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Abstract. Conventional microgyroscopes of the vibrating type require resonant frequency
tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions
depend on each microgyroscope fabricated, even though the microgyroscopes are identically
designed. A new micromachined resonator, which is applicable to microgyroscopes with
self-tuning characteristics, is presented. Since the laterally driven two-degrees-of-freedom
resonator was designed as a symmetric structure with identical stiffness in two orthogonal
axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode
tuning. A dynamic model of the resonator was derived considering gyroscopic applications.
The dynamic model was evaluated by experimental comparison with fabricated resonators.
The resonators were fabricated using a simple process of a single polysilicon layer deposited
on an insulator layer.

The feasibility of the resonator as a vibrating microgyroscope with self-tuning capability
is discussed. The fabricated resonators of a particular design have process-induced
non-uniformities that cause different resonant frequencies. For several resonators, the
standard deviations of the driving and sensing resonant frequencies were as high as 1232 and
1214 Hz, whereas the experimental average detuning frequency was 91.75 Hz. The minimum
detuned frequency was 68 Hz with 0.034 mV s−1 sensitivity. The sensitivity of the
microgyroscope was low due to process-induced non-uniformity; however, the angular rate
bandwidth was wide. This resonator could be successfully applicable to a vibrating
microgyroscope with high sensitivity, if improvements in uniformity of the fabrication
process are achieved. Further developments in improved integrated circuits are expected to
lower the noise level even more.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Because of their low cost, small size and high sensitivity,
micromachined gyroscopes are receiving increasing atten-
tion. Recently, microgyroscopes have been applied in many
fields in view of their precise angular motion detection. Most
micromachined gyroscopes are of the vibrating type. Elec-
trostatic comb driving and capacitive sensing of charges are
popular in both driving and sensing methods [1–4]. It should
be mentioned that conventional vibrating microgyroscopes
require tuning of both driving and sensing mode resonant
frequencies to attain high sensitivity.

The resonator presented in this study was produced for
microgyroscopic application. The microgyroscope using
the resonator differs from conventional ones in terms of the
mechanical design and fabrication process. In terms of the
fabrication, a simple process in which a single polysilicon
layer is applied on an insulator layer is presented. In terms

of the mechanical design, an idea of a vibrating gyroscope

with minimized effort for the tuning of resonant modes is

presented. In the fabrication process of vibrating micro-

gyroscopes, process-induced non-uniformity is inevitable;

hence, a detuning process of vibrating modes is carried

out. The presented vibrating microgyroscope of symmetric

structure about the x- and y-axes can minimize mode

detuning. In this work a dynamic model of the resonator

is derived by considering the gyroscopic application, and

the model is evaluated experimentally by comparison with

fabricated resonators. The validity of the gyroscopic

application, including the self-tuning characteristics, is also

evaluated through experiment.
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Figure 1. A laterally vibrating resonator, which is symmetric
about the x- and y-axes, and its circuit configuration for
gyroscopic application.

2. Laterally driven resonator with two degrees of
freedom

Figure 1 shows a schematic diagram of a laterally driven
resonator with two degrees of freedom (2DOF), which is
symmetric about two perpendicular axes, x and y. A circular
anchor is located at the center of the overall structure; a
vibrating square-shaped mass is supported by eight curved-
beam springs, which connect the vibrating mass and the
anchor. Since the eight curved springs are also symmetrically
configured about the two axes, the overall spring system
ideally has the same stiffness in the x and y directions of
motion. The resonator is designed with the same stiffness in x
and ymotions, but not in motions in the z direction, tilting and
rotation. Because the motions in the x and y directions are
also designed to have far lower stiffness than other motions,
the resonator is named ‘a laterally driven 2DOF resonator
with fundamental vibrations in the x and y directions’. On
the four sides of the structure, driving and sensing electrodes
of identical shape are configured to be symmetrical about
the x- and y-axes. On the four sides of the vibrating mass
there are multiple cantilevers that face other cantilevers on the
four electrodes and the cantilever sidewalls facing each other
are sensitive to electrical charges. Finally, the cantilevers on
the vibrating mass and on the electrodes are arranged with
alternating narrow and wide gaps.

Comb-driving and parallel plate capacitive sensing are
the major methods of driving and sensing in conventional
vibrating microgyroscopes. Microgyroscopes of this type
have detuning characteristics due to process uncertainties.
The laterally driven resonator with 2DOF presented here is
designed for a self-tuned vibrating microgyroscope.

Even if identically designed resonators are fabricated
on the same wafer, they cannot have the same resonant
frequency due to process-induced non-uniformities that cause
differences in fabricated dimensions. Since resonators
located far from each other will have less uniform dimensions
than resonators located near each other, the resonant
frequencies of fabricated resonators are generally different,
in accordance with their relative positions on the wafer. The
resonant frequencies of resonators are mostly determined by
the width of beam springs; the practical tolerance in width
during fabrication process is about 10%.

Figure 2. Simplified lumped mass model of a vibrating
microgyroscope.

For a mechanically decoupled microgyroscope, the
driving and sensing motions of gyroscope have to be
perpendicular to each other. For highly sensitive micro-
gyroscopes the spring dimensions of the two modes have to be
uniformly fabricated in spite of the 10% process tolerance,
by locating mode springs as close as possible. Therefore
the spring system becomes symmetric about the x- and
y-axes.

The schematic diagram of the circuit presented in figure 1
illustrates the gyroscopic application of the laterally driven
2DOF resonator. A dc voltage is provided to the vibrating
mass by connecting the metal pad on the circular anchor with
a dc voltage source. The vibrating mass is excited in the
x direction by providing an ac voltage to the right electrode
in figure 1. The right electrode is the driving electrode, while
the left is the monitoring electrode for the driving vibration
(vibration in the x direction is the driving mode vibration).
Any angular motion with an axis of rotation perpendicular
to the plane of the substrate causes a Coriolis force creating
a sensing mode vibration, i.e. vibration in the y direction.
The electrodes at the upper and lower sides of the gyroscope
differentially detect current from variation of the electrostatic
charge due to such vibrations; the current is then amplified
to the sensing signal which is proportional to the angular rate
of change.

3. Dynamic model of the microgyroscope

3.1. Equation of motion of the microgyroscope

A simplified lumped mass model of the microgyroscope
is shown in figure 2. The model consists of a vibrating
mass m, two spring-damper systems and parallel sidewall
type electrodes; the electrodes consist of a driving electrode,
a monitoring electrode and sensing electrodes. The
microgyroscope is attached to a rotating reference frame
xyz, which rotates with respect to the fixed reference frame
XYZ about axis Z, which is coaxial to axis z. There
have been many studies on dynamic models of comb-drive
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type microgyroscopes [5–7], but to the authors’ knowledge,
microgyroscopes with parallel sidewall type driving have not
been widely researched.

The equations of motion for the microgyroscope can be
obtained using the Lagrange equation, as follows:

mẍ + cẋ + (kx −mθ̇2)x −myθ̈ − 2mẏθ̇ +
∂Ue

∂x
= 0 (1a)

mÿ + cẏ + (ky −mθ̇2)y +mxθ̈ + 2mẋθ̇ +
∂Ue

∂y
= 0 (1b)

where Ue is electrostatic potential energy; y, x and θ are the
respective displacements in the x, y and angular directions;
kx and ky are constants; and m is the mass. The vibrating
amplitude ofm in the y direction is much smaller than that in
the x direction; the angular velocity and angular acceleration
are much smaller than the resonant frequencies. Therefore,
the terms of angular accelerations and centripetal forces are
assumed to be negligible, and so is the Coriolis force acting on
the x-axis. Defining θ̇ as� and using the above assumptions,
the equations of motion can be simplified as

mẍ + cẋ + kxx +
∂Ue

∂x
= 0 (2a)

mÿ + cẏ + kyy +
∂Ue

∂y
= 2mẋ�. (2b)

The electrostatic forces acting on each axis do not appear
yet in these equations. The electrostatic potential energy can
be obtained by understanding the geometric configuration of
the electrodes and the structure. As shown in the driving
and monitoring electrodes in figure 1, the voltage difference
between the parallel sidewall electrodes is Vdc, and an ac
voltage νac is supplied from the driving electrode. Partial
differentiation of the electrostatic energy by the displacement
x, gives the electrostatic driving force of the x-axis as

∂Ue

∂x
= −εAsV 2

dc

{
dnx

(d2
n − x2)2

+
dwx

(d2
w − x2)2

}

−εAsVdc
2

{
1

(dn − x)2
− 1

(dw + x)2

}
νac (3)

where ε is the permittivity of air, As is the electrostatic
area and dn and dw are the narrow and wide electrode gaps,
respectively. As is half of the total electrostatic area, which
in turn is the sum of the multiple cantilever side areas, and the
values of dw’s and dn’s in the driving electrode configuration
can be estimated using the electrostatic areaAs . As shown in
figure 1, there is only a voltage difference, Vdc, between the
sensing electrodes and the vibrating structure. Thus, partial
differentiation of the electrostatic energy by the displacement
y, gives the electrostatic force in the y direction as

∂Ue

∂y
= −εAsV 2

dc

{
dny

(d2
n − y2)2

+
dwy

(d2
w − y2)2

}
. (4)

Since the displacement y of the sensing mode is so much
smaller than dn so as to be negligible, it is possible to
approximate equation (4) as

∂Ue

∂y
≈ −

(
α3 + 1

α3

)
εAsV

2
dc

dn
y ≡ −key (5)

where α is dw/dn, and ke is defined as the electrostatic-elastic
coefficient.

3.2. Driving and sensing modes of the microgyroscope

From equations (2a) and (3), the nonlinear equation of motion
of the microgyroscope in the driving mode can be rewritten
as

mẍ + cẋ + kxx −
{
εAsV

2
dcdn

(d2
n − x2)2

+
εAsV

2
dcdw

(d2
w − x2)2

}
x

=
{

εAsVdc

2(dn − x)2
− εAsVdc

2(dw + x)2

}
νac. (6)

There are nonlinear terms of the driving force and the stiffness
force in equation (6). Analysis of the nonlinear driving mode
vibration can be performed by the Runge–Kutta method.
When a driving signal is applied with a frequency near
the resonance of the microgyroscope, the vibrating mass is
excited with the driving frequency. The output voltage of the
monitoring electrode is the final output of the driving mode;
the theoretical current im that determines the monitoring
outputVm can be derived by differentiating the electric charge
as

im = εAsVdc

2

{
1

(dn − x)2
− 1

(dw + x)2

}
ẋ. (7)

The equation of motion of the microgyroscope in the
sensing mode vibration can be assumed to be linear. The
amplitude of vibration in the y direction can be obtained from
equations (2b) and (5). If the driving mode vibration is simply
sinusoidal, the amplitude of the sensing mode vibration Y
induced by the Coriolis force can be written as

Y = 2mωX�

[(ky − ke − ω2m)2 + c2ω2]1/2
(8)

whereω is the driving frequency. The final output, the voltage
of the sensing electrode, is determined by the current isens ,
which is the time derivative of the charge stored in the sensing
electrodes and can be expressed as

isens = d

dt
(VdcC1 − VdcC2)

= εAsVdc
d

dt

(
1

dn − y
+

1

dw + y
− 1

dn + y
− 1

dw − y

)
.

(9)

Assuming that dw is sufficiently larger than dn and y,
equation (9) can be approximated by

isens = εAsVdc

2

{
d2
n + y2

(d2
n − y2)2

− d2
w + y2

(d2
w − y2)2

}
ẏ

≈
(
α2 − 1

α2

)
εAsVdc

2d2
n

ẏ. (10)

From equation (8) and (10), the amplitude of isens is then
given by

Isens =
(
α2 − 1

α2

)
εAsVdcmω

2X�

d2
n[(ky − ke − ω2m)2 + c2ω2]1/2

. (11)

The driving frequency ω is usually selected at the point of
the driving mode resonance, which is given as

ω =
(
kx − ke

m

)1/2

. (12)
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Figure 3. SEM micrograph of the laterally vibrating
microgyroscope, which is symmetric about the x- and y-axes.

If the driving frequency is fixed as the frequency of
equation (11), using the Q-factor and the detuning ratio γ ,
equation (10) can be rewritten as

Isens =
(
α2 − 1

α2

)
εAsVdcXQ�

d2
n[Q2(γ 2 − 1)2 + ω2]1/2

(13)

where the Q-factor represents the vacuum level and γ is
defined by the ratio of the sensing resonant frequency to
driving resonant frequency

γ =
(
ky − ke

kx − ke

)1/2

. (14)

The value of γ becomes one if the sensing mode resonant
frequency is exactly tuned to the driving mode resonant
frequency.

4. Fabrication

An SEM micrograph of the micromachined vibrating
gyroscope which is symmetric about the x- and y-axes is
shown in figure 3. Figure 4 depicts the fabrication processes
for the designed microgyroscope. A low-temperature-oxide
(LTO) sacrificial layer of 3 µm thickness, and a polysilicon
layer of 5 µm are deposited to form the polysilicon-on-
insulator structure. 1 µm of the LTO layer is consecutively
deposited and patterned as an anisotropic etching mask. The
structural layer of 5 µm is etched by reactive ion etching
(RIE), and the surface of the etched structure is doped by
POCl3 diffusion followed by an annealing process [8]. An
aluminum layer of 300 nm is sputtered, and metal pads are
patterned using wet etching. The final structure is released
using HF in gas phase etching (GPE), to avoid the stiction
problem [9].

Figure 4. Fabrication steps of a planar vibrating microgyroscope:
(a) deposition of polysilicon on insulator; (b) patterning of the etch
mask; (c) patterning of the structure layer; (d) patterning of the
metal pads; and (e) final structure with attached wiring.

5. Evaluation of the resonator as a gyroscope with
self-tuning characteristics

5.1. Evaluation of the dynamic model of the driving
mode

The shapes of the driving and sensing electrodes are identical
since the resonator is designed to be symmetrical with
respect to the x- and y-axes. As mentioned, such a
configuration makes it possible to minimize process-induced
non-uniformities causing differences between the resonant
vibration modes. In the driving electrode, the electrostatic
force is a nonlinear function of vibration displacement.
Through analysis, a stable and predictable driving range
can be obtained. Figure 5 presents a comparison between
simulations and experiments which were performed to
evaluate the nonlinear driving model. The graphs in figure 5
show the nonlinear vibration in terms of frequency and
voltage. The linear parameters of the lumped mass model
are the vibrating mass m, the viscous damping coefficient c,
and the elastic coefficients kx and ky . Of these parameters,m
can be approximately calculated from the design dimensions;
this value was 6.7042 × 10−9 kg. The elastic coefficients of
the resonator can be calculated by measuring the resonant
frequency, while the viscous damping coefficient can be
obtained by measuring the Q-factor of the resonator. The
measured frequency of the selected resonator was 21 323 Hz
and the elastic coefficient of the driving mode calculated
from the measured resonant frequency was 120.338 N m−1.
The viscous damping coefficient c can be estimated with the
Q-factor, which is obtained by investigating the frequency
response characteristics. The relationship between c and the
Q-factor is given by

c = mw

Q
(15)

where ω is the driving frequency at resonance. A test
structure with the resonator’s dimensions was used for
measuring the Q-factor. The measured Q-factor of the test
structure was 4815.4 at a pressure of 300 mTorr. Hence, the
estimated viscous damping coefficient c of the resonator for
microgyroscope was 1.784 × 10−7 N s m−1.
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(a)

(b)

(c)

Figure 5. Comparison between the driving mode model and
experiment with driving frequencies of: (a) 21 212, (b) 21 211 and
(c) 21 210 Hz.

The driving mode vibration of equation (6) and the
monitoring current of equation (7) were calculated using
the Runge–Kutta method. The dynamic model of the
driving mode was evaluated through experiments conducted
at a pressure of 100 mTorr and a dc voltage of 5 V, the
maximum IC application voltage. The data obtained in
the comparison between simulations and experiments on
the driving mode vibration is shown in figure 5. The
experimental operating conditions were also applied to the
simulation. The calculated monitoring output was obtained
by multiplying the estimated gain resistance by the analyzed
monitoring current. Experiments were performed at three

driving frequencies near the driving resonant frequency,
namely at 21 212, 21 211 and 21 210 Hz, and the results
are shown in figures 5(a), 5(b) and 5(c), respectively. The
calculated monitoring output yielded results similar to those
obtained in the experiments of nonlinear characteristics and
amplitudes. The vibrating amplitude can accordingly be
obtained from the evaluated nonlinear analysis.

There is instability in the driving mode of vibration if the
driving input is larger than a certain value, which is not shown
in figure 5. Data analyzed using the Runge–Kutta method
also displayed instability at a certain operational range. In
simulation this instability occurred when the ac voltage
amplitude was over 2.8 V, whereas in the experiment, the
ac voltage amplitude of instability was 2.2 V. The simulated
and experimental results of the driving mode vibration
were in acceptable agreement. By adjusting the operation
conditions within the stable range evaluated through the
analysis of the driving model stability in the driving mode
is guaranteed.

5.2. Evaluation of the self-tuning characteristics

The sensing mode vibration of the dynamic model was also
evaluated. The output voltage proportional to the angular
rate can be calculated by multiplying the sensing current
from equation (13) by the output gain resistance (in this
case 200 M�). The experiment on angular rate sensing was
also performed using a rate table in a 100 mTorr vacuum
chamber. In the output signal, electrical cross-talk from the
driving signal to the sensing signal can be observed, and this
is due to the parasitic capacitance of the electrodes. There is
also mechanical coupling between the primary and secondary
motions because the primary motion cannot be perfectly
perpendicular to the secondary motion. Thus, the driving
vibration at resonance may cause a sensing error, which is
independent of the angular rate. The total error signal is
a superposition of signals from electrical and mechanical
coupling and noises. Since the error signals from electrical
and mechanical coupling are independent of the angular
rate, they can be easily removed by signal processing using
the phase difference between the angular rate and the error
signal.

To evaluate the resonator as a gyroscope, the self-tuning
capability had to be proved. The ideal microgyroscope
in the study features self-tuning characteristics by nature,
but detuned frequency actually exists however. The
measurements summarized in table 1 represent the resonant
frequencies of fabricated resonators. The standard deviations
of the resonant frequencies of the primary and secondary
modes were 1231.8 and 1214.1 Hz, respectively, but the
average difference in the driving and sensing modes was
91.75 Hz, which is less than one-tenth of the standard
deviation of resonant frequencies. This proves the self-
tuning characteristics in the driving and sensing modes of
the resonators. However, frequency differences still exist
due to the mentioned inherent limitations in the fabrication
process. On the other hand the microgyroscope showed a
wide angular rate bandwidth due to the detuning frequency.
This bandwidth was over 20 Hz, the limit of the rate
table capacity.
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Table 1. Eight sets of driving resonant frequencies, sensing resonant frequencies and detuned frequencies.

Resonant Resonant
frequency of frequency of
primary mode secondary mode Detuned frequency

Sample No (Hz) (Hz) (Hz)

1 21 211 21 143 68
2 22 620 22 547 73
3 22 481 22 400 81
4 23 095 23 011 84
5 22 509 22 419 90
6 24 471 24 363 108
7 24 290 24 178 112
8 24 788 24 670 118

Standard deviation of each mode 1231.8 1214.1
Average of detuned frequency 91.75

Figure 6. Output signal of the microgyroscope for (a) clockwise
(CW) 250 ◦ s−1 and (b) counter clockwise (CCW) angular rate
250 ◦ s−1.

The calculated sensitivity of the dynamic model was
2.5 mV s−1 under the condition of perfect tuning and pressure
of 100 mTorr. The minimum detuned frequency between the
driving and sensing mode of the microgyroscope actually
measured was 68 Hz, therefore the recalculated sensitivity
changed to 0.028 mV s−1. Figure 6 shows the experimental
output signal of the microgyroscope at 250 ◦ s−1 with a
sensitivity of 0.034 mV s−1. Because the simulated and
experimental sensitivities show similar values, the modeling
of sensing mode vibration can be regarded as acceptable.

6. Summarizing remarks

A laterally driven 2DOF resonator, which is applicable
to vibrating microgyroscopes, was proposed. Since this
resonator was designed with a symmetrical structure so
that it would have identical stiffness in the two orthogonal
axes, a microgyroscope using the resonator has self-tuning
characteristics. The resonator was fabricated by forming a
structure of a single polysilicon layer on an insulator. A
dynamic model of the microgyroscope was developed and
the validity of this model was evaluated experimentally.

The fabricated resonator for microgyroscopic application
presents acceptable self-tuning characteristics.

The feasibility of the resonator as a vibrating
microgyroscope was discussed. The minimum experimental
detuned frequency was 68 Hz with the sensitivity of
0.034 mV s−1. The sensitivity of the microgyroscope
is low due to process-induced non-uniformity; however,
the angular rate bandwidth is wide. Thus, the resonator
could be successfully applied to a vibrating microgyroscope.
The results indicate that the development of improved
fabrication methods to decrease process errors could increase
the sensitivity of the microgyroscope, and that noise levels
could be further reduced by the development of improved
ICs.
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