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Abstract 

 

Usage of the lattice Boltzmann method (LBM) has been extended to analyze radiative 

transport problems in an absorbing, emitting and scattering medium. In terms of collision 

and streaming, the present approach of the LBM for radiative heat transfer is similar to 

those being used in fluid dynamics and heat transfer for the analyses of conduction and 

convection problems.  However, to mitigate the effect of the isotropy in the polar direction, 

in the present LBM approach lattices with more number of directions than those being used 

for the 2-D system have been employed. The LBM formulation has been validated by 

solving benchmark radiative equilibrium problems in 1-D and 2-D Cartesian geometry. 

Temperature and heat flux distributions have been obtained for a wide range of the 

extinction coefficients.   The LBM results have been compared against the results obtained 

from the finite volume method (FVM). A good comparison has been obtained. The 

numbers of iterations and CPU times of the LBM and the FVM have also been compared.  

The number of iterations in the LBM has been found to be much more than the FVM.  

However, computationally the LBM has been found to be much faster than the FVM. 

 

Nomenclature 

 

a  - anisotropy factor 

c  speed of light 

ie
r

 - velocity in the discrete direction i  

G  - incident radiation 

I  - intensity 

bI  - blackbody intensity, 
4

Tσ
π

 

M  - number of  discrete directions 

p  - scattering phase function 

q  - heat flux 

S  - source term 

s  - geometric distance  

T  - temperature 

t  - time 

U  - speed 

w - weight 
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,X Y

 

- x −  and y −dimensions of the 2-D rectangular enclosure  

,x y  - x − and y − coordinate directions 

Greek Symbols 

β  - extinction coefficient  

aκ  - absorption coefficient 

ε  - energy shell constant 

γ  - polar angle 

δ  - azimuthal angle  

σ  - Stefan-Boltzmann constant = 
428 .KW/m1067.5 −×  

sσ  - scattering coefficient 

τ  - relaxation time 

Φ  -  dimensionless emissive power 

Ω  - direction, ( ),γ δ  

∆Ω  - solid angle, sin d dγ γ δ  

ω  - scattering albedo s
σ
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Ψ  -  dimensionless heat flux   

 

 

Subscripts 

b  - black 

, , ,E W N S  - east, west, north, south 

i  - index for the discrete direction 

P  - cell center 

w  - wall/boundary  

x  - x-boundary 

y  - y-boundary 

Superscript 

( )eq

 
- equilibrium 
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1. Introduction 

 

Consideration of volumetric radiation is important in many high temperature thermal 

devices and processes [1, 2].  Design of boilers, furnaces, internal combustion engines and 

insulations are some of the systems which require a correct analysis of thermal radiation [1, 

2].  Analysis of phase change process of semitransparent materials such as glass and 

semiconductor materials requires knowledge of the volumetric radiation [3-6]. Correct 

estimates of volumetric radiation is also important in weather forecasting which relies on 

atmospheric radiation budget [7] and medium characterization of an optically participating 

medium like human tissue and laser surgery of a human organ [8-9]. 

 

Radiative transport through a participating medium is a volumetric phenomenon [10, 11].  

Unlike conduction and convection modes of heat transfer which depends on spatial and 

temporal dimensions, an analysis of radiation involves an additional three dimensions, viz., 

two angular dimensions (polar and azimuthal angles) and one spectral dimension.  A 

mandatory consideration of two angular dimensions in all problems except the simplest 

case of the planar geometry in which case radiation is azimuthally symmetric and thus it 

depends only on the planar angle, the problems are difficult to analyze.  In a conduction-

convection and radiation problem, it is the computation of radiative component that is the 

most time consuming.  This excessive computational time in the computation of radiative 

information is for the reason that apart from covering all the spatial grid points in the 

solution domain, intensities at every grid point need to be traced from their points of origin 

in the enclosure to the grid point under consideration.   At every grid point, intensities are 

spanned over the 4π  spherical space.  A method becomes computationally more expensive 

if for a given number of control volumes, it requires more number of discrete directions.  

 

The available numerical radiative transfer methods such as the flux method [10,11], the 

zonal method [10,11], the spherical harmonics method [10,11], the discrete ordinates 

method (DOM) [12,13], the discrete transfer method (DTM) [14-16], the collapsed 

dimension method [17] and the finite volume method (FVM) [18-20],  in some form or the 

other,  aim at minimizing the angular dependency of radiation in their formulations.  Since 

the angular dependency can not be fully eliminated, a method which is less prone to ray 

effect and is compatible to other CFD solvers such as the finite difference method  (FDM) 

and the FVM for solving the combined mode problems in simple to complex geometry are 

the most desirable ones.  Among the existing numerical radiative transfer methods, the 

FVM [18-20] is the most robust one.  This is not only for the reason that the development 
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of the FVM  is the latest in the series, but for the very reason that it adopts the same 

principles of the FVM that have been widely used in the analysis of fluid flow and heat 

transfer problems.  Further, unlike the DOM [12, 13], the FVM is fully conservative. In this, 

the ray effect is the minimal.  However, even with the FVM, radiation still remains a 

computationally expensive component.   Therefore, search for a computationally more 

efficient method still continues. 

 

The lattice Boltzmann method (LBM) [21, 22] is a relatively new computational tool which 

has found widespread applications in science and engineering. This method is viewed as a 

potential versatile CFD tool. Since in the LBM, processes are localized, it is well suited for 

a parallel architecture.  

 

In the recent past, the LBM has been applied to a large class of fluid flow and heat transfer 

problems [22].  Application of the LBM to solve energy equations, in particular by means 

of the so-called passive scalar approach [23-28], has been known for quite some time.   

This has essentially been the simplest approach in which the temperature is treated as a 

passive scalar, which is diffused and moderately advected by the flow velocity. This 

particular approach has been adopted to analyze several thermal problems [23-28] that 

involved computations of the density, velocity and temperature fields caused by convection 

and/or conduction heat transfer.  Those studies, did not consider the effect of volumetric 

radiation which is an important component in high temperature applications.     

 

Recently, Mishra and co-workers [6, 20, 29-32] have extended the application of the LBM 

to formulate and solve energy equations of heat transfer problems involving thermal 

radiation.  However, in such problems, the volumetric thermal radiation was always 

computed using the conventional numerical radiative transfer methods such as the DOM 

[12, 13], the DTM [14-16], the collapsed dimension method [17] and the FVM [18-20].  

The previous studies [6, 20, 29-32] have shown the superiority of the LBM over the FDM 

and the FVM to solve the energy equations of heat transfer problems involving thermal 

radiation.  However, in none of the previous studies, the computation of radiative 

information, which is the main time consuming component, has been computed using the 

LBM, and thus, the usage of the LBM for the analysis of radiative transport problems has 

not been investigated before. Further, in the combined mode problems studied in references 

[6, 20, 29-32], the computational grids of the conventional radiation solvers such as the 

DTM [14-16], the DOM [12, 13], the FVM [18-20], etc., have always been different from 

the lattices of the LBM.  Thus, the radiative information computed using these methods 
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required to be interpolated to the lattice nodes that required an additional computational 

step. 

 

Having seen the success in implementation of the LBM to a wide range of fluid flow and 

heat transfer problems, this work aims at investigating its usage to compute radiative 

information in a participating medium.  In the present work, the LBM formulation is 

developed for a 2-D rectangular geometry, and by stretching one of its dimensions, the 

same is tested for the 1-D planar geometry also. Heat flux and temperature distributions are 

computed for different values of the extinction coefficients, and they are compared against 

the results obtained using the FVM.  A comparison of the numbers of iterations for the 

converged solution and the CPU times of the LBM and the FVM is also presented.  

 

 

2. Formulation 

 

Let us consider a 2-D rectangular enclosure as shown in Fig. 1.  The gray and 

homogeneous participating medium is absorbing, emitting and scattering.  The south 

boundary of the enclosure is at temperature ST and it is the source of radiation in the 

medium.  The other three boundaries are cold.  All four boundaries are diffuse and gray.  

The medium temperature is unknown and the thermal equilibrium in the system is only by 

radiation.   

 

The radiative transfer equation in any direction ŝ  is given by [10, 11] 

( )
4

ˆ ,
4

s
a b

dI
s I I I I p d

ds π

σβ κ
π

′ ′= ⋅∇ = − + + Ω Ω Ω∫ (1)

where I  is the intensity, s is the geometric distance in the direction ŝ ,  aκ is the absorption 

coefficient, 
4

b
TI σ

π= is the blackbody intensity, β is the extinction coefficient, sσ is the 

scattering coefficient and  p is the scattering phase function. 

 

If scattering is assumed isotropic ( ), 1p ′Ω Ω = and a radiative equilibrium condition is 

considered in which case in a given control volume, volumetric emission 4 bIπ equals the 

volumetric absorptionG , Eq. (1) can be written as  

⎟
⎠
⎞

⎜
⎝
⎛ −=∇⋅= I

G
Is

ds

dI

π
β

4
ˆ  (2)

For the discrete direction having index i , Eq. (2) is written as  
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ˆ
4

i
i i

dI G
s I I

ds
β

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

= ⋅∇ = −  
(3a)

where iI is the intensity in the discrete direction i  and analogously for the transient 

equation [11], namely 

⎟
⎠
⎞

⎜
⎝
⎛ −=∇⋅+

∂
∂

ii
i I

G
Is

t

I

c π
β

4
ˆ

1
 (3b)

where c  is the speed of light. 

 

All radiative transfer methods, viz., the DTM, the DOM, the FVM, that use the ray tracing, 

work with a finite number of intensities.   Thus, in their formulations, assumption of  some 

kind of angular isotropy is mandatory.  In the proposed LBM, we simulate radiative energy 

in terms of particle distribution functions (PDFs) which carry radiative energy to the 

neighboring lattices only in some discrete directions.  Further, in line with the LBM used in 

the analysis of fluid flow and heat transfer problems, in analyzing a 2-D problem, a 2-D 

homogenous lattice is used.  Radiation is always a 3-D phenomenon, and in case of a 2-D 

geometry, unlike a 1-D planar medium, while using the DTM, the DOM and the FVM, 

azimuthal symmetry can not be applied.  Since for the 2-D geometry, while using the LBM, 

we wish to use the 2-D lattice which lies in the solution plane (x-y plane in Fig. 1a) of the 

2-D geometry under consideration, we have to assume an isotropy.  Further since we are 

constrained to be in the solution plane and have to cover all directions now confined to the 

solution plane, at any point, for the radiation contained in the 4π  spherical space, we 

assume isotropy in the polar direction γ  ( )0 γ π≤ ≤  (Fig. 1b) and  thus we consider angular 

dependence of intensity only in the azimuthal direction δ ( )0 2 .δ π≤ ≤  Different types of 

lattices used in the present LBM for radiation are shown in Fig. 2. 

 

For imposing the condition of isotropy in the polar direction and then in the 2-D plane, for 

streaming the PDFs only in the finite discrete directions, while computing the heat flux, we 

apply a weight to all the intensities in the discrete directions  i  which is spanned from 0 to 

2π (Fig. 2).   The same thing we do while calculating the incident radiation in which case, 

the weight is different from that for the calculation of heat flux. 

 

 As shown in Fig. 2, we use ie
r

to indicate the generic component of the lattice and i ie e= r

for its magnitude.  
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Multiplying Eq. (3b) by ie and assuming fictitiously that iec = , we obtain the following 

equation  

, 1, 2,
4

i i i
i i i i

I D I G
e I e I i M

t D t
β

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ + ⋅∇ = = − =
∂

r
K  

(4)

where the velocity ie
r

 propagates information along the lattice link i and M  is the total 

number of discrete directions in the solution plane. The assumption iec =  means that the 

fictitious speed of light is tuned, along each discrete direction, in such a way to fit the 

considered computational lattice. In this way, the real transient description given by Eq. (3b) 

is lost, but an effective numerical tool is obtained for solving steady state problems. 

 

Integrating Eq. (4) along the characteristic directions and keeping constant the right hand 

side during the discretization step (piecewise constant approximation of the integrand), the 

following equation is derived 

( ) ( ), ,
4n ni i i i i

G
I r e t t t I r t te Iβ

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

+ ∆ + ∆ = + ∆ −r r r  
(5)

In the LBM, information exchange takes place by collisions among PDFs. After collisions, 

they relax towards the equilibrium state and then carry the information to the neighboring 

lattice nodes in the directions of their propagations.  From the initial condition, evolution to 

the steady-state takes place through multiple collisions and propagations which are highly 

influenced by the relaxation time. Thus, in the LBM, the relaxation time to reach the 

equilibrium state is an important parameter, and it tells how strong the diffusion process is.  

 

In Eq. (5), the last term on the right hand side is the collision term and the coefficient βie  

can be interpreted as a proper relaxation frequency for the radiation intensity along the i-th 

direction. Hence it is possible to introduce a relaxation time iτ which is given by 

1
i

ie
τ

β
=  

(6)

It is to be noted that the extinction coefficient β is the reciprocal of the mean free path of 

radiation in the medium, and 1
β causes a similar kind of dissipative effect to radiation as 

is done by momentum diffusivity (kinematic viscosity) υ in the treatment of viscous flows 

and thermal diffusivity α in the analysis of conduction heat transfer. The key difference 

here is that iτ  is a straightforward function of the transport coefficient β , which is already 

defined in the original physical problem given by Eq. (2), and hence there is no need to 

introduce any asymptotic expansion technique (e.g. Chapman-Enskog). Moreover, even 

though different iτ  are used for different azimuthal directions, this formulation is still 
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substantially based on a single-relaxation-time approach, because the differences among iτ  

are due to differences among the magnitudes of the lattice velocities ie , which are purely 

geometrical parameters prescribed by the considered lattice. Summarizing, the relaxation 

times iτ  depend on combinations of the physical parameter β  and lattice-dependent 

geometrical parameters ie , according to Eq. (6). 

 

It is to be noted that in the LBM terminology, iI is PDF and it is the carrier of the radiative 

energy.  
4

G

π
 is the equilibrium PDF and it can be denoted as 

( )eq
I .  Thus, in the usual LBM 

formulation, Eq. (5) can be written as  

( ) ( ) ( ) ( ) ( ), , , ,
eq

i n i i n i n i n

i

t
I r e t t t I r t I r t I r t

τ
∆ ⎡ ⎤+ ∆ + ∆ = + −⎣ ⎦

r r r r r  
(7)

In Eq. (7), the equilibrium PDF
( )eq

I  is computed from the following 

( )

1

M
e q

i i g i

i

I I w
=

= ∑  
(8)

where 
giw is the weight corresponding to the discrete direction i .  It is computed from the 

following 

2

0

2

1
s in

4 2

i
i

i
i

i
g i

w d d

δ
δπ

δδ

δγ γ δ
π π

∆
+

∆
−

∆⎛ ⎞= =⎜ ⎟
⎝ ⎠ ∫ ∫  (9)

It is to be noted that the angular regions of influence of all the PDFs iI are not the same.  In 

the D2Q8 lattice in which the 2π angular space is discretized into 8 divisions (Figs. 2 and 

3a), all directions are equally spaced and hence iδ∆  is the same for all and it equals 
8

π

(Fig. 3a). In the D2Q16 lattice (Figs. 2 and 3b), while keeping the 8 directions of the D2Q8 

lattice fixed, 8 more directions are added as shown in Figs. 2 and 3b.  Similarly, when we 

move to the D2Q32 lattice, the 16 directions of the D2Q16 lattice remain intact and 16 new 

directions are considered as shown in Fig. 2.  Therefore, unlike the D2Q8 lattice, in the 

D2Q16 and the D2Q32 lattices, angular spans of different PDFs are different. For any 

lattice, the angular span for a PDF in any direction i is determined as shown in Figs. 3a and 

3b.  In Fig. 3a, angular spans have been shown for PDFs in directions 1, 5 and 4.  In Fig. 3b, 

the same have been shown for the PDFs in directions 1, 9, 5 and 10. 

 

It is to be noted that the velocities of all PDFs iI are not the same.  For the 32 directions 

shown in Fig. 2, velocities are given by 
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1,3 2,4 5,6,7,8

9,12 13,16

10,11 14,15

17,24 25,32

18,23 26,31

19,22 27,30

( 1,0) , (0, 1) , ( 1, 1)

( 2,1) , ( 2, 1)

( 1,2) , ( 1, 2)

( 3,1) , ( 3, 1)

( 3, 2) , ( 3, 2)

( 2,3) , ( 2,

e U e U e U

e U e U

e U e U

e U e U

e U e U

e U e

= ± ⋅ = ± ⋅ = ± ± ⋅

= ± ⋅ = − ⋅

= ± ⋅ = − ⋅

= ± ⋅ = − ⋅

= ± ⋅ = − ⋅

= ± ⋅ =

m

m

m

m

m

20,21 28,29

3)

( 1,3) , ( 1, 3)

U

e U e U

− ⋅

= ± ⋅ = ± − ⋅

 

(10)

where 
x

U
t

∆
=
∆

is the speed and it has been assumed that .x y∆ = ∆ It is to be noted that the 

directions 1-8 correspond to the D2Q8 lattices, 1-16 correspond to the D2Q16 lattice and 

for the D2Q32 lattices, the directions are 1-32.  It is to be further noted that in the D2Q32 

lattice, 5 different energy shells exist, and for directions 1, 5, 9, 17 and 18, the magnitudes 

of the propagation velocities are , 2, 5, 10U U U U and 13U , respectively. In general, 

this means that we can express the magnitude of the lattice velocity as Ue ii ε= , where iε  

is a constant depending on the energy shell of the considered velocity ( 13,10,5,2,1  

in the previous examples). 

 

The radiative heat fluxes along x- and y-faces of the 2-D rectangular enclosure (Fig. 1) are 

computed from the following 

1 1

,
M M

x i xi y i yi

i i

q I w q I w
= =

= =∑ ∑  (11)

where the weights xiw and 
yi

w are given by 

2
2

0

2

sin cos cos sin
2

i
i

i
i

i
xi iw d d

δδπ

δδ

γ γ δ δ π δ δ
∆

+

∆
−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

∆
∫ ∫  (12a)

2
2

0

2

sin sin sin sin
2

i
i

i
i

i
yi iw d d

δδπ

δδ

γ γ δ δ π δ δ
∆

+

∆
−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

∆
∫ ∫  (12b)

The incoming unknown PDFs are computed from the knowledge of the temperature of the 

boundary and for a black boundary, the same are given by   

4
w

i

T
I

σ
π

=  (13)

Eqs. (6) – (8) combined with Eq. (11) describe the evolution of the PDFs on the lattice.  

From the view point of the solution procedure, the algorithm can be split into two steps, 

viz., collision and streaming, and they are given by Eqs. (14a) and (14b), respectively.  
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( ) ( ) ( ) ( ) ( )* , , , ,
eq

i n i n i n i n

i

t
I r t I r t I r t I r t

τ
∆ ⎡ ⎤= + −⎣ ⎦

r r r r (14a)

( ) ( )*, ,
i n i i n

I r e t t t I r t+ ∆ + ∆ =
r r r

(14b)

 

 

3. Results and Discussion  

 

3.1 Error Analysis 

Before reporting the performance of the proposed approach in solving some test cases, a 

general error analysis for the LBM scheme is discussed. Essentially the error analysis aims 

to investigate the dependence of the numerical error of the proposed scheme with regards 

to the main discretization parameters, namely mesh size and adopted lattice.  

 

Let us combine Eq. (4) and Eq. (6), namely 

( )i
eq

i

i

ii
i IIIe
t

I
−=∇⋅+

∂
∂ )(1

τ
r

 (15)

where the bar above the radiation intensity means the ideal solution of the radiation 

problem and the equilibrium radiation intensity can be computed (ideally) as 

∑ ∫ ∫∫ ∫
=

∆
+

∆
−

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

M

i

eq
i

i
i

i
i

ddIddII
1

2

2

0

2

0 0

)( sin
4

1
sin

4

1

δ
δ

δ
δ

πππ

δγγ
π

δγγ
π

 (16)

The previous integral is still exact. Taylor expanding the generic argument ),( γδI  around 

the term )
2

,(
πδ iiI  aligned with the considered lattice yields 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−+−

∂
∂

+−
∂
∂

+= 22
)

2
()()

2
()()

2
,(),(

πγδδπγ
γ

δδ
δ

πδγδ OO
II

II i

i

i

i

ii  (17)

where )(⋅O  indicates the magnitude order of a function according to the Landau notation. 

Substituting the previous expansion into Eq. (16) yields 

γδ EOwII i
Mi

M

i

gii
eq

i +∆+=
≤≤

=
∑ ))(max(

1
1

)(  (18)

where γE  is a constant due to the fact that the polar angle is not actually discretized. The 

first term at the right hand side of the previous equation is exactly the quadrature reported 

in Eq. (8). However the error analysis applied to the equilibrium term given by Eq. (16) 

reveals that the previous quadrature is first order with regards to the subdivision iδ∆  of the 

azimuthal angle considered by the lattice and it implies a fixed error with regards to the 

polar discretization (as expected). This means that, since the proposed approach lies on the 
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computational plane, it cannot improve the numerical solution with regards to the polar 

angle dependence. The practical magnitude of the fixed term γE  must be evaluated 

according to the considered application.  

 

Proceeding in a similar way with the left hand side of Eq. (15) and taking into account Eq. 

(18) yield 

( ) γδε
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(19)

where Ue ii ε=  and 
x

U
t

∆
=
∆

 is assumed constant (due to stability constraints). The left 

hand side and the first term on the right hand side represent exactly the proposed numerical 

scheme given by Eqs. (7, 8, 9). Hence the error analysis allows one to prove that  

( ) γδε EOxOE i
Mi

itot +∆+∆+=
≤≤

))(max()1(
1

 
(20)

Few considerations immediately follow. It is evident from the previous expression that the 

dependence of the global error on the discretization parameters is not trivial. In fact, 

improving the discretization of the azimuthal angle, i.e. reducing )(max
1

i
Mi

δ∆
≤≤

, forces one to 

consider larger lattices, with larger energy shells, which usually spoil the accuracy of the 

advection step (because of larger iε ). On the other hand, accurate advection step requires a 

compact computational stencil, i.e. few energy shells, but this makes quite rough the 

discretization of the azimuthal angle and consequently the computation of the collision step 

(by the definition of local equilibrium). With other words, because of the geometrical 

construction, the following relation holds )(max/1
1

i
Mi

i δε ∆∝
≤≤

. Hence there is a trade off 

between the accuracy of the advection step and that of the collision step, which both affect 

the global error.  

 

Secondly, in order to recover the minimum error, i.e. γE , the azimuthal discretization must 

be chosen accordingly to the mesh discretization, i.e. xi ∆∝∆δ . This may be sometimes 

unpractical, because it would require increasing the number of the lattice velocities when 

refining the spatial mesh. However even though it is unpractical, it represents the right 

framework for validation purposes.  

 

Thirdly, the integration along the characteristics by keeping fixed the right hand side of Eq. 

(4), leading to Eq. (5), requires that Uxt /ββ ∆=∆  is small enough to achieve a stable 
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solution with acceptable accuracy. Hence it is possible to define a radiation Knudsen 

number as  

βxKn ∆=
(21)

In the following simulations, the spatial discretization has been chosen in such a way that 

the Knudsen number is smaller than a threshold value that ensures stability and accuracy of 

the solution, namely 05.0≤∆= βxKn . 

 

3.2 2-D Rectangular Enclosure 

In the following pages, we validate the present LBM formulation.  For the purpose of 

validation, results of the standard FVM are considered benchmark [11].  In particular, the 

FVM code of the second co-author (SCM), which has been used for various problems, was 

used in the present work for generating the FVM results.  Both the LBM and the FVM are 

iterative methods.  The LBM on one hand solves even a steady-state problem in a transient 

mode with an imposed initial condition.  The FVM proceeds to solve the same by starting 

from a guess value, and as the number of iterations proceeds, the solution approaches 

convergence. Thus, both the LBM and the FVM require a convergence criterion on one of 

the evolving parameters.   In the present work, this was set on the incident radiation, and 

when between the two successive iterations, the maximum change in incident radiation at 

any point was less than 61 10−× , the solution was assumed to have converged.   

 

First of all, a grid convergence analysis has been performed. The reference numerical 

solutions are obtained by Richardson extrapolation of FVM results. In particular, spatial 

meshes of 8080×  and 160160×  nodes are used for extrapolating the reference solution for 

the extinction coefficient 0.2=β , while meshes of 200200×  and 400400×  nodes are used 

for the extinction coefficient 0.5=β . In all cases, the following stability criterion holds

05.0≤∆= βxKn . The azimuthal angle is discretized by 32 subdivisions and the polar angle 

by 16 subdivisions. 

 

Once the reference solution is obtained, the validation analysis has been performed 

focusing on the dimensionless heat flux 
4

S

y

y
T

q

σ
=Ψ . The numerical results for LBM are 

reported in Table 1: in particular, the dimensionless total heat flux along the south wall 

(Table 1a); the mean temperature of the medium inside the enclosure (Table 1b) and the 

errors of the dimensionless heat flux with regards to discretizations and extinction 
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coefficients (Table 1c). The LBM results were obtained by spatial meshes of 4040× , 

8080× , 160160×  nodes and 100100× , 200200× , 400400×  nodes for 2=β  and 5=β  

respectively. For each case, three azimuthal discretizations were used, namely 32,16,8=M . 

It is clear from the results of Table 1, that the LBM results reached good grid convergence 

(or equivalently mesh independence).  

 

Let us introduce the following global error 

20,

20,

FVM

FVMLBM

LBME
Ψ

Ψ−Ψ
=  (22)

where 0,FVMΨ  is the reference solution for the dimensionless heat flux obtained by the 

FVM and LBMΨ  is the generic LBM solution. The numerical values for this error are 

reported in Table 1c. It is clear that there is error saturation because of the residual term γE  

(see Eq. (20)) due to the extremely poor polar discretization (all the intensities lie on the 

computational plane for
2

πγ = ). Hence the results reported in Table 1c show that improving 

further the azimuthal and the space discretization is not rewarding for the present test case 

because, beyond some point, the global error depends mainly by the assumption on the 

polar angle discretization. However extending the present approach for more complex 

discretizations of the polar angle is not difficult. It is enough to prescribe that the 

projections of the discrete velocities on the computational domain belong to the considered 

lattice. 

 

After discussing the error analysis and showing the grid convergence, more simulations 

were run for investigating the practical advantages of the proposed scheme. For these 

additional simulations, in case 0.5≤β , both the LBM and the FVM runs were taken for 

31 31×  lattice/control volumes. For a higher value of the extinction coefficient 5.0β > , in 

the LBM runs were taken for 101 101×  lattices.   

 

In Figs. 4a-4c, distributions of the dimensionless heat flux 
4

s

q

Tσ
Ψ =  along the south (hot) 

boundary have been compared between the LBM and the FVM.  In Fig. 4a, these 

comparisons are made for the extinction coefficient 1.0,3.0β = and 5.0.  Fig. 4b shows this 

comparison for 10.0β = and 15.0.  For 20.0β = and 30.0, the same are shown in Fig. 4c.   

The FVM results have been obtained for8 16× directions and the LBM results have been 
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computed for the D2Q16 lattice which uses only 16 directions.  It is seen from Figs. 4a – 4c 

that for all values of the extinction coefficientβ , results of the LBM follow the trend and 

also compare closely with those of the FVM.   

 

The comparison of the LBM and the FVM results for the centreline 0.5,
x

y
X

⎛ ⎞=⎜ ⎟
⎝ ⎠

dimensionless emissive power 

4

S

T

T

⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
has been shown in Figs. 5a -5f.    In Fig. 5a, 

results have been compared for 1.0β = and 3.0.  In Fig. 5b – 5f, the same has been done for 

5.0,β = 10.0, 15.0, 20.0 and 30.0, respectively.  It is seen from Fig. 5a that for 1.0β = , the 

emissive power distribution has a numerical oscillation.  This oscillation is present in both 

the FVM and in the LBM. However, it is more prominent in the LBM.  By increasing the 

number of control volumes, this unphysical numerical oscillation can be avoided.  For 

higher values of the extinction coefficient β , the emissive power computed using the LBM 

is found to match well with those of the FVM. 

   

Discretization error is inherent with every numerical method.  In both the LBM and the 

FVM, the angular distributions of intensity spanned over 4π spherical space are discretized 

into some finite number of directions.  In the FVM, the discrete intensities are spanned over 

the 2π spherical space, while in the LBM formulation used in the present work, as shown 

in Fig. 2, they exit in the solution plane of the 2-D enclosure and they span over the circular 

space of 4π which is the span of the azimuthal angleδ .  As mentioned previously, in the 

LBM formulation, isotropy was assumed in the polar direction. 

 

In Figs. 6a-6c, we compare the effect of lattices in the LBM and the number of directions in 

the FVM on the dimensionless heat flux Ψ distributions along the south (hot) boundary.  In 

Figs. 6a-6c, comparisons have been made for the extinction coefficient 1.0,β = 5.0 and 

10.0, respectively.    For the LBM, effects of D2Q8, D2Q16 and D2Q32 have been studied, 

while, for the FVM, effects have been studied for 2 4, 4 8× × and 8 16× azimuthal directions.  

It is obvious from these figures that both in the LBM and the FVM, results improve by 

increasing the number of directions.   

 

In the LBM formulation, from D2Q16 to D2Q32, not much improvement is observed.  In 

the FVM, this trend was observed when the number of directions was increased beyond

8 16× . 
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3.3 1-D Planar Medium 

Having validated the proposed 2-D LBM formulation, we next see how it performs for the 

case of a 1-D planar medium.  For this case, the X-dimension in the 2-D LBM code was 

stretched 10 times more than the Y-dimension, i.e, 
X

Y
was set to 10.   With this, practically 

the effects of the side walls (west and east) should have no influence on the heat flux at the 

center 0.5, 0.0
x y

X Y

⎛ ⎞= =⎜ ⎟
⎝ ⎠

of the south wall and emissive power distributions along the 

centerline   0.5,
x y

X Y

⎛ ⎞=⎜ ⎟
⎝ ⎠

.  This particular situation corresponds to the 1-D planar medium.  

To compare the LBM results for this case, the 1-D FVM code especially meant for the 1-D 

planar medium was used in which the south boundary was made hot and the north 

boundary was made cold.  In Figs. 7a and 7b, results of the LBM and the FVM are 

compared. 

 

Fig. 7a provides a comparison of the variation of the dimensionless heat flux Ψ on the hot 

(south) boundary with the extinction coefficientβ . This comparison has been made for the 

extinction coefficient values }10,9,8,7,6,5,4,3,2,1,5.0,1.0{∈β . The LBM results show a 

good comparison with the FVM results.    

 

The dimensionless emissive power Φ distributions in the medium have been compared in 

Fig. 7b for 1.0,3.0,5.0β = and 10.0.  With an increase in the value of β , results of the two 

methods are found to compare well. 

 

The LBM as such is an established method for the analysis of fluid flow and heat transfer 

problems.  However, the present work is the first work that deals with its application to 

compute radiative information, which in combined mode problems remains a 

computationally expensive task.   Methods such as the DTM, the DOM and the FVM for 

computations of radiative information are well established and they have been widely used 

in the combined mode problems.  Apart from extending the LBM formulation to a pure 

radiative transport problem, one of the main objectives of the present work has been to 

explore its computational efficiency of the LBM and compare the same with its FVM 

counterpart which is a widely used method.    Figures 8 and 9 present results on number of 

iterations and the CPU time used in the LBM.  Figures 8a and 8b show variations in the 

number of iterations for extinction coefficient β  in the range }25,20,15,10,5,1{∈β  for the 
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LBM and the FVM, respectively.  Figure 8c compares variations of the CPU time (s) with 

β  for the LBM and the FVM. For results in Figs. 8a-8c, in both the LBM and the FVM, 

51 51× control volumes/lattices were used.  In the FVM, 8 16× discrete directions were used, 

while the D2Q32 lattice was used in the LBM.  All computations were performed on two 

Xeon Quad Core Processors, 2.66 GHz, 8 GB SDRAM RDIMM. 

 

It is seen from Figs. 8a and 8b that compared to the FVM, the number of iterations for the 

converged solution in the LBM is much higher.  It is three orders of magnitude higher than 

that for the FVM.  However, as seen from Fig. 8c, the CPU time of the LBM is found much 

lower than that of the FVM.  With increase in β , the LBM is found to be computationally 

more efficient.  This implies that although the LBM takes much iteration, per iteration it 

spends much less time than that of the FVM. This is an attractive feature of the LBM for 

radiation. This computational efficiency of the LBM is attributed to the fact that even with 

the D2Q32 lattice, the LBM uses ¼ times less number of directions than that of the FVM 

which has used 8 16×  directions.    As in the combined mode problems, the computation of 

radiative information remains the most expensive aspect, with the usage of the LBM, a 

drastic saving of computational time will result. 

 

In combined mode problems like the natural convection in a cavity [32], with increase in 

Rayleigh number, the requirement of computational nodes/lattices increases drastically.  

With volumetric radiation, the computational time becomes exorbitant.  Keeping this fact 

in mind,   how the number of iterations and CPU change with increase in the number of 

lattices in the LBM, the results are presented in Figs. 9a and 9b.  These results are 

presented for extinction coefficient 1.0,5.0β = and 10.0.  The number of lattices has been 

varied from 11 11× to 401 401× .  It is seen from Fig. 9a that the number of iterations 

increases with increase in β and for a higher value of β , this increase is more.  An 

interesting feature is observed from Fig. 9b.  Even with  401 401×  lattices for 10.0β =

when the number of iterations is 289 millions, the LBM takes only about 13 minutes time 

to provide the converged solution.  Thus, like the LBM widely used in fluid flow and heat 

transfer problems, the proposed LBM in this work has a great potential for its use in the 

combined mode problems involving thermal radiation.  

 

4. Conclusions  
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The usage of the LBM was extended to solve radiative transport problems in an absorbing, 

emitting and scattering medium.  A 2-D formulation of the LBM was developed for the 

analysis of radiative transport problems. The formulation was tested for radiative 

equilibrium problems.  A benchmark radiative transport problem in a 2-D square enclosure 

was considered. To compare the results of the LBM, the problem was also solved using the 

FVM.  The FVM results were considered benchmark after applying the Richardson 

extrapolation.  Dimensionless heat flux distributions along the hot boundary and centreline 

emissive power distributions were compared for a wide range of values of the extinction 

coefficient.  By stretching x-dimension of the 2-D enclosure, a 1-D planar medium 

situation was achieved and results for this case were compared with the 1-D FVM code. 

For all the situations, the LBM results were in good agreements with the FVM results, with 

the exception of small boundary effects.  The number of iterations and the CPU times in 

the LBM and the FVM were also compared.  The LBM was found to take more iterations 

than the FVM.  However, computationally the LBM was much more efficient than the 

FVM.  By increasing the number of lattices in the LBM, the number of iterations was 

found to increase drastically, but the CPU time as still found much lower.  

 

The present work being the first on implementation of the LBM to radiative transport 

problems, a further careful look is needed to study the methodology to improve its 

accuracy and to test it for other types of problems, especially the combined mode problems 

which are computationally very expensive.  Work in this direction is underway. 
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Figure 2: Schematic of the lattices D2Q8: 1-8, D2Q16: 1-16 and D2Q32: 1-32 

directions. 

Figure 3: Schematic of the region of influence of the particle distribution functions in 
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lattice. 

Figure 4: Comparison of dimensionless heat flux Ψ distribution along the south wall 

for extinction coefficient (a) 1.0,3.0β =  and 5.0 and (b) 10.0β = and 15 and (c) 

20.0β = and 30.0. 

Figure 5: Comparison of dimensionless centreline emissive power Φ distribution for 

extinction coefficient (a) 1.0β = and 3.0, (b) 5.0,β =  (c)  10.0,β = (d)  15.0,β = ()  
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Figure 6:  Comparison of dimensionless heat flux Ψ distribution along the south wall 

for D2Q8, D2Q16 and D2Q32 lattices for extinction coefficient (a) 1.0,β = 5.0β =

and 10.0.β =  

Figure 7:  Comparison of (a) variations of dimensionless heat flux Ψ on the south 

boundary with the extinction coefficient β  and (b) distributions of dimensionless 

emissive power Φ in the medium for 1.0,3.0,5.0β = and 10.0. 

Figure 8: Change in number of iterations with a change in the extinction coefficient 

β in (a) LBM and (b) FVM and (c) comparison of CPU times in the LBM and the 

FVM. 

Figure 9: Variation of the (a) number of iterations with the number of lattices and (b) 

the CPU time with the number of lattices in the LBM for extinction coefficient 

1.0,5.0β = and 10.0. 
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(a) 

 

 

(b) 

 

(c) 

Figure 4: Comparison of dimensionless heat flux Ψ distribution along the south wall 

for extinction coefficient (a) 1.0,3.0β =  and 5.0 and (b) 10.0β = and 15 and (c) 

20.0β = and 30.  
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Figure 5: Comparison of dimensionless centreline emissive power Φ distribution for 

extinction coefficient (a) 1.0β = and 3.0, (b) 5.0,β =  (c)  10.0,β = (d)  15.0,β = (e)  

20.0β =  and (f) 30.0.β =  

Distance, y/Y

E
m

is
s
iv

e
p

o
w

e
r,
Φ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LBM

FVM

β = 1.0

β = 3.0

Distance, y/Y

E
m

is
s
iv

e
p

o
w

e
r,
Φ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LBM

FVM

β = 5.0

Distance, y/Y

E
m

is
s
iv

e
p

o
w

e
r,
Φ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LBM

FVM

β = 10.0

Distance, y/Y

E
m

is
s
iv

e
p

o
w

e
r,
Φ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LBM

FVM

β = 15.0

Distance, y/Y

E
m

is
s
iv

e
p

o
w

e
r,
Φ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LBM

FVM

β = 20.0

Distance, y/Y

E
m

is
s
iv

e
p

o
w

e
r,
Φ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LBM

FVM

β = 30.0



 28

 

(a) 

 

(b) 

 

(c) 

 

Distance, x/X

H
e

a
t

fl
u

x
,
Ψ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

LBM: D2Q32
LBM: D2Q16
LBM: D2Q8

FVM: 2 x 4
FVM: 4 x 8

FVM: 8 x 16

β = 1.0

Distance, x/X

H
e

a
t

fl
u

x
,
Ψ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

LBM: D2Q32
LBM: D2Q16

LBM: D2Q8
FVM: 2 x 4

FVM: 4 x 8
FVM: 8 x 16

β = 5.0

Distance, x/X

H
e

a
t

fl
u

x
,
Ψ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

LBM: D2Q32
LBM: D2Q16
LBM: D2Q8

FVM: 2 x 4
FVM: 4 x 8

FVM: 8 x 16

β = 10.0



 29

Figure 6:  Comparison of dimensionless heat flux Ψ distribution along the south wall 

for D2Q8, D2Q16 and D2Q32 lattices for extinction coefficient (a) 1.0,β = (b) 

5.0β = and (c) 10.0.β =  

 

 

(a) 

   

(b) 

 

Figure 7:  Comparison of (a) variations of dimensionless heat flux Ψ on the south 

boundary with the extinction coefficient β  and (b) distributions of dimensionless 

emissive power Φ in the medium for 1.0,3.0,5.0β = and 10.0. 
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(a) 

 

(b) 

 

(c) 

 

Figure 8: Change in number of iterations with a change in the extinction coefficient 

β in (a) LBM and (b) FVM and (c) comparison of CPU times in the LBM and the 

FVM.   
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(a) 

 

(b) 

Figure 9: Variation of the (a) number of iterations with the number of lattices and (b) 

the CPU time with the number of lattices in the LBM for extinction coefficient 

1.0,5.0β = and 10.0. 
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List of Tables 

 

Table 1: Comparison between LBM and FVM results for the 2-D rectangular 

enclosure: (a) dimensionless total heat flux along the south wall; (b) mean 

temperature of the medium inside the enclosure; (c) errors of the dimensionless heat 

flux as function of the discretizations and the extinction coefficients. 
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Table 1: Comparison between LBM and FVM results for the 2-D rectangular 

enclosure: (a) dimensionless total heat flux along the south wall; (b) mean 

temperature of the medium inside the enclosure; (c) errors of the dimensionless heat 

flux with regards to discretizations and extinction coefficients. 

 

(a) 

 

(b) 

 

(c) 

 

 
β = 2.0 β = 5.0 

Nx = 40 Nx = 80 Nx = 160 Nx = 100 Nx = 200 Nx = 400 

M = 8 0.67840 0.67316 0.67050 0.49908 0.49733 0.49645 

M = 16 0.71062 0.70430 0.70117 0.51616 0.51431 0.51338 

M = 32 0.72273 0.71421 0.71020 0.52166 0.51925 0.51808 

 
β = 2.0 β = 5.0 

Nx = 40 Nx = 80 Nx = 160 Nx = 100 Nx = 200 Nx = 400 

M = 8 0.63122 0.65742 0.67072 0.64538 0.65593 0.66123 

M = 16 0.62911 0.65528 0.66855 0.64364 0.65427 0.65962 

M = 32 0.62785 0.65440 0.66787 0.64298 0.65387 0.65935 

 
β = 2.0 β = 5.0 

Nx = 40 Nx = 80 Nx = 160 Nx = 100 Nx = 200 Nx = 400 

M = 8 0.14875 0.13922 0.13618 0.13572 0.12638 0.12264 

M = 16 0.13591 0.11843 0.11129 0.14796 0.13389 0.12757 

M = 32 0.14174 0.11801 0.10759 0.15775 0.13937 0.13092 




