
A Lattice Based Public Key Cryptosystem

Using Polynomial Representations

Seong-Hun Paeng1 �, Bae Eun Jung2, and Kil-Chan Ha3 ��

1 Department of Mathematics, Konkuk University, Seoul, 143-701 Korea
shpaeng@konkuk.ac.kr

2 ETRI, 161 Kajong-dong, Yusong-gu, Taejon, 305-350, Korea
bejung@etri.re.kr

3 Department of Applied Mathematics, Sejong University, Seoul, 143-747 Korea
kcha@sejong.ac.kr

Abstract. In Crypto 97, a public key cryptosystem based on the closest
vector problem was suggested by Goldreich, Goldwasser and Halevi [4].
In this paper, we propose a public key cryptosystem applying represen-
tations of polynomials to the GGH encryption scheme. Its key size is
much smaller than the GGH system so that it is a quite practical and
efficient lattice based cryptosystem.

Keywords: GGH cryptosystem, lattice based public key cryptosystem,
polynomial representation

1 Introduction

In Crypto 97, Goldreich, Goldwasser and Halevi proposed a cryptosystem (GGH)
using the closest vector problem (CVP) [4]. It is one of the most notable cryp-
tosystem based on the complexity of lattices. The authors of the GGH published
5 numerical challenges for the security parameter n = 200, 250, 300, 350, 400, of
which the public key sizes range from 330KBytes to 2MBytes. Nguyen solved
all the GGH challenge except n = 400 [9]. For n = 400, the GGH is not prac-
tical since the key size is too large. It uses n × n-matrices as a public key and
a private key. Thus its key sizes are very large, so it is considered not to be
practical. Almost every lattice based public key cryptosystem except for NTRU
has an impractical key size. Micciancio suggested to express the public matrix
as Hermitian normal form (HNF), whose key sizes are much smaller than those
of the GGH system [8].

However, the GGH system has some advantages. For example, it seems to
be asymptotically more efficient than RSA and ElGamal encryption schemes
using modular exponentiations. Furthermore, it has a natural signature scheme.
Currently, NTRU cryptosystem is the most efficient cryptosystem among lattice
based PKC’s. But in view of security, the GGH encryption scheme has an ad-
vantage. Attackers can find out only the message by known lattice attacks, i.e.

� Supported by the Faculty Research Fund of Konkuk University in 2002 and NSRI.
�� Supported by NSRI.

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 292–308, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Lattice Based Public Key Cryptosystem 293

the secret key of the GGH cannot be obtained by solving the shortest vector
problem (or CVP) [9]. But in NTRU, the secret key of NTRU can be obtained
by finding the shortest vector of NTRU-lattice.

In this paper, we propose a public key cryptosystem applying polynomial
representations to the GGH scheme whose key size is practical. In section 2, we
shortly review the GGH system and explain the security related to the choice
of a secret parameter T . In section 3, we study various representations of poly-
nomials by n × n-matrices and their direct applications to the GGH system. In
section 4, we suggest a public key cryptosystem using the representations in sec-
tion 3. Also we study its parameter selection, security analysis and key sizes. Its
key sizes are much smaller than HNF expression and comparable with NTRU.
In Appendix A, we introduce a scheme whose key size is smaller than that of
the scheme proposed in section 4.

2 Description of the GGH System

2.1 The GGH System

In this section, we describe the GGH cryptosystem briefly. First, recall the defi-
nitions related to lattice:

Definition 1. Let B be a real non-singular n × n-matrix. The orthogonality
defect of B is defined as

orth-defect(B) :=
∏

i ||bi||
|det(B)| ,

where ||bi|| is the Euclidean norm of the i-th column in B.

Then orth-defect(B) = 1 if and only if B is an orthogonal matrix.

Definition 2. Let B be a real non-singular n×n-matrix. The dual orthogonality
defect of B is defined as

orth-defect∗(B) :=
∏

i ||b∗i ||
|det(B−1)| = |det(B)|

∏
i

||b∗i ||,

where b∗i is the i-th row in B−1.

The GGH uses the closest vector problem (CVP). It is well known that CVP
is an NP-hard problem. The GGH system is as follows:

Private key The private key is an n×n-matrix R with a low dual-orthogonality-
defect. It can be generated by R′ + kI, where R′ = (R′

ij) satisfies that |R′
ij | ≤ l

and k ≈ √
nl for some constant l.

Public key The public key is an n×n-matrix B such that B generates the same
lattice as R with a high dual-orthogonality-defect. Then B = RT−1 for some
T ∈ GL(n, Z).

294 Seong-Hun Paeng et al.

Encryption The message v is an element of Zn. The ciphertext is obtained as
follows:

c = Bv + e

for an error vector e = (δ1σ, · · · , δnσ), where δi = −1 or 1 and σ is a small
constant, e.g. 4.

Decryption The deciphertext is obtained as follows:

v′ = T 	R−1c
,

where 	v
 denotes the vector in Zn which is obtained by rounding each entry
in v to the nearest integer.

Since T−1 is an integer matrix, we have

T 	R−1c
 = T 	R−1(RT−1v + e)

= T 	T−1v +R−1e

= v + T 	R−1e
.

(2.1)

If 	R−1e
 = 0, then decryption works. We denote the maximum of L∞-norm
of the rows in R−1 by γ/

√
n. If σ = [(γ

√
8 ln(2n/ε))−1] for some small real

number ε > 0, then the probability of decryption error is bounded by ε, where
[a] = max{ x | x is an integer, x ≤ a}.

2.2 Why Is |det(T)| = 1 Needed?

Let LR and LB be the lattices generated by columns of R and B = RT−1,
respectively. In the GGH, LR and LB are the same lattices so that T is uni-
modular. Even if LB is a sublattice of LR (i.e. T−1 is an integer matrix and
|det(T−1)| ≥ 1), the decryption works. But in this case, its security can be
weakened. In this section, we discuss the reason why we should use R and B
such that LR = LB in view of security.

Assume that LB is a sublattice of LR, i.e. |det(T)| < 1. For the embedding
attack ([4], [9]), LB is embedded in L̄B as (4.7). (see Section 4.) Note that
det(L̄B) = det(LB) = det(R)det(T−1). Then CVP for LB is changed to the
shortest vector problem (SVP) for L̄B [4],[9].

Recall the definition of the gap of the lattice.

Definition 3. The gap of a lattice L, GL is the ratio between the second suc-
cessive minimum (the smallest real number r such that there are two linearly
independent lattice points of length at most r) and the length of a shortest non
zero vector in L.

The larger the lattice gap is, the easier it becomes to find the shortest vector [9].
For L̄B, (e, 1) will be the shortest vector with high probability and the second
successive minima will be similar to the norm of the column vector of R if
|det(T−1)| = 1. Hence, in the case of the GGH, the gap of L̄B could be estimated.

A Lattice Based Public Key Cryptosystem 295

In the case that |det(T−1)| > 1, since LB is a sublattice of LR, such an
estimate is invalid. Instead, we can consider the security analysis used in NTRU.
Gaussian heuristics says that the expected size of the smallest vector in a random
lattice of dimension n+ 1 lies between

s1 = det(L̄B)1/n+1

√
n+ 1
2πe

= det(T−1)1/n+1det(LR)1/n+1

√
n+ 1
2πe

and

s2 = det(L̄B)1/n+1

√
n + 1
πe

= det(T−1)1/n+1det(LR)1/n+1

√
n+ 1
πe

.

Let λ1(L̄B) be the length of the shortest vector in L̄B. Since the second successive
minima is expected to be larger than s1, if we can find a vector b1 such that
||b1|| ≤ s1 = s1

λ1(L̄B)
λ1(L̄B), it will be the shortest vector. Hence the larger

s1
λ1(L̄B)

is, the easier it is to find the shortest vector.

By LLL-algorithm, we can find a vector b1 such that ||b1|| ≤ 2n/2λ1(L̄B).
BKZ algorithm with block size β finds a vector of length at most
O(βn+1/βλ1(L̄B)) [10]. Hence the larger β is, the higher the probability to find
the shortest vector is. On the other hand, the run time of BKZ algorithm is
exponential in the block size.

The authors of NTRU guessed the following conjecture based on experi-
ments [5]:

Conjecture 1. For a given n-dimensional lattice L, let s1 be det(L)1/n
√

n
2πe . The

required time to find the shortest vector is exp(O(λ1(L)
s1

n)).

Based on this conjecture, the larger |det(T−1)| is, the easier it is to find the
shortest vector in the embedded lattice L̄B. Hence it is an essential condition to
use T−1 such that |det(T−1)| is small (especially 1). Assume that n = 500 and
let t be the run time to find the shortest vector for the case that |det(T−1)| = 1.
If we choose T−1 such that det(T−1) ≈ 1.1500 = 5× 1020, then the run time to
find the shortest vector will be t0.91. But if we choose T−1 randomly in M(n, Z),
the probability to choose T−1 such that |det(T−1)| ≤ 5× 1020 is almost 0.

3 Lattice Generated by Representations of Polynomial
Rings

3.1 Representation of a Polynomial Ring

We introduce a representation of a polynomial ring as follows: We iden-
tify cn−1x

n−1 + · · · + c0 ∈ Z[x]/〈r(x)〉 with a vector (c0, · · · cn−1) ∈ Zn, where
r(x) is a polynomial of degree n. Then we have the following representation of
Z[x]/〈r(x)〉 into the set of n × n matrices with integer entries:

Φ : Z[x]/〈r(x)〉 → M(n, Z)
h �→ Φ(h), Φ(h)(f) = h(x)f(x).

(3.2)

296 Seong-Hun Paeng et al.

(c0, · · · , cn−1) ∈ Zn Φ(h)−−−−→ Φ(h)(f) = (d0, · · · , dn−1) ∈ Zn

� �
f(x) =

∑n−1
i=0 cix

i ∈ Z[x]/〈r(x)〉 −−−−→ h(x)f(x) =
∑n−1

i=0 dix
i ∈ Z[x]/〈r(x)〉

Let {1, x, x2, · · · , xn−1} be a basis of Zn = Z[x]/〈r(x)〉. Depending on the
choice of r(x), we can find various representations.

Example 1. Let h(x) be hn−1x
n−1 + · · ·+ h0.

(1) If r(x) = xn − 1, then we have a circulant matrix

Φ(h) =




h0 hn−1 · · · h2 h1

h1 h0 · · · h3 h2

...
...

. . .
...

...
hn−2 hn−3 · · · h0 hn−1

hn−1 hn−2 · · · h1 h0




. (3.3)

(2) If r(x) = xn − x − 1, then we have

Φ(h) =




h0 hn−1 · · · h2 h1

h1 h0 + hn−1 · · · h3 + h2 h2 + h1

...
...

. . .
...

...
hn−2 hn−3 · · · h0 + hn−1 hn−1 + hn−2

hn−1 hn−2 · · · h1 h0 + hn−1




. (3.4)

3.2 Direct Applications of Polynomial Representations

From representations of polynomials, we can obtain various lattices as we see
in the above example. We can apply these representations to the GGH scheme
directly as follows: Let r(x) be xn − 1. Then we obtain a circulant matrix as
Example 1 (1). If f(x) = an−1x

n−1 + · · ·+ a0 ∈ Z[x]/〈r(x)〉 satisfies that |a0| ≈√
nl and other coefficients are contained in [−l, l], then the dual-orthogonal-

defect of R = Φ(f) would be low. In order to apply R = Φ(f) to the GGH
system, it is necessary to find g such that T−1 = Φ(g) and |det(T−1)| is small
(especially 1). But it is difficult to find a sufficiently large class of g such that
|det(T−1)| = 1 (i.e. Φ(g) is invertible in M(n, Z)).

4 Cryptosystem : Scheme I

In this section, we propose cryptosystems using a representation of polynomials.

A Lattice Based Public Key Cryptosystem 297

4.1 Key Generation

We will take the private and public key in polynomial rings. Let n be a prime
number and p be a positive integer. Experimentally, we can verify that sufficiently
many elements of Zp[x]/〈xn − 1〉 have their inverses. Intuitively, if p is a prime
number, then |Z∗

p| = φ(p) = p − 1, so almost every element of Zp[x]/〈xn − 1〉
has its inverse, where φ is Euler phi function. Even if p is not a prime number,
Zp has sufficiently many invertible elements, so sufficiently many elements of
Zp[x]/〈xn − 1〉 have their inverses.

First, we generate 4 polynomials

f1, f2, h1, h2 ∈ Z[x]/〈xn − 1〉

for the private key, which have the following properties:

– f1(x) = αn−1x
n−1 + · · · + α0 and f2(x) = βn−1x

n−1 + · · · + β0, where
|αi0 |, |βj0 | ≈

√
2nl for some i0, j0 and the other coefficients are contained in

[−l, l] (l will be set to be 1).
– The coefficients of h1 and h2 are contained in [−l, l].

We make the private matrix R as follows:

R =
(

Φ(f1) Φ(h1)
Φ(h2) Φ(f2)

)
.

Since the diagonal entries of Φ(f1), Φ(f2) are about
√
2nl and other entries are

contained in [−l, l], the dual-orthogonality-defect of R would be low by the same
reason as the GGH.

In order to generate the public key, we choose g ∈ Z[x]/〈xn − 1〉 such that
the coefficients of g are contained in (−p/2, p/2]. Then g can be considered as an
element of a ring F = Zp[x]/〈xn − 1〉. We take g which is invertible in F . Then
there exist gp and Q in Z[x]/〈xn − 1〉 such that ggp − 1 = pQ ∈ Z[x]/〈xn − 1〉.
We generate 4-polynomials P1, P2, P3, P4 ∈ Z[x]/〈xn − 1〉 as follows:

P1 = f1g + h1Q,

P2 = pf1 + h1gp,

P3 = h2g + f2Q,

P4 = ph2 + f2gp,

(4.5)

which are expressed as

B =
(

Φ(P1) Φ(P2)
Φ(P3) Φ(P4)

)
.

Then we have the following private key and public key:

– Private key : f1, f2, h1, h2 (i.e. R)
– Public key : P1, P2, P3, P4 (i.e. B)

298 Seong-Hun Paeng et al.

4.2 Encryption and Decryption

Encryption A message is M = (m1,m2) ∈ (Z[x]/〈xn−1〉)2. Then the ciphertext
is

c =
(

c1

c2

)
= B

(
m1

m2

)
+

(
e1

e2

)
=

(
P1m1 + P2m2 + e1

P3m1 + P4m2 + e2

)
∈ (Q[x]/〈xn − 1〉)2

for an error vector e = (e1, e2), where ei ∈ {−σ, σ}n (σ will be set to be 1/2).

Decryption Let T be a matrix defined as follows:

T =
(

Φ(g) pI
Φ(Q) Φ(gp)

)−1

.

Then we decrypt as follows:

M = (m1,m2) = T 	R−1c
.

Why decryption works? As we see in the above, 2n × 2n-matrix R has also a
low-dual-orthogonality defect. Furthermore, we have the following lemma:

Lemma 1. det(T) = 1.

Proof. Since (
Φ(g) pI
Φ(Q) Φ(gp)

) (
Φ(gp) 0
0 I

) (
I 0

−Φ(Q) I

)
=

(
I pI
0 Φ(gp)

)
,

we obtain that
det(T−1)det(Φ(gp)) = det(Φ(gp)),

which implies that det(T−1) = 1. ��
Also we can easily verify that

B =
(

Φ(f1g + h1Q) Φ(pf1 + h1gp)
Φ(h2g + f2Q) Φ(ph2 + f2gp)

)
= RT−1.

The decryption works by the same reason as the GGH scheme.

4.3 Security

Algebraic View In the GGH, we can have the equation B = RT−1, where R
and T are unknown. Then we have n2 linear equations with 2n2 unknown vari-
ables. (In fact, we have an additional non linear equation |det(T)| = 1.)

Assume that p is not a secret parameter. ¿From the equation (4.5), we have
4n equations with 5n unknown variables. For any subsets of equations of (4.5),
the number of unknown variables ≥ the number of equations + n. Hence if n is
sufficiently large, we cannot obtain secret keys by solving equations algebraically.

Also note for each equation in (4.5), the lattice attack in NTRU is not ap-
plicable.

A Lattice Based Public Key Cryptosystem 299

Gap of an Embedded Lattice and Selections of σ and l Nguyen attacked
the GGH by the embedding attack [9]. To our knowledge, the embedding attack
seems to be the most efficient attack to the GGH. So we select the parameter σ
and l under the consideration of the embedding attack.

By the attack to the GGH system used in [9], the security of the system is
not so closely related to the size of σ. Precisely, the linear equation c = Bm+ e
can be reduced to

c̄ =
c − Bm2σ

2σ
= Bm′ +

e

2σ
, (4.6)

where m2σ is the solution of

c + (σ, · · · , σ) = Bm (mod 2σ).

So the error vector ē = e/2σ is an element of {±1/2}n. Hence the choice of
a large σ is not so essential condition for the security of the GGH scheme if
σ ≥ 1/2. Hence we take σ to be 1/2.

The embedding technique builds the lattice L̄B such that

L̄B =
(
b1 b2 · · · bn c
0 0 · · · 0 1

)
, (4.7)

where bi are the column vector of B and c is the ciphertext. If v is the closest
vector to c, then one can hope that c−v is the shortest vector in L̄B. Recall that
the gap of lattice (Definition 4). By experiments, the smaller the lattice gap is,
the larger block size for BKZ algorithm we need in finding the shortest vector
(Table 7). For a lattice whose gap size is about 10, Nguyen found the shortest
vector by BKZ algorithm with block size 20 in 300-dimensional lattice reduced
by (4.6) [9]. In L̄B, the second successive minimum is smaller than the minimal
norm of column vectors of R, which is smaller than 2

√
nl. If σ = 1/2, then we

have

GL̄B
≤ ||2√nl||

||ē|| ≤ 2.83l.

So the smaller l is, the harder it is to find the shortest vector in L̄B. Hence, we
take l to be 1. Experimentally, if l = 1, then the probability of decryption error
is sufficiently small if n ≥ 30 and GL̄B

≤ 2.4 which is much smaller than the gap
of the reduced lattice of the GGH system. Since the gap of our lattice is smaller
than 2.4, BKZ algorithm with block size 20 cannot find the shortest vector in
158 = 79× 2-dimensional lattice in many cases (Table 5,Table 7). Note that the
run time of BKZ algorithm is exponential in the block size.

Assuming that k ≈ O(n/GL̄)-block size is needed for BKZ algorithm in
finding the shortest vector (Table 7), we have the following natural conjecture:

Conjecture 2. The run time to solve the shortest vector in L̄ by a lattice reduc-
tion algorithm is about exp(O(n/GL̄)).

Also note that the reduction of our lattice is not easier than
non reduced GGH lattice as we see experimental results for low di-
mensions (Table 6). (We used the implementation of the GGH in
http://theory.lcs.mit.edu/~cis/lattice/lattice.html.)

300 Seong-Hun Paeng et al.

Selection of p In order to estimate the public key size, the bit size of p should
be determined. If p ≥ 280, then it can be regarded as a private parameter. But
if p takes 10 bits, then p cannot be considered as a private parameter. If p is
larger than 280 and it is kept secret, then we have the following advantages in
the security. First, even if an attacker obtains g, he cannot obtain gp and Q.
Second, the reduction time for 80-bit p is longer than that for 10-bit p. The run
time of lattice reduction algorithm for 10-bit p is shorter than 1/6 of that for
80-bit p (Table 5). It is a natural result since the run time of BKZ algorithm is
proportional to logB where B is the maximal norm of input basis [10].

However, the bit size of p does not seem to be a critical point for the security.
Instead, if we use small p, then the efficiency increase significantly. If we use
a 10-bit p, then the key size is comparable to NTRU and its efficiency can be
significantly increased.

By our limited and non-optimized experiments, the run time to find the
shortest vector in L̄B with 10-bit number p is longer than e0.1n-seconds with
Pentium III 866 MHz. (see Table 5.) Based on these experiments, we estimate
the security for 10-bit number p as Table 1.

Remark 1. If we use a 10-bit integer p, then p cannot be considered as a secret
key. Even if p is not a secret key, it would be better to keep p secret for increasing
the security.

Key Sizes Let p be about 10-bit number. The coefficients of Pi will take about
18 bits for 514-dimensional lattice (n = 257). Then public key takes 2.3 KBytes.

Let p be about an 80-bit number. The coefficients of Pi will take 88 bits for
514-dimensional lattice (n = 257), the public key takes 11.3 KBytes, which
is much smaller than the key sizes of both 200-dimensional GGH and 200-
dimensional GGH using HNF expression [8].

4.4 Other Representations

Let r(x) be xn − x − 1. Then r(x) is irreducible polynomial in Zp[x]/〈r(x)〉.
Hence every non zero element has its inverse [7]. Let f1, f2, h1, h2, g ∈ Z[x]/〈xn−
x − 1〉 be defined by the same method except that |α0|, |β0| ≈

√
8n instead of

|αi0 |, |βj0 | ≈
√
2n for some i0, j0. Then Φ(fi) has a low dual-orthogonality-defect.

Table 1. Expected run time to find the shortest vector for Scheme I

n expected run time

211 1.46× 109-seconds≈ 46-years
257 1.45 × 1011-seconds≈ 4.6× 103-years
373 1.58 × 1016-seconds≈ 5× 108-years
503 5.18 × 1021-seconds≈ 1.6× 1014-years

A Lattice Based Public Key Cryptosystem 301

Table 2. Comparison of key sizes (KB) of Scheme I with the GGH

rank of B 10-bit p 80-bit p GGH GGH(HNF)

200 0.85 4.4 330 32
300 1.4 6.6 990 75
400 1.8 8.8 2370 140
500 2.3 11
750 3.6 16.7
1000 4.8 22.3

The gap of the embedded lattice is smaller than 6. Our experiments say that
the gap is about 4, which is larger than the gap for r(x) = xn − 1. The larger
the gap size is, the larger the dimension we need for the security is. As we see
in Table 8, if we use xn − x − 1 as r(x), the shortest vector for n = 79 is found
by BKZ algorithm with block size 10. When we use xn − 1 as r(x), we cannot
find the shortest vector for n = 79 with block size 20. For the similar complexity
of lattice generated by x211 − 1, we need n ≈ 400 based on Conjecture 2, the
public key size is about 18KBytes, which is also much smaller than the key sizes
of both 200-dimensional GGH and 200-dimensional GGH using HNF expression
but it is two times larger than the scheme with r(x) = x211 − 1.

When we use this representation, we have the following advantages: First,
Φ(fi) is more complicated. Second, if p is a prime number, then every non zero g
is invertible in Zp[x]/〈r(x)〉. But since it seems that there are no special lattice
reduction algorithm for r(x) = xn − 1, the scheme with r(x) = xn − 1 is more
efficient than that with r(x) = xn − x − 1.

5 Conclusion

We proposed a lattice based public key cryptosystem using polynomial repre-
sentations. The proposed cryptosystem is an improvement of the GGH system.
Our scheme has the advantages of the GGH system written in the introduction.
Furthermore, our scheme is practical in key sizes compared with the GGH.

It has not been proved that the security of our scheme is equivalent to that of
the GGH scheme since our schemes use specific lattices generated by polynomial
representations. Although the further research on the security of the proposed
schemes is required, any serious weakness has not been found yet.

As we see in Section 3, 4 and Appendix A, we can make various lattices with
representations of polynomials. By studying various representations and size of
coefficients of polynomials, the key size might be decreased and the efficiency
could be increased. Furthermore, the security of the cryptosystem is closely re-
lated to the choice of representations. (See Section 4.4.)

302 Seong-Hun Paeng et al.

References

[1] D. Coppersmith, A. Shamir Lattice Attacks on NTRU, Advances in Cryptology-
Eurocrypt ’97, LNCS 1233 (1997), 52–61

[2] E. Fujisaki, T. Okamoto Secure Integration of Asymmetric and Symmetric En-
cryption Schemes, Advances in Cryptology-Crypto ’99, LNCS 1666 (1999), 537–
554 306

[3] C. Gentry Key Recovery and Message Attacks on NTRU-Composite, Advances
in Cryptology-Eurocrypt ’01, LNCS 2045 (2001), 182–194

[4] O. Goldreich, S. Goldwasser, S. Halevi Public Key Cryptosystems from Lattice
Reduction Problems, Advances in Cryptology-Crypto ’97, LNCS 1294 (1997),
112–131 292, 294

[5] J. Hoffstein, J. Pipher , J. Silverman NTRU : a Ring Based Public Key Cryp-
tosystem, ANTS III, LNCS 1423 (1998), 267–288 295

[6] E. Jaumels, A. Joux A Chosen-Ciphertext Attack against NTRU, Advances in
Cryptology-Crypto 2000, LNCS 1880 (2000), 20–35

[7] R. Lidl, H. Niederreiter Introduction to Finite Fields and Their Applications,
Cambridge University Press, (1986) 300

[8] D. Micciancio Improving Lattice Based Cryptosystems Using the Hermite Nor-
mal Form, CaLC 2001, LNCS 2146 (2001), 126–145 292, 300, 305

[9] P. Nguyen Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from
Crypto ’97, Advances in Cryptology-Crypto ’99, LNCS 1666 (1999), 288–304
292, 293, 294, 299

[10] C. P. Schnorr A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms, Theoretical Computer Science 53 (1987), 201–224 295, 300

[11] L.C. Washington Introduction to Cyclotomic Fields, Springer-Verlag, GTM 83
(1996)

Appendix A : Scheme II

In this section, we introduce a scheme whose key size is smaller than that of
Scheme I.

Key Generation Let n be a prime number and p be a positive integer as
Scheme I.

Private key First, we generate 9 polynomials

fi, hk ∈ Z[x]/〈xn − 1〉 i = 1, 2, 3, k = 1, 2, · · · 6

for the private key such that

– f1 = αn−1x
n−1 + · · ·+ α0, f2 = βn−1x

n−1 + · · ·+ β0 and f3 = γn−1x
n−1 +

· · · + γ0 satisfy that αi0 = βj0 = γk0 ≈ √
3n for some i0, j0, k0 and other

coefficients are contained in {−1, 0, 1}.
– All coefficients of hi’s are contained in {−1, 0, 1}. Furthermore, f2 + h4 =

f3 + h6 = q ≈ √
3n for a positive integer q and h1 + h2 = 0.

A Lattice Based Public Key Cryptosystem 303

The secret data are {f1, f2, f3, h1, h3, h5}. We make the private matrix R as
follows:

R =


Φ(f1) Φ(h1) Φ(h2)

Φ(h3) Φ(f2) Φ(h4)
Φ(h5) Φ(h6) Φ(f3)


 .

In order to generate the public key, we choose g ∈ Z[x]/〈xn − 1〉 such that
the coefficients of g are contained in (−p/2, p/2]. Then g can be considered as an
element of a ring F = Zp[x]/〈xn − 1〉. We take g which is invertible in F . Then
there exist gp and Q in Z[x]/〈xn − 1〉 such that ggp − 1 = pQ ∈ Z[x]/〈xn − 1〉.
We obtain that

P13 = h1 + h2 = 0
P23 = f2 + h4 = q

P33 = f3 + h6 = q

P31 = h5g − f3Q(mod q)
P32 = ph5 + h6gp(mod q).

(5.8)

Every coefficient of P31 and P32 is contained in (−q/2, q/2]. We define T1, T2 as
follows:

T1 = q−1(P31 − h5g + f3Q)

T2 = q−1(P32 − ph5 − h6gp).
(5.9)

Then we obtain

P11 = f1g − h2Q + T1P13 = f1g − h2Q

P12 = pf1 + h1gp + T2P13 = pf1 + h1gp

P21 = h3g − h4Q+ T1P23 = h3g − h4Q+ qT1

P22 = ph3 + f2gp + T2P23 = ph3 + f2gp + qT2

(5.10)

Then we have the public matrix B as follows:

B =


Φ(P11) Φ(P12) Φ(P13)

Φ(P21) Φ(P22) Φ(P23)
Φ(P31) Φ(P32) Φ(P33)


 =


Φ(P11) Φ(P12) 0

Φ(P21) Φ(P22) q
Φ(P31) Φ(P32) q


 .

Consequently, we have the following private key and public key:

– Private key : f1, f2, f3, h1, h3, h5 (i.e. R)
– Public key : P11, P12, P21, P22, P31, P32 (i.e. B)

Encryption and Decryption

Encryption A message is M = (m1,m2,m3) ∈ (Z[x]/〈xn − 1〉)3. The ciphertext
is

c =


c1

c2

c3


 =


P11m1 + P12m2 + P13m3 + e1

P21m1 + P22m2 + P23m3 + e2

P31m1 + P32m2 + P33m3 + e3


 = BM + e. (5.11)

for an error vector e = (e1, e2, e3), where ei ∈ {−1/2, 1/2}n for i = 1, 2, 3.

304 Seong-Hun Paeng et al.

Decryption The deciphertext is

M = T 	R−1c

for

T =





 Φ(g) pI 0

0 Φ(gp) I
−Φ(Q) 0 I





 I 0 0

0 I 0
T1 T2 I







−1

. (5.12)

We can easily check that B = RT−1. By the same reason as the GGH and
Scheme I, the decryption works.

We can prove that |det(T)| = 1.

Lemma 2. |det(T)| = 1.

Proof. From the equation

 Φ(gp) −pI pI
−Φ(Q) Φ(g) −Φ(g)
Φ(gpQ) −Φ(pQ) Φ(ggp)





 Φ(g) pI 0

0 Φ(gp) I
−Φ(Q) 0 I


 = I,

we obtain that T−1 is invertible, so |det(T)| = 1. ��
Remark 2. In (5.12), if g1g2g3−1 = pQ generally, we obtain an invertible matrix

T−1 =


 Φ(g1) pI 0

0 Φ(g2) I
−Φ(Q) 0 Φ(g3)


 .

Note that 
Φ(g2g3) −pΦ(g3) pI

−Φ(Q) Φ(g1g3) −Φ(g1)
Φ(g2Q) −Φ(pQ) Φ(g1g2)





 Φ(g1) pI 0

0 Φ(g2) I
−Φ(Q) 0 Φ(g3)


 = I.

In order to reduce the public key size, we replace g3 by 1 and make modular
reduction.

Security and Key Size In algebraic view, we can use the similar arguments
on the security as Scheme I.

By our experiments, if we use an 80-bit number as p, the run time to find the
shortest vector in L̄B in Scheme II is about half of the run time for Scheme I.
We guess that such results are obtained since the entries of B are smaller than
that of Scheme I. If p is a 10-bit number, then the run time is shorter than 1/7
similarly as Scheme I. Our limited experiments say that the run time of BKZ
algorithm for the embedded lattice L̄ is longer than exp(0.14n)-seconds with
Pentium III 866 MHz.

Based on our experiments (Table 5) , we obtain the security for 10-bit num-
ber p as Table 3.

A Lattice Based Public Key Cryptosystem 305

Table 3. Expected run time to find the shortest vector for Scheme II

n expected run time

137 2.1 × 108-seconds≈ 6.8-years
167 1.4× 1010-seconds≈ 451-years
251 1.8× 1015-seconds≈ 5.8× 107-years
331 1.3 × 1020 seconds≈ 4.2 × 1012 years

Table 4. Comparison of key sizes (KB) of Scheme II

rank of B 10-bit p 80-bit p Scheme I with 10-bit p

400 1.4 6.1 1.8
500 1.7 7.6 2.3
750 2.8 11.6 3.6
1000 3.8 15.4 4.8

By modular operations, coefficients of P13, P23, P31, P32, P33 are smaller
than q, which are relatively small numbers. If n = 167, the dimension of the
lattice is 501, and the public key size is about 1.7 KBytes for 10-bit p and about
7.6KBytes for 80-bit p.

Remark 3. (1) Our lattice reduction programs used for experiments in Appendix
D are not optimized. If the programs are optimized, then the expected run time
to solve SVP in Table 1 and Table 3 will be decreased.
(2) Even if the key size of Scheme II is slightly smaller than that of Scheme I,
Scheme I seems to be more secure than Scheme II when we use 10-bit p.

Appendix B : IND-CCA2

The GGH system encrypts as follows:

c = BM + e,

where M is a message and e is an error vector. But this encryption does not
satisfy the indistinguishability and is insecure against adaptive chosen ciphertext
attack.

Indistinguishability If one encrypts one of two messages M1 and M2 and
obtain a ciphertext c, then an adversary can distinguish a plaintext as follows:
if ||BMi − c|| < ||BMj − c||, then Mi is a plaintext.

In [8], the ciphertext for a message M is as follows:

c = Bφ +M,

306 Seong-Hun Paeng et al.

where φ is a random vector in Zn and M ∈ {−σ, σ}n. In this case, an adversary
distinguishes which of Mi is a message by checking which of c−Mi is contained
in Im(B).

Adaptive Chosen Ciphertext Attack Given a ciphertext c of a message M ,
i.e. c = BM + e, if an adversary inputs the c+BM ′ to the decryption oracle for
some M ′, then the decryption oracle outputs M̄ . Then the adversary can find
out the original message M by calculating M = M̄ − M ′.

IND-CCA2 For the security against IND-CCA2, we can apply the Fujisaki-
Okamoto scheme.[2] We denote 2n (resp. 3n) by N for Scheme I (resp. Scheme
II). Let EK ,DK be a symmetric encryption and a decryption from Z[x]/〈xn − 1〉
to Z[x]/〈xn − 1〉 with a key K, respectively. Also M, e,B, T and R are the same
notations which appeared in 4.1 and 4.2. Let H,G be random oracles. Then
M ′ = H(e,M) and the ciphertext is obtained as follows:

c = c1||c2 = (BM ′ + e)||EG(e)(M).

For the decryption, first we obtain M̄ ′ = T 	R−1c1
 and ē = c1−BM̄ ′. Second, we
obtain a deciphertext M̄ with the symmetric key G(e). Finally, if B(H(ē, M̄))+
ē = c1, then decryption oracle outputs M̄ , otherwise the decryption fails. Then
the security against IND-CCA2 depends on one-wayness of the function f(m) =
Bm + e.

Remark 4. We can simplify the above scheme as follows:

M ′ = Eh(e)(M) and c = BM ′ + e,

for a hash function h. The decryption is as follows: Compute

M ′ = T 	R−1c
 and e = c − BM ′.

If
e /∈ {−1/2, 1/2}N,

then the decryption fails. Otherwise, the decryption oracle outputs

M = Dh(e)(M ′).

The security of this scheme has not been proved yet but this scheme prevents
message expansion in Fujisaki-Okamoto scheme, trivial distinguishability and
chosen ciphertext attack described in the above.

Appendix C : Experimental Results

We have the following data for the run time to find the shortest vector in L̄. Our
program is simply using BKZ algorithm in NTL 5.2, so it is not optimized.

A Lattice Based Public Key Cryptosystem 307

Table 5. Run time (r(x) = xn − 1, Pentium III 866)

n Scheme p’s bit size block size run time (sec) succeed

31 I 10 4 33.72 succeed
41 I 10 4 147.86 succeed
47 I 10 4 280.78 fail
47 I 10 10 280.67 succeed
59 I 10 10(prune 12) 1003.49 succeed
67 I 10 10(prune 12) 1568.89 fail
79 I 10 20(prune 12) 5602.56 fail
79 I 10 20 7691.87 fail

29 II 10 4 109.3 succeed
31 II 10 4 144.67 succeed
47 II 10 4 1098.9 succeed
47 II 10 10 1169.85 succeed
53 II 10 10(prune 12) 2222.35 fail
53 II 10 20(prune 12) 2373.22 fail
53 II 10 20 2544.43 succeed
59 II 10 25(prune 12) 4704.26 fail
59 II 10 25 4758.63 succeed

41 I 80 4 1388.57 succeed
41 I 80 10 1352.54 fail
47 I 80 4 2681.9 succeed
47 I 80 10 2747.15 succeed
47 I 80 10(prune 12) 2797.96 succeed
59 I 80 4 7421.31 fail
59 I 80 10(prune 12) 8066.63 succeed
67 I 80 10(prune 12) 15117.1 succeed
79 I 80 20(prune 12) 34736.1 succeed

29 II 80 4 952.35 succeed
31 II 80 4 1312.45 succeed
41 II 80 10 5036 succeed
47 II 80 4 10760 fail
47 II 80 10 9597.35 succeed
53 II 80 20(prune 12) 16952.8 succeed
53 II 80 10(prune 12) 17130.1 succeed

Table 6. Comparison of the key sizes for the non reduced GGH and Scheme I
with 80-bit p (Pentium III 866)

dimension block size(GGH) run time (sec) succeed block size(Scheme I) run time(sec) succeed
94 4 561.51 succeed 4 280.78 fail
118 4 1768.06 succeed 4 7421.31 fail
118 10(prune 12) 1958.26 succeed 10(prune 12) 8066.63 succeed
158 4 7553.46 succeed 10 fail
158 20(prune 12) 16164.6 succeed 20(prune 12) 34736.1 succeed

308 Seong-Hun Paeng et al.

Table 7. Run time of Scheme I(r(x) = xn − 1), SUN BLADE 1000 750MHZ
(Experimentally, for l = 1, GL̄ ≤ 2.4. For l = 3, GL̄ ≤ 6.8 and for l = 5, GL̄ ≤
12.)

n Scheme p’s bit size block size l run time (sec) suceeed

67 I 10 20 1 769 fail
79 I 10 20(prune 12) 1 2218.57 succeed

67 I 80 4 1 3172.6 fail
67 I 80 4 3 3216.02 fail
67 I 80 4 5 3257.28 succeed
67 I 80 10 1 3276.23 fail
67 I 80 10 3 3319.16 fail
67 I 80 10 5 3373.16 succeed
67 I 80 20 1 3771.76 succeed
67 I 80 20 3 3662.1 fail
67 I 80 20 5 3754.34 succeed
79 I 80 4 5 6935.06 succeed
79 I 80 10 1 7053.14 fail
79 I 80 10 3 7151.54 fail
79 I 80 10 5 7137.82 succeed
79 I 80 20 1 8672.55 fail
79 I 80 20 3 8901.04 fail
79 I 80 20 5 9598.09 fail
79 I 80 20(prune 12) 1 8278.63 fail

Table 8. Run time of Scheme I(r(x) = xn − x − 1, GL̄ ≤ 4.1, Pentium III 866)

n block size run time (sec) succeed

23 4 81.12 succeed
31 4 336.2 succeed
41 4 1337.66 succeed
47 4 2776.43 succeed
59 4 7543.8 succeed
59 10 8250.79 succeed
67 4 13632.1 succeed
67 10 13773.2 succeed
79 10 29102.3 succeed
79 10 29118.3 fail
89 10 51793.1 fail
89 20 63542.6 succeed

	A Lattice Based Public Key Cryptosystem Using Polynomial Representations
	Introduction
	Description of the GGH System
	The GGH System
	Why Is |det(T)|=1 Needed?

	Lattice Generated by Representations of Polynomial Rings
	Representation of a Polynomial Ring
	Direct Applications of Polynomial Representations

	Cryptosystem : Scheme I
	Key Generation
	Encryption and Decryption
	Security
	Other Representations

	Conclusion
	References
	Appendix A : Scheme II
	Appendix B : IND-CCA2
	Appendix C : Experimental Results

