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Abstract: Paracomplete logic is intended to cope with the problem of vagueness, or uncertain
and incomplete data. It deals with the situation when some propositions and their negations
are allowed to be simultaneously false, which is obviously impossible in the classical and many
non–classical propositional logics. In paracomplete logic, such classical laws as tertium non
datur or consequentia mirabilis are not generally accepted. This implies that the logic is
defined negatively.

In this paper, we introduce a family of the paracomplete calculi that will be defined in a
Hilbert-style formalization. We propose the so-called bi–valuational semantics and prove
the key metatheorems for the calculi. We also discuss a generalization of the paracomplete
calculus QD1 to the hierarchy of related calculi.
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1. Introduction

Let var denote a (non-empty) denumerable set of all propositional variables.
The set of formulas F is inductively defined as follows:

ϕ ::= p | ¬α | α ∨ α | α ∧ α | α→ α,

where p ∈ var, α ∈ F and the symbols ¬, ∨, ∧,→ denote negation, disjunction,
conjunction and implication, respectively. The connective of equivalence, α↔
β, is treated as an abbreviation for (α→ β) ∧ (β → α).
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Paracomplete logic can be defined in various ways, for instance,

Definition 1. A logic 〈L,`〉 is said to be paracomplete if, and only if
(1) {β → α,¬β → α} 0 α, for some α, β ∈ F ; or
(2) ∅ 0 α ∨ ¬α, for some α ∈ F ; or
(3) ∅ 0 (¬α→ α)→ α, for some α ∈ F ; or
(4) ∅ 0 (α→ ¬α)→ ¬α, for some α ∈ F .1

It is noticeable that paracomplete logic is specified negatively: any logic is
paracomplete if it meets at least one of the criteria listed above. The defini-
tions may seem too general at first sight; in particular, they may suggest some
logics which have nothing in common with paracompleteness. Suffice it to note
that  Lukasiewicz’s three–valued logic meets the four requirements. It is not
by accident, however, that the example has been cited here. From philosoph-
ical perspective, paracomplete calculi are expected to cope with the problem
of vagueness,2 or uncertain and incomplete information.3 Seen from this view-
point,  Lukasiewicz’s logic is a good example of how to interpret uncertainty in
relation to the issue of determinism or fatalism, whereas paracomplete calculi –
with regard to the dynamic character of information or knowledge. Metaphor-
ically speaking, in paracomplete logic, the dilemma of ‘Tomorrow’s sea fight’
has been reduced to ‘Today’s communication’.

The paracomplete calculi are expected to deal with the situation when some
propositions and their negations are allowed to be simultaneously false, which
is impossible in the classical and many non–classical propositional logics. The
calculi are also viewed as being dual to their paraconsistent counterparts, in
a sense that “(...) a logic is paraconsistent if it can be the underlying logic of
theories containing contradictory theorems which are both true. (...) a logical
system is paracomplete if it can function as the underlying logic of theories in
which there are (closed) formulas such that these formulas and their negations
are simultaneously false” [Loparić, da Costa, 1984, p. 119].

In what follows, we will consider axiomatic propositional calculi in a Hilbert-
style formalization with the sole rule of inference (MP): α → β, α / β. Such
a calculus C, identified with the triple 〈F , AxC ,`C〉, is determined by its set
of axioms AxC which is included in F . We will require for each paracomplete
calculus that it contains all axiom schemas of the positive fragment of Classical
Propositional Calculus (CPC+, for short), that is, all instances of the following
schemas:

1Cit. per [Petrukhin, 2018, pp. 425–426]. Some interesting examples of the paracomplete
calculi are given in [Batens et all, 1999; Bolotov et all, 2018; Ciuciura, 2015; Karpenko,
Tomova, 2017; Loparić, da Costa, 1984; Popov, 2002; Sette, Carnielli, 1995].

2See [Arruda, Alves, 1979; Arruda, Alves, 1979] and [Beall, 2017, Section 4.1], for details.
3See [Bolotov et all, 2018], for details.
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(A1) α→ (β → α)

(A2) (α→ (β → γ))→ ((α→ β)→ (α→ γ))

(A3) ((α→ β)→ α)→ α

(A4) (α ∧ β)→ α

(A5) (α ∧ β)→ β

(A6) α→ (β → (α ∧ β))

(A7) α→ (α ∨ β)

(A8) β → (α ∨ β)

(A9) (α→ γ)→ ((β → γ)→ (α ∨ β → γ)),

admits the rule (MP), and fulfils all the criteria listed in Definition 1. To put
it more accurately:

Definition 2. A calculus 〈F , AxC ,`C〉 is said to be paracomplete if, and only
if it contains CPC+, admits (MP) and cumulatively meets the conditions:

(1) {β → α,¬β → α} 0 α, for some α, β ∈ F
(2) ∅ 0 α ∨ ¬α, for some α ∈ F
(3) ∅ 0 (¬α→ α)→ α, for some α ∈ F
(4) ∅ 0 (α→ ¬α)→ ¬α, for some α ∈ F .

Observe that many non-classical logics, esp. Intuitionistic and  Lukasiewicz’s
three–valued logic, do not come within the scope of paracompleteness.

Definition 3. For C, any α ∈ F and any Γ ⊆ F , we say that α is provable
from Γ within C (in symbols: Γ `C α) iff there is a finite sequence of formulas,
β1, β2, . . . , βn such that βn = α and for each i 6 n, either βi ∈ Γ , or βi ∈ AxC ,
or for some j, k 6 i we have βk = βj → βi. A formula α is a thesis of C iff α is
provable from ∅ within C (in symbols: ∅ `C α).

Definition 4. Let T (C) be the set of all theses of C. For any calculi C and C?
in F , we say that C is an extension of C? if, and only if T (C?) ⊆ T (C). We
say that C? is a proper subsystem of C (in symbols: C? < C) if, and only if
T (C?) ⊆ T (C) and T (C) 6⊆ T (C?).

Let us recall a few well–known facts about C, where C = CPC+ + (MP).

Theorem 1. Deduction theorem holds for C.

Proof. This follows from the fact that C includes (A1) and (A2), and the sole
rule of inference in C is (MP). �
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Lemma 1. Let Γ,∆ ⊆ F and α, β, γ ∈ F .
(1) If α ∈ Γ, then Γ `C α
(2) If Γ ⊆ ∆ and Γ `C α, then ∆ `C α
(3) Γ `C α iff for some finite ∆ ⊆ Γ, ∆ `C α
(4) If ∆ `C α and, for every β ∈ ∆ it is true that Γ `C β, then Γ `C α
(5) If Γ ∪ {α} `C γ and Γ ∪ {β} `C γ, then Γ ∪ {α ∨ β} `C γ
(6) If Γ ∪ {α} `C β and ∆ `C α, then Γ ∪∆ `C β
(in particular, if Γ ∪ {α} `C β and ∅ `C α, then Γ `C β)

Proof. We refer the interested reader to [Wójcicki, 1988] and [Pogorzelski,
Wojtylak, 2008] for details. �

Remark 1. The relation `C is a finitary consequence relation satisfying
Tarskian properties (reflexivity, monotonicity, transitivity).

2. Paracomplete calculi. Axioms

The basic paracomplete calculus discussed in this section is CLaN . CLaN ,
as introduced in [Batens et all, 1999], is defined by (MP), CPC+ and the law
of explosion (DS): α→ (¬α→ β). In the succeeding paragraphs, we consider
some extensions of CLaN . They are obtained from CLaN by adding to it at
least one of the schemas:

(ExM2) α ∨ ¬α ∨ ¬¬α
(NN?) α→ ¬¬α.

As a result, we obtain three such extensions, namely,

Dmin = CLaN + (NN?)
Q1 = CLaN + (ExM2)
QD1 = CLaN + (ExM2) + (NN?).

The calculus Q1 was introduced in [Ciuciura, 2019]; Dmin was briefly dis-
cussed in [Carnielli, Marcos, 1999]; QD1 seems to be pretty new. Notice that
the calculi (incl. QD1) are proper subsystems of I1. The propositional calcu-
lus I1 was originally defined by (MP), (A1), (A2),

(I1) (¬¬α→ ¬β)→ ((¬¬α→ β)→ ¬α)
(I2) ¬¬(α→ β)→ (α→ β).4

The connectives of ¬ and → are taken as primitives. Conjunction, disjunc-
tion and equivalence are useful abbreviations. They can be introduced via the
definitions:

4[Sette, Carnielli, 1995, pp. 182–183].
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α ∧ β =df ¬(((α→ α)→ α)→ ¬((β → β)→ β))

α ∨ β =df (¬(β → β)→ β)→ ((α→ α)→ α)

α↔ β =df (α→ β) ∧ (β → α).5

It is noteworthy that I1 gave an impulse for further research and several al-
ternative axiomatizations for the calculus were proposed. In [Ciuciura, 2015],
for instance, the consequentia mirabilis (cf. Defition 1, (3)) plays the key
role; in [Fernández, Coniglio, 2003], the role is taken by the tertium non datur
(cf. Defition 1, (2)) which suggests that the connective of disjunction (and
conjunction) formally appears in formulas. Indeed, Fernández–Coniglio’s axio-
matization consists of (A1), (A2), (A4)–(A9), (NN?) and

(nC) ¬(α ∧ ¬α)

(NI?) (α ∨ ¬α)→ ((α→ β)→ ((α→ ¬β)→ ¬α))

(ExM¬) ¬α ∨ ¬¬α
(ExM ‡) (α ‡ β) ∨ ¬(α ‡ β), where ‡ ∈ {∧,∨,→}.

The sole rule of inference is (MP).
We prove now that CLaN,Dmin, Q

1 and QD1 meet the criteria mentioned
in Definition 2 ; let C ∈ {CLaN,Dmin, Q

1, QD1}, for the sake of brevity.

Remark 2. (1) The formulas
(ExM) p ∨ ¬p
(CM1) (p→ ¬p)→ ¬p
(CM2) (¬p→ p)→ p

(NN) ¬¬p→ p

are not provable in C.
(2) Neither (a) {β → α,¬β → α} `C α, nor (b) {¬(α→ β)} `C ¬β, nor (c)

{α→ ¬β, α→ β} `C ¬α hold, for any α, β ∈ F .

Proof. Apply the matrix MI =
〈
{1, 2, 0}, {1},¬,∧,∨,→

〉
, where {1, 2, 0} is

the set of logical values, 1 is the designated truth value in MI and the con-
nectives ¬,∧,∨,→ are defined in the same way as it is done in [Sette, Carnielli,
1995] (see pp. 190, 199), that is,

→ 1 2 0

1 1 0 0
2 1 1 1
0 1 1 1

¬
1 0
2 0
0 1

5See Ibid., p. 199.; see also [Karpenko, Tomova, 2017, p. 14].
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∧ 1 2 0

1 1 0 0
2 0 0 0
0 0 0 0

∨ 1 2 0

1 1 1 1
2 1 0 0
0 1 0 0

Observe that (A1)–(A9), (DS), (ExM2), (NN?) are valid in MI and (MP)
preserves validity. To demonstrate that (ExM), (CM1), (CM2) and (NN)
are unprovable in C, it suffices to assign 2 to p in the formulas p ∨ ¬p, (p →
¬p) → ¬p, (¬p → p) → p and ¬¬p → p, respectively. This shows that the
claim (1) holds. For (2), assign 2 to α and β in (a); 1 to α and 2 to β in (b);
2 to α and 0 to β in (c). �

Remark 3. The calculus QD1 can be defined, in a Hilbert-style formalization,
by the axiom schemas of CPC+, (DS), (ExM¬) ¬α ∨ ¬¬α and (MP).

Proof. We need to show that (1) (ExM¬) is a thesis of QD1, and (2) (ExM2)
and (NN?) are provable in QD1

?, where QD1
? is defined by CPC+, (DS),

(ExM¬) and (MP). (1): This can be easily done by means of (ExM2), (NN?),
the thesis of CPC+ (α∨β∨γ)→ ((α→ γ)→ (β∨γ)) and (MP). (2): Assume
that α (by the deduction theorem). Then, we obtain ¬α→ ¬¬α by (DS), the
assumption and (MP). Notice that ∅ `QD1

?
(¬α → ¬¬α) → ¬¬α by (ExM¬),

the thesis of CPC+ (α ∨ β) → ((α → β) → β) and (MP). If ¬α → ¬¬α
and (¬α → ¬¬α) → ¬¬α, then ¬¬α, and finally ∅ `QD1

?
α → ¬¬α by the

deduction theorem. To prove that (ExM2) is a thesis of QD1
?, it suffices to

apply (MP) to (A8) and (ExM¬). �

Remark 4. CLaN < Q1 < QD1 and CLaN < Dmin < QD1.

Proof. It is clear that Q1 and Dmin are the extensions of CLaN . A proof
that CLaN is a proper subsystem of Q1 immediately follows from the classical
truth tables for implication, conjunction and disjunction plus the following one
for negation:

¬
1 0
0 0

The designated value is 1. As expected, (A1)–(A9), (DS) are valid under the
interpretation and (MP) preserves validity. Now, assign 0 to p in p∨¬p∨¬¬p
to demonstrate that there is a thesis of Q1 which is unprovable in CLaN .

A proof that CLaN is a proper subsystem ofDmin basically follows from the
fact that p→ ¬¬p is not provable in CLaN . This can be shown by modifying
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the matrixMI appropriately, that is, by replacing the truth table for negation
with the so-called rotary negation:

¬
1 2
2 0
0 1

and assigning 1 to p in p→ ¬¬p. LetM3 denote the resulting matrix, hence-
forth.

It is obvious that QD1 is an extension of Q1 and Dmin. Now, we show
that the formula ¬p ∨ ¬¬p is provable neither in Q1 nor Dmin. Case Q1:
apply M3 and assign 1 to p in ¬p ∨ ¬¬p. Case Dmin: consider the matrix
M3? =

〈
{1, 2, 0}, {1},¬,∧,∨,→

〉
, where the connectives ∧,∨,→ are defined

in the same way as inMI , but the truth table for negation is as follows:

¬
1 0
2 2
0 1

The axiom schemas ofDmin are valid in the matrix and (MP) preserves validity;
to falsify ¬p ∨ ¬¬p, it is enough to assign 2 to p. �

Remark 5. (1) Dmin 6< Q1

(2) Q1 6< Dmin.

Proof. (1): Apply the matrixM3? and assign 2 to p in p∨¬p∨¬¬p, to show
that the formula p∨¬p∨¬¬p is unprovable in Dmin. (2): Use the matrixM3

and assign 1 to p in p → ¬¬p, to demonstrate that p → ¬¬p is unprovable in
Q1. �

Remark 6. QD1 < I1 < CPC, where CPC denotes the classical propositional
calculus.

Proof. It is known that I1 < CPC.6 All we have to do is to prove
that QD1 < I1. Since (MP) is the sole rule of inference of both calculi and
each axiom schema of QD1 is provable in I1, then I1 is an extension of
QD1. Now, we prove that (nCp) ¬(p ∧ ¬p) is not a thesis of QD1 (cf.
Fernández–Coniglio’s axiomatization of I1). For this purpose, consider the
matrix M3?? =

〈
{1, 2, 0}, {1},¬,∧,∨,→

〉
, where 1 is the only designated

value inM3??, the connectives of negation and implication are specified in the
same way as inMI , but conjunction and disjunction are defined as follows:

6See [Sette, Carnielli, 1995; Karpenko, Tomova, 2017; Ciuciura, 2015], for details.
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∧ 1 2 0

1 1 2 2
2 2 2 2
0 2 2 0

∨ 1 2 0

1 1 1 1
2 1 2 2
0 1 2 0

Each axiom schema of QD1 is valid in M3?? and the rule of detachment
preserves validity. To show that (nCp) is unprovable in QD1, it is enough to
assign 2 to p in ¬(p ∧ ¬p). �

Since CLaN , Dmin, Q1 and QD1 are proper subsystems of I1, I1 is the
strongest calculus among the paracomplete calculi that have been discussed
so far. Moreover, I1 is maximal in the sense that if we enrich the calculus
with any classical tautology, which is not valid in I1, the resulting calculus
collapses into CPC. It means that there is no structural proper subsystem of
CPC stronger than I1. But ‘Is CLaN the weakest paracomplete calculus?’,
or: ‘Is there a proper subsystem of CLaN admitting CPC+ and (MP)?’ Some
results supporting a positive answer were suggested in Section 7 of [Nowak,
1998]. The requested calculus, denoted as `Cl1, is defined by CPC+, (MP)
and (DS?) α→ (¬α→ ¬β).

Remark 7. CPC+ < `Cl1 < CLaN .

Proof. It is obvious that CPC+ < `Cl1. For `Cl1 < CLaN , note that (DS?)
is an instance of (DS). Thus all the axiom schemas of `Cl1 are theses of CLaN .
To show that p → (¬p → q) is unprovable in `Cl1, apply the classical truth
tables for implication, conjunction and disjunction plus the following one for
negation (1 is the designated value):

¬
1 1
0 1

�

Let us summarize that the lattice relationships between the calculi can be
represented by the structure of Figure 1.

3. Paracomplete calculi. Semantics

A Kripke-type semantics for `Cl1 was given in [Nowak, 1998, p. 98]; a valua-
tion semantics for CLaN was introduced in [Batens et all, 1999, p. 32]; and
a three-valued semantics for I1 was proposed in [Sette, Carnielli, 1995, p. 190];
an alternative semantics for I1 was discussed in [Fernández, Coniglio, 2003].
In this section, we propose a bi-valuational semantics for the calculi Q1 and
QD1; let C? ∈ {Q1, QD1}, for the sake of brevity.
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Fig. 1. A lattice of the paracomplete calculi.

Definition 5. A C?-valuation is any function v : F −→ {1, 0} that satisfies,
for any α, β ∈ F , the following conditions:

(∨) v(α ∨ β)=1 iff v(α)=1 or v(β)=1
(∧) v(α ∧ β)=1 iff v(α)=1 and v(β)=1
(→) v(α→ β)=1 iff v(α)=0 or v(β)=1
(¬) if v(¬α)=1, then v(α)=0,

and additionally,
(¬¬) if v(¬¬α)=0, then (v(α)=1 or v(¬α)=1), for C? = Q1

(¬¬) if v(¬¬α)=0, then v(¬α)=1, for C? = QD1.

Definition 6. A formula α is a C?-tautology if, and only if for every C?-
valuation v, v(α) = 1. For any α ∈ F and Γ ⊆ F , α is a semantic consequence
of Γ (Γ |=C? α, in symbols) iff for any C?-valuation v: if v(β) = 1 for any β ∈ Γ,
then v(α) = 1.

The proof of soundness can be obtained in the standard way, by induction
on the length of a derivation in C?.

Theorem 2. For every Γ ⊆ F and α ∈ F , we have if Γ `C? α, then Γ |=C? α.

For the proof of completeness, we apply the method which is based on the
notion of maximal non-trivial sets of formulas. We use the technique proposed
in [Carnielli, Coniglio, 2016, Section 2.2]. Before going further, let us recall
some important definitions and results. Let C = 〈F , AxC ,`C〉 be a calculus
(satisfying Tarskian properties) and ∆ ⊆ F .
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Definition 7. We say that ∆ is a closed theory of C if, and only if for any
β ∈ F : ∆ `C β iff β ∈ ∆. We say that ∆ is maximal non-trivial with respect
to α ∈ F in C, if, and only if (i) ∆ 6`C α, and (ii) for every β ∈ F , if β 6∈ ∆
then ∆ ∪ {β} `C α.
Lemma 2 ([Carnielli, Coniglio, 2016], Lemma 2.2.5). Every maximal non-
trivial set with respect to some formula is a closed theory.

Observe that the lemma holds for C?. Moreover, we have:

Lemma 3. For any maximal non-trivial set ∆ with respect to α in C? the
mapping v : F −→ {1, 0} defined, for any δ ∈ F , as (?): v(δ) = 1 if and only
if δ ∈ ∆, is a C?-valuation.

Proof. We only prove the clauses for negation. The rest of the proof is similar
to that of Theorem 2.2.7 in [Carnielli, Coniglio, 2016].

Assume, for a contradiction, that v(¬β) = 1 and v(β) = 1. Thus we have
¬β ∈ ∆ and β ∈ ∆ by (?). This implies, by Lemma 1(1), that ∆ `C? ¬β
and ∆ `C? β. But, if ∆ `C? ¬β and ∆ `C? β, then ∆ `C? {¬β, β}. Since
∅ `C? β → (¬β → γ), thus {β,¬β} `C? γ, by the deduction theorem. The
relation `C? is transitive, so ∆ `C? γ. Notice that ∆ is a closed theory, so
α ∈ ∆. But α 6∈ ∆ (by the main assumption). This yields a contradiction.

If C? = Q1, we need to show that the mapping v satisfies the following
clause: if v(¬¬β) = 0 then (v(β) = 1 or v(¬β) = 1), for any β ∈ F . Assume,
for a contradiction, that v(¬¬β) = 0 and v(¬β) = v(β) = 0. Thus we have
¬¬β 6∈ ∆, ¬β 6∈ ∆ and β 6∈ ∆ by (?). Since ∆ is a maximal non-trivial set
with respect to α, ∆ ∪ {β} `Q1 α, ∆ ∪ {¬β} `Q1 α and ∆ ∪ {¬¬β} `Q1 α.
Consequently, ∆ ∪ {β ∨ ¬β ∨ ¬¬β} `Q1 α, by Lemma 1 (5). Note that ∅ `Q1

β ∨ ¬β ∨ ¬¬β, so ∆ `Q1 α, by Lemma 1 (6). Since ∆ is a closed theory, then
α ∈ ∆. But α 6∈ ∆. This yields a contradiction.

If C? = QD1, we have to prove that the mapping v satisfies the clause: if
v(¬¬β) = 0 then v(¬β) = 1, for any β ∈ F . Assume, for a contradiction, that
v(¬¬β) = 0 and v(¬β) = 0. Then we have ¬¬β 6∈ ∆ and ¬β 6∈ ∆ by (?). Since
∆ is a maximal non-trivial set with respect to α, then ∆∪ {¬¬β} `QD1 α and
∆ ∪ {¬β} `QD1 α. Consequently, ∆ ∪ {¬β ∨ ¬¬β} `QD1 α, by Lemma 1 (6).
It is known that ∅ `QD1 ¬β ∨ ¬¬β, so ∆ `QD1 α, by Lemma 1 (6). Since ∆ is
a closed theory, then α ∈ ∆. But α 6∈ ∆. This yields a contradiction. �

Note that the so-called Lindenbaum– Loś’ theorem holds, for any finitary
calculus C = 〈F , AxC ,`C〉.
Lemma 4 ([Pogorzelski, Wojtylak, 2008], Theorem 3.31; [Carnielli, Coniglio,
2016], Theorem 2.2.6). For any Γ ⊆ F and α ∈ F such that Γ 6`C α, there is a
maximal non-trivial set ∆ with respect to α in C such that Γ ⊆ ∆.
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Thus, the completeness of C? follows:

Theorem 3. For all Γ ⊆ F and α ∈ F : if Γ |=C? α, then Γ `C? α.

Proof. Assume that Γ 6`C? α and ∆ be a maximal non-trivial set with respect
to α in C? such that Γ ⊆ ∆. Then α 6∈ ∆. Because Lemma 3 holds, there is a
valuation v such that v(α) = 0 and v(β) = 1, for any β ∈ Γ. Hence Γ 6|=C? α.

�

4. A hierarchy of the paracomplete calculi

The `Cl1, CLaN , Dmin, Q1, QD1 and I1 are not the only paracomplete
calculi that satisfy the criteria specified in Definition 2. In fact, there are
infinitely many such calculi, for example, Q1, Q2, ..., Qn; or QD1, QD2,...
QDn. The hierarchy of Qn–calculi, n ∈ N, was considered in [Ciuciura, 2019].
In the subsequent paragraphs we will discuss the hierarchy of QDn–calculi. The
hierarchy is obtained by replacing (ExM¬) with a more general schema, that
is,

(ExM¬n) ¬nα ∨ ¬n+1α,

where n ∈ N and ¬nα is an abbreviation for
n︷ ︸︸ ︷

¬¬...¬α. To put it more precisely,
for each n ∈ N, let QDn be obtained from CPC+ (and (MP)) by adding to it
the axiom schemas:

(DS) α→ (¬α→ β)
(ExM¬n) ¬nα ∨ ¬n+1α.7

For each n ∈ N, the semantics for QDn results from replacing the evaluation
condition for (¬¬) with a more general one, i.e.

(¬n+1) if v(¬n+1α)=0, then v(¬nα)=1.

The semantic clauses for (∨), (∧), (→) and (¬) remain unchanged, i.e.

Definition 8. A QDn-valuation is any function v : F −→ {1, 0} that satisfies,
for any α, β ∈ F , the conditions:

(∨) v(α ∨ β)=1 iff v(α)=1 or v(β)=1
(∧) v(α ∧ β)=1 iff v(α) = 1 and v(β)=1

7If n = 0, then QD0 = CPC. Some other examples of the hierarchies are known in the
logical literature. For instance, the hierarchy of In–calculi is proposed in [Sette, Carnielli,
1995] and [Fernández, Coniglio, 2003]. There are also interesting hierarchies in a Newton da
Costa-style presentation, e.g. da Costa and Marconi’s hierarchy of paracomplete calculi Pn,
see [da Costa, Marconi, 1986]; or Arruda–Alves’ logic of vagueness, see [Arruda, Alves, 1979]
and [Arruda, Alves, 1979].
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(→) v(α→ β)=1 iff v(α)=0 or v(β)=1
(¬) if v(¬α)=1, then v(α)=0,
(¬n+1) if v(¬n+1α)=0, then v(¬nα)=1, where n ∈ N.

The definition of QDn-tautology (and semantic consequence |=QDn) is ana-
logous to that of Definition 6.

Theorem 4. For every Γ ⊆ F and α ∈ F , Γ `QDn α iff Γ |=QDn α, n ∈ N.

Proof. Proceed analogously to the proof of Theorems 2 and 3. �

At the end of this section, we state a few simple facts about theQDn–calculi.

Remark 8. If n > 1, then the formula p→ ¬¬p is not provable in QDn.

Proof. This follows from the completeness of QDn–calculi. �

Remark 9. If n > 1, then
(1) Dmin 6< QDn

(2) QDn 6< Dmin.

Proof. (1): Although (ExM¬n) is an axiom schema of QDn, the formula
¬np ∨ ¬n+1p is not provable in Dmin (it is enough to apply the semantics and
completeness theorem for Dmin, cf. [Carnielli, Marcos, 1999], Proposition 6.2 ).
(2): This is a consequence of Remark 8 and the fact that (NN?) is an axiom
schema of Dmin. �

Remark 10. For any r, m ∈ N such that r > m, we have QDr < QDm.

Proof. The proof follows from the completeness of QDn–calculi. �

Remark 11. Enriching the set of axiom schemas of any QDn-calculus (n ∈ N)
with the formula (NN) ¬¬α → α, results in obtaining the axiom system of
CPC.

Proof. This follows from the fact that the axiom schemas (ExM¬n) and (NN)
are equivalent to (ExM) α ∨ ¬α in CPC. �

Remark 12. Enriching the set of axiom schemas of any QDn-calculus (for
n > 1) with the formula ¬¬¬α→ ¬α, results in obtaining the calculus QD1.

Proof. Notice that (1) ¬¬¬α→ ¬α is a thesis of QD1, and (2) ¬¬¬p→ ¬p is
not provable in any QDn-calculus that is weaker than QD1. Now it suffices to
show that (ExM¬n), where n > 1, and ¬¬¬α→ ¬α are equivalent to (ExM¬)
in QD1. �
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