the use of synchronous pars-
ing allows it to maintain separate structures for the
syntax and semantics. The probabilistic model is
based on Incremental Sigmoid Belief Networks (IS-
BNs), a recently proposed latent variable model for
syntactic structure prediction, which has shown very
good performance for both constituency (Titov and
Henderson, 2007a) and dependency parsing (Titov
and Henderson, 2007b). The use of latent variables
enables this architecture to be extended to learning
a synchronous parse of syntax and semantics with-
out overly restrictive assumptions about the linking
between syntactic and semantic structures.

In this work, we evaluate the ability of this
method to generalise across several languages. We
take the model as it was developed for English, and
apply it directly to all seven languages. The only
fine-tuning was to evaluate whether to include one
feature type which we had previously found did not
help for English, but helped overall. No other fea-
ture engineering was done. The use of latent vari-
ables to induce features automatically from the data
gives our method the adaptability necessary to per-
form well across all seven languages, and demon-
strates the lack of language specificity in the models
of Henderson et al. (2008) and Titov et al. (2009).

The main properties of this model, that differen-
tiate it from other approaches, is the use of syn-
chronous syntactic and semantic derivations and the



use of online planarisation of crossing semantic de-
pendencies. This system was ranked third overall
with a macro averaged F1 score of 82.14%, only
0.5% worse than the best system.

2 The Synchronous Model

The use of synchronous parsing allows separate
structures for syntax and semantics, while still mod-
eling their joint probability. We use the approach
to synchronous parsing proposed in Henderson et al.
(2008), where we start with two separate derivations
specifying each of the two structures, then synchro-
nise these derivations at each word. The individual
derivations are based on Nivre’s shift-reduce-style
parsing algorithm (Nivre et al., 2006), as discussed
further below. First we illustrate the high-level struc-
ture of the model, discussed in more detail in Hen-
derson et al. (2008).

Let Td be a syntactic dependency tree with
derivation D1
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s = Shiftt. Then the actions of
the synchronous derivations consist of quadruples
Ct = (ct

d, Switch, ct
s, Shiftt), where Switch means

switching from syntactic to semantic mode. This
gives us the following joint probability model,
where n is the number of words in the input.

P (Td, Ts) =
∏n

t=1 P (Ct|C1, . . . , Ct−1) (1)

These synchronous derivations C1, . . . , Cn only re-
quire a single input queue, since the Shift actions are
synchronised, but they require two separate stacks,
one for the syntactic derivation and one for the se-
mantic derivation.

The probability of each synchronous derivation
chunk Ct is the product of four factors, related to
the syntactic level, the semantic level and the two
synchronising steps. The probability of ct

d is de-
composed into one probability for each derivation
action Di, conditioned on its history using the chain
rule, and likewise for ct

s. These probabilities are es-
timated using the method described in section 3.

Syn cross Sem cross Sem tree No parse
Cat 0% 0% 61.4% 0%
Chi 0% 28.0% 28.6% 9.5%
Cze 22.4% 16.3% 6.1% 1.8%
Eng 7.6% 43.9% 21.4% 3.9%
Ger 28.1% 1.3% 97.4% 0.0%
Jap 0.9% 38.3% 11.2% 14.4%
Spa 0% 0% 57.1% 0%

Table 1: For each language, percentage of training sen-
tences with crossing arcs in syntax and semantics, with
semantic arcs forming a tree, and which were not parsable
using the Swap action.

One of the main characteristics of our syn-
chronous representation, unlike other synchronous
representations of syntax and semantics (Nesson et
al., 2008), is that the synchronisation is done on
words, rather than on structural components. We
take advantage of this freedom and adopt different
methods for handling crossing arcs for syntax and
for semantics.

While both syntax and semantics are represented
as dependency graphs, these graphs differ substan-
tially in their properties. Some statistics which in-
dicate these differences are shown in table 1. For
example, English syntactic dependencies form trees,
while semantic dependency structures are only trees
21.4% of the time, since in general each struc-
ture does not form a connected graph and some
nodes may have more than one parent. The syn-
tactic dependency structures for only 7.6% of En-
glish sentences contain crossing arcs, while 43.9%
of the semantic dependency structures contain cross-
ing arcs. Due to variations both in language char-
acteristics and annotation decisions across corpora,
these differences between syntax and semantics vary
across the seven languages, but they are consis-
tent enough to motivate the development of new
techniques specifically for handling semantic depen-
dency structures. In particular, we use a different
method for parsing crossing arcs.

For parsing crossing semantic arcs (i.e. non-
planar graphs), we use the approach proposed in
Titov et al. (2009), which introduces an action Swap
that swaps the top two elements on the parser’s
stack. The Swap action allows the parser to reorder
words online during the parse. This allows words
to be processed in different orders during different



portions of the parse, so some arcs can be specified
using one ordering, then other arcs can be specified
using another ordering. Titov et al. (2009) found that
only using the Swap action as a last resort is the best
strategy for English (compared to using it preemp-
tively to address future crossing arcs) and we use
the same strategy here for all languages.

Syntactic graphs do not use a Swap action.
We adopt the HEAD method of Nivre and Nils-
son (2005) to de-projectivise syntactic dependencies
outside of parsing.1

3 Features and New Developments

The synchronous derivations described above are
modelled with a type of Bayesian Network called an
Incremental Sigmoid Belief Network (ISBN) (Titov
and Henderson, 2007a). As in Henderson et al.
(2008), the ISBN model distinguishes two types of
latent states: syntactic states, when syntactic deci-
sions are considered, and semantic states, when se-
mantic decision are considered. Latent states are
vectors of binary latent variables, which are condi-
tioned on variables from previous states via a pattern
of connecting edges determined by the previous de-
cisions. These latent-to-latent connections are used
to engineer soft biases which reflect the relevant do-
mains of locality in the structure being built. For
these we used the set of connections proposed in
Titov et al. (2009), which includes latent-to-latent
connections both from syntax states to semantics
states and vice versa. The latent variable vectors are
also conditioned on a set of observable features of
the derivation history. For these features, we start
with the feature set from Titov et al. (2009), which
extends the semantic features proposed in Hender-
son et al. (2008) to allow better handling of the non-
planar structures in semantics. Most importantly, all
the features previously included for the top of the
stack were also included for the word just under the
top of the stack. To this set we added one more type
of feature, discussed below.

We made some modifications to reflect differ-
ences in the task definition between the 2008 and
2009 shared tasks, and experimented with one
type of features which had been previously imple-

1The statistics in Table 1 suggest that, for some languages,
swapping might be beneficial for syntax as well.

mented. For the former modifications, the system
was adapted to allow the use of the PFEAT and
FILLPRED fields in the data, which both resulted
in improved accuracy for all the languages. The
PFEAT data field (automatically predicted morpho-
logical features) was introduced in the system in
two ways, as an atomic feature bundle that is pre-
dicted when predicting the word, and split into its
elementary components when conditioning on a pre-
vious word, as was done in Titov and Henderson
(2007b). Because the testing data included a spec-
ification of which words were annotated as predi-
cates (the FILLPRED data field), we constrained the
parser’s output so as to be consistent with this speci-
fication. For rare predicates, if the predicate was not
in the parser’s lexicon (extracted from the training
set), then a sense was taken from the list of senses
reported in the Lexicon and Frame Set resources
available for the closed challenge. If this informa-
tion was not available, then a default sense was con-
structed based on the automatically predicted lemma
(PLEMMA) of the predicate.

We also made use of a previously implemented
type of feature that allows the prediction of a seman-
tic link between two words to be conditioned on the
syntactic dependency already predicted between the
same two words. While this feature had previously
not helped for English, it did result in an overall im-
provement across the languages.

Also, in comparison with previous experiments,
the search beam used in the decoding phase was in-
creased from 50 to 80, producing a small improve-
ment in the overall development score.

All development effort took about two person-
months, mostly by someone who had no previous
experience with the system. Most of this time was
spent on the above differences in the task definition
between the 2008 and 2009 shared tasks.

4 Results and Discussion

We participated in the joint task of the closed chal-
lenge, as described in Hajič et al. (2009). The
datasets used in this challenge are described in Taulé
et al. (2008) (Catalan and Spanish), Palmer and Xue
(2009) (Chinese), Hajič et al. (2006) (Czech), Sur-
deanu et al. (2008) (English), Burchardt et al. (2006)
(German), and Kawahara et al. (2002) (Japanese).



Rank Average Catalan Chinese Czech English German Japanese Spanish
macro F1 3 82.14 82.66 76.15 83.21 86.03 79.59 84.91 82.43
syntactic acc 1 @85.77 @87.86 76.11 @80.38 88.79 87.29 92.34 @87.64
semantic F1 3 78.42 77.44 76.05 86.02 83.24 71.78 77.23 77.19

Table 2: The three main scores for our system. Rank is within task.

Rank Ave Cze-ood Eng-ood Ger-ood
macro F1 3 75.93 @80.70 75.76 71.32
syn Acc 2 78.01 @76.41 80.84 76.77
sem F1 3 73.63 84.99 70.65 65.25

Table 3: Results on out-of-domain for our system. Rank
is within task.

The official results on the testing set are shown in
tables 2, 3, and 4. The symbol “@” indicates the
best result across systems. In table 5, we show our
rankings across the different datasets, amongst sys-
tems submitted for the same task.

The overall score used to rank systems is the un-
weighted average of the syntactic labeled accuracy
and the semantic labeled F1 measure, across all lan-
guages (“macro F1” in table 2). We were ranked
third, out of 14 systems. There was only a 0.5% dif-
ference between our score and that of the best sys-
tem, while there was a 1.29% difference between our
score and the fourth ranked system. Only consid-
ering syntactic accuracy, we had the highest aver-
age score of all systems, with the highest individual
score for Catalan, Czech, and Spanish. Only con-
sidering semantic F1, we were again ranked third.
Our results for out-of-domain data (table 3) achieved
a similar level of success, although here we were
ranked second for average syntactic accuracy. Our
precision on semantic arcs was generally much bet-
ter than our recall (shown in table 4). However,
other systems had a similar imbalance, resulting in
no change in our third place ranking for semantic
precision and for semantic recall. Only when the se-
mantic precision is averaged with syntactic accuracy
do we squeeze into second place (“macro Prec”).

To get a more detailed picture of the strengths
and weaknesses of our system, we computed its rank
within each dataset, shown in table 5. Overall, our
system is robust across languages, with little fluc-
tuation in ranking for the overall score, including
for out-of-domain data. The one noticeable excep-
tion to this consistency is the syntactic score for En-

data time (min) macro F1
Czech 25% 5007 73.84

50% 3699 77.57
75% 4201 79.10
100% 6870 80.55

English 25% 1300 79.02
50% 1899 81.61
75% 3196 82.41
100% 3191 83.27

Table 6: Training times and development set accuracies
using different percentages of the training data, for Czech
and English.

glish out-of-domain data. The other ranks for En-
glish out-of-domain and English in-domain scores
are also on the poor side. These results support our
claim that our parser has not undergone much hand-
tuning, since it was originally developed for English.
It is not currently clear whether this relative differ-
ence reflects a English-specific weakness in our sys-
tem, or that many of the other systems have been
fine-tuned for English.

On the higher end of our dataset rankings, we
do relatively well on Catalan, Czech, and Span-
ish. Catalan and Spanish are unique amongst these
datasets in that they have no crossing arcs in their
semantic structure. Czech seems to have semantic
structures which are relatively well handled by our
derivations with Swap. As indicated above in ta-
ble 1, only 2% of sentences are unparsable, despite
16% requiring the Swap action. However, this argu-
ment does not explain why our parser did relatively
poorly on German semantic dependencies. Regard-
less, these observations would suggest that our sys-
tem is still having trouble with crossing dependen-
cies, despite the introduction of the Swap operation,
and that our learning method could achieve better
performance with an improved treatment of cross-
ing semantic dependencies.

Table 6 shows how accuracies and training times
vary with the size of the training dataset, for Czech
and English. Training times vary in part because



Rank Ave Cat Chi Cze Eng Ger Jap Spa Cze-ood Eng-ood Ger-ood
semantic Prec 3 81.60 79.08 80.93 87.45 84.92 75.60 83.75 79.44 85.90 72.89 75.19
semantic Rec 3 75.56 75.87 71.73 @84.64 81.63 68.33 71.65 75.05 @84.09 68.55 57.63
macro Prec 2 83.68 83.47 78.52 83.91 86.86 81.44 88.05 83.54 81.16 76.86 @75.98
macro Rec 3 80.66 @81.86 73.92 @82.51 85.21 77.81 81.99 81.35 @80.25 74.70 67.20

Table 4: Semantic precision and recall and macro precision and recall for our system. Rank is within task.

Rank by Ave Cat Chi Cze Eng Ger Jap Spa Ave-ood Cze-ood Eng-ood Ger-ood
macro F1 3 2 3 2 4 4 3 2 3 1 4 3
syntactic Acc 1 1 4 1 3 2 2 1 2 1 7 2
semantic F1 3 2 4 2 4 5 4 2 3 2 4 3

Table 5: Our system’s rank within task according to the three main measures, for each dataset.
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Figure 1: Difference in development set macro F1 as the
search beam is decreased from the submitted beam (80)
to 40, 20, 10, and 5, plotted against parser speed.

random variations can result in different numbers of
training cycles before convergence. Accuracies ap-
pear to be roughly log-linear with data size.

Figure 1 shows how the accuracy of the parser de-
grades as we speed it up by decreasing the search
beam used in decoding, for each language. For some
languages, a slightly smaller search beam is actually
more accurate,2 but for smaller beams the trade-off
of accuracy versus words-per-second is roughly lin-
ear. Parsing time per word is also linear in beam
width, with a zero intercept.

5 Conclusion

In the joint task of the closed challenge of the
CoNLL 2009 shared task (Hajič et al., 2009), we in-
vestigated how well a model of syntactic-semantic
dependency parsing developed for English would

2This fact suggests that we could have gotten improved re-
sults by tailoring the search beam to individual languages.

generalise to the other six languages. This model
provides a single generative probability of the joint
syntactic and semantic dependency structures, but
allows separate representations for these two struc-
tures by parsing the two structures synchronously.
Finding the statistical correlations both between and
within these structures is facilitated through the use
of latent variables, which induce features automat-
ically from the data, thereby greatly reducing the
need for hand-coded feature engineering.

This latent variable model proved very robust
across languages, achieving a ranking of between
second and fourth on each language, including for
out-of-domain data. The extent to which the parser
does not rely on hand-crafting is underlined by the
fact that its worst ranking is for English, the lan-
guage for which it was developed (particularly for
out-of-domain data). The parser was ranked third
overall out of 14 systems, with a macro averaged F1
score of 82.14%, only 0.5% worse than the best sys-
tem.

Both joint learning and conditioning decisions
about semantic dependencies on latent representa-
tions of syntactic parsing states were crucial to the
success of our model, as was previously demon-
strated in Henderson et al. (2008). There, remov-
ing this conditioning led to a 3.5% drop in the SRL
score. This result seems to contradict the gen-
eral trend in the CoNLL-2008 shared task, where
joint learning had only limited success. The lat-
ter fact may be explained by recent theoretical re-
sults demonstrating that pipelines can be preferable
to joint learning (Roth et al., 2009) when no shared
hidden representation is learnt. Our system (Hender-
son et al., 2008) was the only one which attempted to



learn a common hidden representation for this mul-
titask learning problem and also was the only one
which achieved significant gain from joint parameter
estimation. We believe that learning shared hidden
representations for related NLP problems is a very
promising direction for further research.

Acknowledgements

We thank Gabriele Musillo and Dan Roth for help and
advice. This work was partly funded by Swiss NSF
grants 100015-122643 and PBGE22-119276, European
Community FP7 grant 216594 (CLASSiC, www.classic-
project.org), US NSF grant SoD-HCER-0613885 and
DARPA (Bootstrap Learning Program).

References

Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea
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Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
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