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Abstract. We study the idempotence of operators of the form e Vid A § (where
& < § and both £ and § are increasing) on a modular lattice %, in relation to the
idempotence of the operators € Vv id and id A §. We consider also the conditions
under which e vid A§ is the composition of £ Vid and id AS. The case where § is
adilation and ¢ an erosion is of special interest. When ¥ is a complete lattice on
which Minkowski operations can be defined, we obtain very precise conditions
for the idempotence of these operators. Here id A§ is called an annular opening,
e v id is called an annular closing, and ¢ V id A § is called an annular filter.
Our theory can be applied to the design of idempotent morphological filters
removing isolated spots in digital pictures.

Keywords: Modular lattice, [dempotent operators, Image processing, Mathe-
matical morphology, Erosion, Dilation, Annular filters

1 Introduction

Mathematical morphology is a branch of image processing and analysis which
originates from a set-theoretical approach where a figure is an element of #(E),
the set of subsets of a space E (which can be the Euclidean space R? or the digital
space Z%), and the shape of that figure is studied through its interactions (unions
and intersections) with the translates of a probe called structuring element, the
latter is generally a compact set [9.14]. In order to apply this approach to
Fun(E, R), the family of numerical functions F : E — R = R U {+00, ~cc}
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(modeling grey-level images), structuring elements become structuring func-
tions, which are numerical functions whose support (defined here as the set of
points where the function’s value is > —00) is generally compact. The struc-
turing function acts as a probe by being translated both in the space of points
and in the set of numerical values representing grey-levels of the image points;
then the interactions between the numerical function representing the image and
the translates of the structuring function are realized through lattice-theoretical
join and meet operations (which generalize unions and intersections). This has
led to an algebraic theory of morphological operations, based on lattice theory
[15,7,4]: in such an approach, images are modeled as elements of a complete
lattice, and morphological image operations are transformations on that com-
plete lattice, which satisfy some specified algebraic properties pertaining to
order and composition.

Two basic complete lattices are .2( E) (see above) and Fun( £, .77), the grey-
level images defined on E with grey-values in some other complete lattice .7,
If 7 = R, we shall write Fun(E) rather than Fun(E, R).

A classical morphological operator is the opening by a structuring element
B. In the set-theoretical setting, it associates to every set X € £ the union
of all translates of B included in X. A similar definition holds in the case of
a complete lattice with a group of automorphisms in place of the translations
[13]. The behaviour of this opening is to remove from a set X all portions which
are too narrow to contain a translate of B; for grey-level images (numerical
functions), it darkens light portions which are too narrow to contain a translate
of B. The dual operator is the closing by B: it removes narrow holes from a set,
and in a grey-level image it lightens dark narrow image portions.

The opening by a structuring element is an algebraic opening {15}, in other
words it is idempotent (equal to its auto-composition), increasing (isotone),
and anti-extensive (it decreases every object). It is however not the only type
of algebraic opening. Another type of opening has been considered, which
removes points from a set on the basis of their isolation. It was introduced by
Serra in (15, pp. 107,108]. Let £ be a Euclidean or digital space, and take a
symmetric structuring element B which does not contain the origin: then the
set operator on #(E) given by

X—= XN(X&B), (.

where & is the Minkowski addition, replaces a sct X by the union of all pairs
{p,q} inside X such that p and ¢ are adjacent in the sense that p g € B
as B is symmetric, this adjacency relation is symmetric. This operation is an
algebraic opening, and it removes from a set X all isolated points, where a point
p € X is called isolated if there is no point ¢ € X such that p is adjacent to
g- In [15], the effect of this operation on a natural image was illustrated in the
case where the structuring element B was a ring, and this led to it being called
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the annular opening. One can consider the dual operation
X XU(X©B), (1.2)

where & is the Minkowski subtraction; it is an algebraic closing, and so it is
called the annular closing. Its effect is to add to a set X all isolated points from
the background X¢, in other words to remove isolated hole points.

The above-defined annular opening and closing are translation-invariant; in
fact the adjacency relation is invariant under translations. As explained in the
Intrqduction of [8],itis easy to generalize them by taking an arbitrary symmetric
relation ~ on the space E, which is not necessarily translation-invariant; then
thg annular closing removes from a set X all points p € X such that there is no
point g € X with p ~ ¢ (i.e., p is adjacent to g); dually the annular closing
adds to a set X all points p ¢ X such that there is notpoint ¢ ¢ X with p ~ q.

It is known that any increasing operator for binary images extends to a
“flat” operator for grey-level images [3,14]; the set structuring element in-
volved in such an operator is then considered as a “flat” structuring function.
When annular openings are applied to grey-level images, isolated light spots
are removed. Grey-level annular openings with non-flat structuring elements
were introduced by the authors in [13]. Given a grey-level structuring func-
tion A whose support is symmetric (in other words, for every point x we have
A(x) > —00 & A(—x) > —00), and such that every point x in that support
(i.e., with A(x) > —oc) satisfies

Ax)+ A(=x) =0, (1.3)
we consider the operator on grey-level functions
I—=IAI®A), (14)

where A is the meet operation and @ is the generalization of the Minkowski
addition to numerical functions [7] (in other words, a sup-convolution). This
operator is an algebraic opening, and it can also be called an annular opening.
We have dually the annular closing

I—1v({6A)), (1.9)

where V is the join operation and © is the generalization of the Minkowski
subtraction to numerical functions [7] (in fact, a form of inf-correlation of A
and 1). In the case where A is constantly zero on its support B, we get the “flat”
operators associated to the set-theoretical ones defined in (1.1) and (1.2).

1t is more difficult here (for grey-level images) to interpret the behaviour of
annular openings and closings in terms of an adjacency relation. Here we have
numerical functions in place of sets, and so the basic constituent of an image
is not a point, but the pair (p, v) associating a finite grey-level value v € R to
apoint p € E.If we write I (p) for the grey-level associated by the image /
to the point p, then the notion that the pair (p, v) is “in I” must be interpreted
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as v < I(p); technically speaking, this means that (p, v) belongs to the so-
called umbra of I [11]. Now two pairs (p, v) and (g, w) (where p, g € E and
v,w € R = R U {400, —00}) can be considered as “adjacent” if p — g isin
the support of A (that is, A(p — ¢) > —00), and we have both inequalities:

v-w<A(p—gq) ad w-v=Alg-p).

It can be shown [13] that after the application of the annular opening (1.4) to /,
the grey-level associated to p will be the supremum of all finite values v; such
that (p, v;) is “in I” and there is a pair (g;, w;) which is “in I”” and “adjacent”
to (p, v;). We illustrate this in Fig. 1 with E = Z and taking for A the function
with support {—1, +1}, having value +1 on it; here the grey-level v associated
to pixel p is “isolated” if both neighbours of p have grey-level < v — 1, and
in this case the annular opening reduces the grey-level of p to one plus the
maximum grey-level of its two neighbours.
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Fig. 1. We assume a discrete space E = Z, Top: the structuring element A, with support
{—1,+ l'}, and having constant grey-level +1 on it. Middle: the original function I, representing
a one- dimensional signal. Bottom: applying the annular opening to I yields I A (I ® A), where
1solz.ned peaks are reduced to one unit above their surrounding; we show in dashed li;ze.v the
portions where the grey-level in I is larger than in I A da A)
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Note that when we take continuously varying grey-levels in R (and not
discrete grev-levels, e.g. in Z = Z U {+0oc, ~o0}), and a structuring function
with infinite support, it may happen that such a supremum v is reached without
the existence of a pair (g. w) “in {7 and “adjacent™ to ( p, v). This illustrates
ene of the main difficulties encountered when extending set transformations
into transtormations of numerical functions. Further examples of this fact have
heen given in [1 1], where we showed that a mathematically consistent treat-
ment of morphological operations on numerical functions £ — R requires the
consideration of the complete lattice structure of the space of such functions.
Thus all our results concerning morphological operations on grey-level images,
including the ones we gave on annular openings | 13}, are expressed in a wider
framework of complete lattices having suitable properties.

The starting point of a recent paper by the authors [8] is the following
question: s it possible to devise an increasing idempotent operator which would
hehave as both an annular opening and an annular closing, in other words
removing from a set all its isolated points, and at the same time adding to it all
isoluted points of its complement? In {8] we generalized annular openings and
closings for sets into a more general annular operator which removes isolated
points both in the foreground X and in the background X*. Here an isolated
point is defined in terms of an underlying adjacency relation between pixels,
which may be different for foreground and background pixels. More precisely,
let < and ~ be two symmetric relations on E (distinct or not), which stand for
background and foreground adjacencies; we derive from them the operators J;
and &, (s = 0, 1) defined by

(X)={yeE|IxeX. x~y}
e (X)={y e E|Ax e X x~yl}

Technically speaking, 4, is a dilation while &, is an erosion {7], and the
dual of 8, w.r.t. complementation. Write id for the identiry operator X — X,
. . . . . 0 )
Assuming that for every x € E there is some y € E withx ~ y ~ x, we obtain
the annular operator

go vV (d A 8y) = (8¢ V id) A &y, (1.6)

which removes from X isolated points (w.r.t. foreground adjacency ‘L') and at
the same time adds to X isolated points of X (w.r.t. background adjacency 2.
We showed that under a specific condition in terms of both adjacencies. this
operator is idempotent; we call it then an annular filter.

The goal of this paper is to extend annular filters to other types of pictorial
objects than sets, in particular to numerical functions. In the most general sense
the object space consisting of all images is a lattice #. The annular opening and
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closing become then operators ¥ — % of the form id A § and id V &, where
id is the identity while & and ¢ are a dilation and an erosion [7] respectively (in
particular, they are increasing). If & £ §, then the annular opening and closing
are incompatible and cannot be combined. This is easily explained in the case
where & = Fun(E): if ¢ £ §, this means that there is some image I € ¢ such
that e() £ 8(1), so that for some point p € E we have e(/)(p) > §({)(p);
now at point p, the behaviour of id A 8 is to decrease / (p) to §(1)(p) whenever
1(p) > 8(1)(p), while the behaviour of id V ¢ is to increase I (p) to e()(p)
whenever e(I)(p) > I(p); thus for e(/)(p) > I(p) > 8(I)(p), the first
operator requires decreasing I (p) to §(J)(p), while the second one requires
increasing I (p) to e(I)(p), and so they are contradictory.

We suppose thus that ¢ < §. It is also necessary to assume that the lattice
& is modular, so that we have the equality

ev(d Ad) = (e vid) AS,
and we can simply write
evid Ad. (1.7)

Note that both the lattices (E) and Fun(£) are modular. We obtain in this
way the required operator which generalizes the annular operator given in (1.6).
To see that (1.7) gives indeed a combination of the behaviours of id A § and
id v g, we consider again the case where ¥ = Fun(E). Given a point p € E,
we write i = I(p), e = ¢(I)(p), and d = 6(I)(p); since ¢ < d, it is easily
seen that ¢ v i A d is the median of the three values i, ¢, and d; we have then
three cases:

(a) [ < e < d: Here id V ¢ increases the value at p from i to e, while id A §
does not change i; now ¢ Vv id A § changes the value at p into the median
valuee Vi Ad = e.

(b) e <i <d.Herebothid A § and id Vv ¢ do not modify the value i at p, and
similarly & Vv id A § does not modify it, sincee Vi Ad =i.

(¢) e <d < i.Hereid A § decreases the value at p from i to d, while id Vv ¢

does not change i; now ¢ Vv id A 8 changes the value at p into the median
valueevind =d.

Hence in the case of numerical functions, the operator ¢ vV id A § combines the
behaviours of the annular opening id A § and the annular closing id Vv ¢, and
we call it an annular operator. As in [8] in the case of set operators arising
from adjacency relations, we will aim to find conditions for the idempotence of
& Vid A 8, but this time in the most general setting where the space of pictorial
objects is a modular lattice on which we make as few assumptions as possible.

In Section 2 we consider the case where ¢ is an arbitrary modular lattice
(not necessarily complete), and give then conditions for the idempotence of
¢ Vv id A §; some of these conditions are necessary and sufficient, other ones
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are only sufficient. We illustrate these results with sets, and show that this gives
some theorems obtained in [8].

In Section 3 we suppose that & is a complete lattice in which the so-called
“Basic Assumption” introduced in [7] is satisfied; this assumption is the one
which allows us to define on ¥ the Minkowski addition @ and subtraction &.
We recall and generalize the results obtained in [13] for annular openings in
this framework, and obtain a sufficient condition for the idempotence of the
annular operator of the form

egVIdASs: X > (XOB)VXAX DA, (1.8)

which is a specialization of (1.7). We explicit this theory with the particular
case of Fun(E).

[n Section 4 we examine conditions under which the idempotent annular
filter & v id A § can be obtained as the composition of the annular opening
id A § and the annular closing id Vv . Here we assume again that .% is an
arbitrary modular lattice. We illustrate our results in the particular case where
L = H(E).

2 Annular Operators on Modular Lattices

In this section we will give general results concerning the properties of an
operator of the form & v id A § on an arbitrary modular lattice, in particular
conditions yielding idempotence. We assume that the reader is acquainted with
the basic elements of lattice theory [1]. Refer to [7] for a short reminder.

Let (.&, <) be a lartice, where < is a partial ordering relation on %, and
the join and meet of two elements X, ¥ of & are written X vV Y and X A Y
respectively. It is easily checked that forevery L, M, H € 2,

L<H e LVviMAH)<(LVM)ANH.
Now .# is said to be modular if this inequality becomes an equality:
L<H ESS LVIMAH)=(LVMANH. 2.1

In such a case one simply writes L vV M A H. Note that since in every lattice
& the inequalities L < L v (M A H)and (L v M) A H < H hold for any
L, M,H ¢ &, itis clear that the equality L v (M A H) = (L v M) A H can
be true only if L < H. Next, we say that & is distributive if

VX, Y, Ze 2, XV AZD)=(XVY)A(XVZ),
or equivalently [1],

VX, Y, Ze ¥, XAYVD=XAYYVXAZ).
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Every distributive fattice is modular, Examples of distributive fattices include

PLEY, the family of pm 2\ of aset £, ordered by inclusion, or the set Funy i~'"§ of

functions £ - R = 4o, —och, ordered by setting F < G Fq
Gixyforadix € K. r*m exumipie of & modular lattice which iy nn@ da\iﬂﬂd%"\k
is given by that of vector subspaces of a vector space. Finally, two typical
examples of non-moedular lattices are the one of convex subsets of Euclidean
space, and the one of partitions of a set, where the ordering relation P < P
denotes that partitfion £ 18 tiner than partition £, ‘

Amap ¥ — ¢ is called an operator. The set ¥ of operators inherits
in a natural way the partial order < and the lattice structure of ¥ < &
means that (X1 < (X)) forevery X € . while v E and ¥ A& are given by
(g VvEHX) = w(\,\’qX and (f AENX) = WX AL (X)forevery X € &,
Moreover, whenever ¢ is modular or distributive, so is ¥, Tac composition

yrE of two operators o and & is ddmcd by VE(X V= ¥r(E(X)); furthermore
i denotes ¥, Note that for ¢, &, € ¥~ we have (¢ v (:);; = vy

and (¢ A &)y = Yrp A &1, The operator ¥ is said to be idempotent if v =
Write id for the identity operator.

From now on, we assume that the lattice & is modular. An operator
is said to be increasing if for every X, Y € # satisfving X < Y. we have
Y XY < {3 We will study operators of the form

evid)yad=¢vidad where ¢ < § (2.2)
and €, 8 are increasing. The assumption ¢ < § that we use throughout our
theorems stands mainly to allow us to define the operator ¢ v id A § without
ambiguity: however, we saw also in the Introduction that when & £ 8. the annu-
lar opening id ~ & and the annular closing id v ¢ have in practice contradictory
behaviours, so that one cannot envisage designing an operator combining their
effects. Qur main geal is to find conditions which guarantee that such an op-
erator ¢ v id A § is idempotent. Since ¢, 8, id are increasing, we will obtain in
such a way an increasing idempotent operator, in other words a morphological
filser [ 15]. Moreover, we will generally consider the case where the operators
¢ id and id ~ & are idempotent (repres‘eming the annular closing and annular
opening, respectively). Note that in (2.2) the operators § and & play dual roles:
it we invert the ordering < (interchanging v and A) and interchange 8 and ¢,
then we will interchange ¢ v id and id A 8, while ¢ v id A § will remain the
same; thus many of our results will consist of two parts, the second one being
the dual of the first. In fact. this is just a manifestation of the duality principie
in the theory of partially ordered sets.

In the sequel. we will generally use the word filrer in the sense of a morpho-
logical filter [15], that is an idempotent increasing operator. This terminology
18 & variant of the customary one in signal processing. where a filter denotes a
linear translation-invariant operator for signals. but has nothing to do with the
use of this word “filter” in topology and in lattice theory, as in for example in [ 1].
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There 1$ no precise formal definition of an annular opening; in the most general
sense, it is an idempotent operator of the form id A §, where § is increasing,
but more specifically, one generally assumes here that § is a dilation, that is an
operator which distributes the supremum [7]. Similarly, an annular closing is
in the most general sense an idempotent operator of the form id Vv g, where ¢ is
increasing, but more specifically, ¢ can be assumed to be an erosion, that is an
operator which distributes the infimum [7]. Finally, we call an annular filter an
idempotent operator of the form ¢ Vv id A §, where id A § is an annular opening
and id Vv ¢ is an annular closing.

The following result characterizes the idempotence of these two operators
g Vidand id A §:

Lemma 2.1 Let ¢, § be two operators on the lattice &.
(i) & v id is idempotent if and only if e(e vid) < & vid.
(1) id A S is idempotent if and only if 8(id A ) > id A 6.
Proof. (i) We have
(e vid)® = [e(e vid)] v [id(e vid)] = [e(e vid)] v [e vid].
Thus the idempotence of £ Vv id means that
[e(e vid)] v [e vid] = & v id,

which is equivalent to e(e v id) < ¢ V id (thanks to the equivalence A v B =
B & A < B).Now (ii) is proved in the same way (or follows by duality).
|

Our next result gives some basic properties of ¢ v id A § for the case ¢ < 6.

Lemma 2.2 Let &, 8 be two operators on the modular lattice £, such that
e < §, and letyy = e vid A 8. Then:

() e<y,idAS <Y, ¢ <8 andy <egVvid
(i) yrvid=eVvidandid Ay =id A 6.
(iii) If & is distributive and an operator £ satisfies § Vid = & v id and
idAE=idAS then& = .
(iv) Ife Vv id is idempotent, then (e V id) = (id A §)(e v id).
(v) Ifid A § is idempotent, then w@id A 8) = (e vid)(id A d).

Proof. The equality ¥ = & Vv (id A 8) gives the two inequalities £ < ¥ and
id A 8 < 1 in (i), as well as the equality

yvid=evidAd) vid=gVvid
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in (ii). On the other hand the equality ¥ = (s Vvid) A§ gives the two inequalities
Y <dand ¥ < e vidin (i), as well as the equality

slutice-theoretical framework for

Proof. (i) By Lemma 2.2 (i
kence we gete < ¥ < 7 =

(i) By Lemma 2.2 (i)
hate < Y ASY = (Ad A ¢
. ([dA8)y < 2. Combininy
- dAd < Yr,andidAS isinc
| (d A 8)Y < ¥?; combinin
ety =s v (idAS) < Yl
: Now (iii) and (iv) are

AR

i

idAay=dA(evid) AS=id A S

in (ii). Thus (i) and (i{) hold.

Let the operator & satisfy £ vid = ¢ vid and id A § = id A §; then by
(@i)wehave f vid = ¢ vid and id A &€ = id A . If & is distributive, it is
well-known [1] that this implies that ¥ = &; we repeat here the proof of it:

E=¢An(dVE)=En(dV ) =(EAid)V(EAY)
= AV Aid) =y A Vvid) =y A (Y Vvid) = .

Thus (iii) holds.
If ¢ v id is idempotent, then

V(e Vid) = [(e vid) A8](e vid) = [(e vid)(e vid)] A [5(e v id)]

= [id(e Vid)] A [8(s Vid)] = (id A 8)(e Vv id),

giving (iv). Finally (v) is proved in the same way (or follows by duality).

B
Note that if ¢ Vv id is idempotent, then (i{) and (iv) combined give
Y vid) = (id A ) (Y v id), (23)
while if id A § is idempotent, then (i/) and (v) combined give
v Aid) = (Y vid)(id A y). (2.4)

We will now examine conditions for the idempotence of ¢ v id A § when ¢
ind § are increasing, and ¢ V id and id A § are themselves idempotent.

Proposition 2.3 Let €, § be two increasing operators on the modular lattice
&, such thate <6, and let f = ¢ vid A 6.
(i) Ify? > W, then & < 8.

(ii) Ife <8y andid A § is idempotent, then * > .
(iii) IfY* <, then 8 > gy

(iv) If 8 = ey and ¢ v id is idempotent, then * < 1.

In particular when both & v id and id A § are idempotent, 1 will be idempotent
if and only if we have both e < 8¢ and § > ev.

- {or follow by duality). The
CoiLid il iv). B

Corollary 2.4 Let &.8 be
Ife <8(d A8) ord = &(
have:

() Ife <58(id A 8) and |
i) If8 > e(e vid) and

Proof. Supposethate <
fidad) <dandsoe <
we get 8(id A 8) < 8.
idempotent, item (Zi) of

The corresponding s!
by duality. 1

Thus by Corollary 2.4, :
both id A 8 and & Vv id
satisfied:

£ <8

As we will see later in 1
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dilation and erosion def
In the next section, we v
Minkowski operations
terms of structuring ele
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Proof. (i) By Lemma 2.2 (i) we have & < v, and ¢ < 8, so that /> < 5y
hence we gete < ¢ < y2 < §y. N T

(1) By Lemma 2.2 (i) we have ¢ < ¥, and by hypothesis ¢ < 8y, so
thate < Y A8y = (id A 8)y; by Lemma 2.2 (i) again, id A § < ¥, so that
(id A&y < ¥ Combining both inequalities, we get & < (id A 5)7// < ¥2 As
idnS < ¥, andid A6 is increasing and idempotent, we getid Ad = (ia/\tS)2 <
(id A 8)¥ < ¥*; combining the two inequalities id A § < ¥ and & < we
get Y =z v (id AS) < 2. -

Now (iii) and (iv) are proved in the same way as (i) and (/1) respectively
Eor follow by duality). The last sentence of the statement follows by combining
[0, iii,iv). ®

C_orollary 2.4 Let g, § be two increasing operators on the modular lattice #.
Ife < 8(d A8)ors > e(e Vid), then & < 8, and setting Y =eVvidASd we
have: »

(i) Ife < 6(id A 8) and id A 8 is idempotent, then y* > 4.
(ii) If 6 = e(e vid) and ¢ v id is idempotent, then y* < .

Proof. Supposethate < §(id A8). Asid A § < id and § is increasing, we have
S(dAd) <bdandsoe < 5. Asid A8 < eV (id A8) =, and § is increasing,
we get 5(id A 8) < §yr. Hence ¢ < 8. Assuming furthermore that id A § is
idempotent, item (ii) of Proposition 2.3 implies that ¥*> > 1, and we get (i).

The corresponding statements for § > (e Vv id), in particular (i{), follow
by duality. #

Thus by Corollary 2.4, a sufficient condition for the idempotence of i is that
both id A § and ¢ Vv id are idempotent, and that the following conditions are
satisfied:

g < §@AA A S) and 8 > e(e vid).

As we will see later in this section, this is exactly what happens with the “‘ad-
jacency triple conditions” given in [8] with ¥ = #(&), when § and ¢ are the
dilation and erosion defined by foreground and background adjacency relations.
In the next section, we will consider a particular class of complete lattices where
Minkowski operations can be defined, and we will give sufficient conditions in
terms of structuring elements for obtaining such conditions as above; this will
be illustrated in the case where # is the lattice of grey-level functions Fun(E)
for E = RY or 7.

Before going into these particular cases, let us show that these conditions
lead also to a new interpretation of the operator & V id A §. We recall two
definitions from [13,15]: an increasing operator 7 satisfying n(n v id) = 7 is
called a sup-underfilter, while an increasing operator ¢ satisfying (¢ Ald) = ¢
is called an inf-overfilter. The following result generalizes [13, Proposition 421
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Lemma 2.5 Let ¢, 8 be two increasing operators on the lattice £. Let n =
g(e vid) and { = 8(id A ).
(i) evidisidempotent ifandonly ifnvid = e Vvid; then n is a sup-underfilter,
that is n(n v id) = 1.
(i) id A8 isidempotent if and only ifid AL = Id AS; then ¢ is an inf-overfilter,
thatis td A &) = L.
Proof- Note that since ¢ and § are increasing, n and ¢ will also be increasing.
() Ifnpvid = ¢ vid, then clearly e(¢ vVid) = n <nvid = ¢ Vid, and
¢ Vid is idempotent by Lemma 2.1 (). Suppose now that ¢ Vv id is idempotent;
by Lemma 2.1 (i) we have n = e(¢ v id) < ¢ Vv id; as ¢ is increasing and
id < £ Vvid, we get ¢ = eid < ¢(e Vv id) = n; combining the two inequalities
gives ¢ < 17 < ¢ V id, and taking the join of each member with id, we get
svid<nvid <evid,
that is n v id = g v id. Now assuming n vV id = ¢ Vv id and ¢ V id being
idempotent, we get
n(nvid) = ¢(e vid)(e vid) = e(e vid) = 7,

that is 7 is a sup-underfilter.
(i1) is proved in the same way (or follows by duality). #

Proposition 2.6 Let ¢, 8 be two increasing operators on the modular lattice
Z,and letn = e{e vid) and { = §(id A S). Assume that e < ¢, n <4, and
both id A & and ¢ Vv id are idempotent. Then:

(i) e <dandn <¢.

(ii)y nvid =evidandid A { =id A 4.

(iii)y nvidAa =npvidAad=cevidAZ =g vidAd.

(iv) e Vid A § is idempotent.

(v) nis a sup-underfilter, and ¢ is an inf-overfilter.

Proof. By Lemma 2.5, (ii) and (v) follow from the idempotence of id A § and
¢ vid. Now the conditions of Corollary 2.4 are satisfied, so that ¢ < § and (iv)
holds. It remains to be shown that # < ¢ and that (iii) holds. We have

(mvid) AL =(evid) AL since n vid = ¢ vid,
=eVv({idAag) since £ < ¢,
=ev{idAad) sinceid A £ =id A §,
=(evid) AS since ¢ < §,
=Mnvid) A S since n vVid = ¢ vid,
=nv(idAs) since n < 4,

=nv(idAr?) sinceid A £ =id A 8,
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from which we derive that

n=nvidAal)=@vid)A¢ <¢.

Therefore n < ¢ and (iii) holds. §

Let us illustrate the above results in the case of sets. We will get in this way
some of the results of [8]. Let E be any set. A map

AT E— 2(E): x> Ax), (2.5)

will be called a variable structuring element. It leads to the two operators |
84, P(E) - #(E) given by |

5a(X) = Urex A(x) 2.6) |
and
ea(X) ={z € E|A(z) C X}. (2.7)
[t is easily seen that these two operators satisfy the property |
VX, Y € Z(E), SAX)CY & Vxe X, A(x) CY < X Ce()),

which means that (g4, §4) is an adjunction [ 7], and implies that 84 is a dilation
(it distributes the union), while ¢ 4 is an erosion (it distributes the intersection);
we call §4 and g4 the dilation and the erosion by A. Note that every adjunction
on #(E) takes this form, so that dilations and erosions on #(E) are those
involving a variable structuring function.

To the variable structuring element A, we associate its transpose A, which
is the variable structuring element defined by

Ax)={y € E|x € A} (2.8)
in other words by the equivalence
x € Aly) <« yeA®k). (2.9)

This implies in particular that A = A.Now it is easy to check that ¢ i is the
dual by complementation of 84, which means that for every X € 2(E):

(6a(X9)) =e;00  and  (g4(X9))" =8a(X),

where X¢ denotes the complement of X in E; similarly e4 is the dual by
complementation of 8 ;. 5

Let us say that A is symmetric if A = A. It is easy to show that if A
is symmetric, then id A 84 and id Vv ¢4 are idempotent. This was implicitly
shown in the discussion following [13, Proposition 3.1] for the idempotence
of id A 84, while the idempotence of id \ &4 follows by duality. These two
operators id A 84 and id V &4 are,the annular opening and closing by the
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variable structuring element A. Note also that if A is not symmetric and every
p € E satisfies p ¢ A(p), then id A 8, is not idempotent, for taking y € A(x)
with x & A(y), we have (id A 84)({x, y}) = {y} and (id A §,)({y}) = 4.

Now a symmetric variable structuring element A corresponds to a symmet-
ric adjacency relation ~ on E, defined by:

x~y &= x € A(y) & y < Ax). (2.10)

Then § 4 and &4 coincide with the dilation and erosion deﬁned in [5,8] from
this adjacency relation.

Suppose next that we have two adjacency relations 2 and ~ (corresponding
by (2.10) to two symmetric variable structuring elements Ap and Ay), and

let (s;, ;) be the adjunction associated to ~ fori = 0, 1 (in other words,
(€. 8;) = (£a4,,84,) With 84, and &4, given as in (2.6) and (2.7) respectively).
. : o1 . 0
We define the compound adjacency relation % by x ~ yif both x ~ y
and x L y hold; thus the symmetric adjacency relation % corresponds to the
symmetric variable structuring element x = Ag(x) N A;(x).
In [8, Assumption 5.1] we postulated that for every x € E thereissome y €

E suchthat x s v, inother wordsthat Ag(x)NA;(x) 5% . Itis then easily shown
[8, Proposition 5.4] that this implies that &g < §; and & < &y. Hence we define
the set operator ¥ = gy vid A §;, which is the annular operator removing from a

binary image foreground points which are isolated from the point of view of ~l,
as well as background points which are isolated from the point of view of ,(l‘ We

. - . . 0 i .

gave in [8] conditions on the adjacency relations ~ and ~ for the idempotence
of ¥; we will see that they are particular cases of the conditions given in
Proposition 2.3 and Corollary 2.4. Consider a triple x, y, z € E such that

xO’NIy, x~0'z, andy’Lz. (2.11)
Then we say [8] that x is a O-triple point, y is a 1-triple point, and 7 is a
O/1-triple point; see Fig. 2. More precisely: a point x € E is called a O-triple
point if there exist y, z € E such that (2.11) holds, a point y € E is called a
I-triple point if there exist x, z € E such that (2.11) holds, and a point z € E
is called a O/I-triple point if there exist x, y € E such that (2.11) holds. We
showed in [8, Corollary 5.7] that if every point in E is a O-triple point (resp.. a
I-triple point), then ¥ > ¥ (resp., Y2 < ). Let us explain how this result is
a consequence of Corollary 2.4,
Let x be a O-triple point, and let y, z be as in (2.11). Given a set X such
that X € go(X), we have Apg(x) € X, and as x R v, 2z, we get v,z € X; as

y < , this gives y € §;(X), sothat y € X N §;(X), and as x ~ y, we deduce
then that x € 81(X N 8(X)). Thus if every point of E is a O-triple pomt then

€0 < 81(id A 1), and as id A & is idempotent (by the symmetry of N) item (i)
of Corollary 2.4 gives y? > 1.
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z
0 1
X
0.1 y

Fig. 2. Anadjacency triple configuration; here x is a O-triple point, y is a 1-triple point, and z is
a 0/1-triple point

Let y be a 1-triple point, and let x, z be as in (2.11). Given a set X such

that y € eo(X U &o(X)), we have Ag(y) € X U go(X), and as y 2 X, we
get x € X Ugp(X); now if x ¢ X, then we have x € gq(X), in other words

0 L.
Ag(x) € X,andas x ~ z, this givesthus z € X; hencex € X orz € X, and

as y A x, z, we deduce that y € §;(X). Thus if every point of E is a 1-triple
point, then go(eg Vv id) < &y, and as g¢ Vv id is idempotent (by the symmetry
of 2y, item (if) of Corollary 2.4 gives 2 < V.

Therefore the sufficient condition given in [8] for the idempotence of
(namely, that every point of E is both a O-triple point and a 1-triple point),
reduces to Corollary 2.4, thanks to the above argument. In the next section,
where we will consider complete lattices equipped with Minkowski operations,
we will use similar arguments in order to obtain the sufficient conditions given
in Corollary 2.4.

We showed in [8, Proposition 5.9] that if Y2 > y (resp., ¥> < V), then
every point of E is either a O-triple point or a 0/1-triple point (resp., either
a 1-triple point or a 0/1-triple point). Indeed, if ¥ > v, then item (i) of
Proposition 2.3 gives gy < 8¢, in other words that for every X C E,

20 (X) € 81 (¥ (X)) = 81 (20O U[XN8I0]) = 81(ea(X)) U8 [X NEICO):

now every x € E satisfies x € g9 (Ao (x)), so that we haveeither x € 8;(ep(Ao(x)))
or x € 8;[Ap(x) N1 (Ag(x))]. The fact that x € 8;[Ag(x) N 81 (Ap(x))] means

. . 1
exactly that x L y for some y € Ag(x) such that thereisz € Ag(x) with y ~ z,
in other words x is a O-triple point (see (2.11)). The fact that x € 81(go(Ap(x)))

1 .

means that there is some y € E such that Ag(y) € Ap(x) and y ~ x; since
. 0.1 101 0 } .

there is some z € E with y ~ z, we getx ~ y ~ z ~ x,and so x is a 0/1-triple

point.

Thus we have shown by using item (/) of Proposition 2.3 that if v? >,
then every point of E is either a O-triple point or a 0/1-triple point. Similarly
item (iii) of Proposition 2.3 allows us to show thatif ¥ < v, then every point
of E is either a 1-triple point or a 0/1-triple point.
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3 Minkowski lattices and grey-level functions

As explained above, when the lattice of pictorial objects is Z(£), it is possible
to construct annular openings and closings, as well as their generalization into
annular filters, with the use of foreground and background adjacency relations

L and 2 on E. In the case of annular openings and closings, this description is
in some way a mathematical characterization, because a dilation & gives id A §
idempotent if and only if it arises from an adjacency relation, except possibly in
the case where id A 8 preserves a singleton, and dually an erosion & gives id v ¢
idempotent if and only if it arises from an adjacency relation, except possibly
in the case where id V & preserves the complement of a singleton. .

The structure of the lattice of grey-level functions Fun(£, R) or Fun(E, Z)
(where R = RU{+00, —oo}and Z = ZU{+00, —oco}) is much more complex
than that of 2(E) [11]. Therefore it is difficult to give a similar description of
annular operators on grey-level functions in terms of adjacency relations (this
time between pairs (p, 1), where p is a point and ¢ is a grey-level). Moreover,
the computer implementation of morphological operations is more complex

for grey-level images than for binary ones; therefore such a general approach
becomes rather technical in practice. We have thus decided to make some re-
strictions, namely that our operators are translation-invariant.

Indeed, in [ 13] we took E having the structure of an abelian group (such as
Z¢ or RY), and then we could characterize translation-invariant annular open-
ings of the form id A 8,4 for grey-level functions: this operator is idempotent
if and only if the support of grey-level structuring function A (that is, the set
of points x such that A(x) > —o0) is symmetric, and every point x of that
support satisfies A(x) + A(—x) > 0O (cfr. (1.3)). This condition on the struc-
turing function A is the generalization of the requirement of symmetry for the
structuring element involved in Serra’s original annular opening for sets. Now
this characterization given in [13] of translation-invariant annular openings for
grey-level functions was a particular case of a similar characterization given in
a wider theoretical framework; more precisely, we considered as object space
an arbitrary complete lattice having certain general properties (the so-called
“Basic Assumption” in {7]), which allow the definition of the Minkowski op-
erations @ and © on that lattice, in such a way that the usual properties of &
and © are satisfied. Particular cases where this theory can be applied include
P(E) (where E = R? or Z4), Fun(E, R), and Fun(E, Z), but also more exotic
cases, such as the lattice of convex sets, or the one of closed sets, etc.

In this section, we will generalize the result of [13] to annular filters, and
study the idempotence of operators of the form id A8 4 (annular opening),idveg
(annular closing), and e5 Vid A8, (annular filter), where 8, is the dilation X >
X @A and ep is theerosion X + X © B; the space of pictorial objects will be as-
sumed to be a complete lattice satisfying certain conditions, in particular the so-
called “Basic Assumption” which allow the definition of Minkowski operations
© and ©. The arguments we will use will have a superficial similarity to those
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Throughout this secuon we assuine that ¥ 1s a complede luttive 1.7, which
mivans that every part 7 of # has a least upper bound /&, called the supremam
oo, and a greatest fower bound A 4 called the infimum of 7 in particular
s a greaiest element T and aleast elesnen O detined by

= \/ ¥ /\\ﬁ and O = /ﬁ\ - \f W,

The binary join and meet operations v, A are particular cases of the supremum
and infimum operations \/, AL in the sense that for 4. 8 £ % we have

AAB = ,f\ {A, Bj.

We will make several technical assumptions on the complete lattice 7, hut this
reguives tirst recalling a few definitions. mostly from {713}

AvEB = \/M. Bl  and

Definition 3.1 Let ¥ be a complete lattice.
(71 Givenapart # of ¥ and X € ¥, we wrilg

MXy=1Y e s Y < Xi

(i) A part # of &' is said sup-generating if every X & ' is the supremum of
some part of 4. in other words if

VX € .7, X = \/ H{X)

Note that we generally assume that O ¢ ¥.because O would be redundant
in that sup-generating family.

(i) A part # of ¥ is called lower if forevery ¥ € % and Z € ¥ such that
Z < Y., we have either Z € @ or Z = . (Note that this definition here
is slightly different from that given in {13, Definition 3.1 {i/}], because
there we required that Z < ¥ € # implies Z € #: thus we say here that
# is lower whenever we would have said in [13] that # v { Q] is lower)

{ivy We say that  is infinite supremum distributive {in brief, ISDy. if the
meet operation A distributes the supremem operation \/, in other words
for every X € ¥ and every non-empty family Y.,/ € . of elements of

i, we have: '
xa(\Vr)=\Vwarn.
e d ig ¥
(vy We say that &' is infinite infinum distributive (in brief, JIDj. if the join
operation v distributes the infimum operation /\. in other words forevery
X ¢ ¥ andevery non-empty family ¥,./ € ¢, of elements of . wehave:
xv{Ar)=Awvr.
® o ’ ie 5‘/

ie.¥
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(vi) An automorphism of £ is a permutation T of . such that for every
X.Ye? X<Y & (X)) <t(Y).

There is no standard terminology concerning ISD and IID, some mathemati-
cians would exchange the definitions (iv) and (v) we gave for them. Note that
an ISD (or IID) complete lattice is distributive, and we recall that every distribu-
tive lattice is modular. In order to study & v id A § (where & < §), we assumed
in the previous section that .¢ is modular; in this section we will rather use the
stronger condition of distributivity, and even in some cases ISD or IID. Now
we recall the conditions which allow the definition of Minkowski operations
on a complete lattice:

Definition 3.2 A Minkowski latticeis atriple (£, £, T), where ¢ is a complete
lattice, £ is a sup-generating part of £, and T is a set of automorphisms of ¥,
satisfying the following three conditions:

(a) T is an abelian group for the law of composition, that is: id € T and for
og.teT,07'eT,oreT,andot = 710.

(b) {isinvariantunder T, thatis: forx e fandt € T, t(x) € £.

(¢) T is transitive on £, that is: for every x, y € £, there is some v € T such
that 7(x) = y.

Furthermore, we say that the Minkowski lattice (%, £, T) is lower if the sup-
generating set £ is lower, in other words forx € £ and y < x, either y = O or
yeld.

Note that by (¢) we have always O ¢ £. Also we use lower-case letters
to designate elements of £ (other elements of ¥ are designated by upper-case
letters). In [7], we showed by a standard group-theoretic argument that in (¢),
the automorphism v € T such that t(x) = y is in fact unique. Thus, fixing
‘ome “origin” o € £, we obtain a bijection T — £ : 7 +> 1(0), and for x € £,

'e write 1, for the unique element of T mapped on x by this bijection, that

i 7 (0) = x; then 7, is called the translation by x. This bijection provides ¢
with the structure of abelian group (for an addition operation +) isomorphic to
T, namely x + y is defined by 7., = 7,7, in other words x + y = 7,(y) =
7,(x) = 7,7y(0) = 1,7, (0), the neutral element is o, and the opposite —x of x
is defined by t_, = 7 !. Fora € £ and X € &, we write X,, for 7,(X), and we
call it the translate of X by a.

For example for E = Z¢ or R? (in fact, whenever E has a structure of
an abelian group), #(E) is a Minkowski lattice by taking for ¢ the family of
singletons, and for T the set of all translations. Also Fun(E, ), where E is an
abelian group and 7 = R or Z, is a Minkowski lattice by taking as members

of ¢ the “impulse” functions fy, ) forh € E andv € R (resp., v € Z), defined
by setting for every point p € E:

v ifp=h,
finn(p) = {__ooif;'; Zh (3.1)
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and as members of T all translations 7, fork € E and v € R (resp., v € Z).
defined by setting for every function F and a point p € E:

T(h.u)(F)(p) = F(p — h) -+ v. (32)

Note that for a grey-level function F, the set of (h, v) such that fi, .y € £(F)
is the umbra of F [11].

In [7] we defined on any Minkowski lattice the two Minkowski operations
@ and © by

Xey=\/ X, ad xer= A x_, (3.3)
yeL(y) vei(y)

and we showed that they have essentially the same properties as in the case of
sets or grey-level functions. From these we derived the dilation 84 : X — X B A
and the erosion ¢4 : X — X & A by an arbitrary element A of .#.

Remark The conditions (a)—(c) in Definition 3.2 were introduced in [7], and
were called the “Basic Assumption” there. The terminology “Minkowski lat-
tice” was introduced in [12]. In 6], the terminology “convolution lattice™ was
used to designate a complete lattice satisfying the Basic Assumption (in other
words, a Minkowski lattice), with the further condition that all invertible ele-
ments of ¥ belong to £:if X,V € Yand X @Y = o,then X € £. It can be
shown that a Minkowski lattice is lower if and only if for X, ¥ € % satisfying
X @Y < o, we musthave X € £.In particular, a lower Minkowski lattice is a
convolution lattice.

Example 3.4 (a) The family Con(R?) of convex subsets of RY, ordered by
inclusion, is a Minkowski lattice for the group T of translations, with £ con-
sisting of singletons; the latter are aroms, in other words minimal elements of
the lattice, and as this lattice is generated by atoms, it is said to be atomic. In
Con(IRY) the infimum and supremum of a family of convex sets are respectively
their intersection and the convex hull of their union. This lattice is not modular,
and hence not distributive.

(b) Let B be any nonvoid subset of E = R¥ or Z%. Consider the family &
of all subsets of E which are unions of translates of B, in other words which
take the form X @ B for some X C E. Ordered by inclusion, & is a Minkowski
lattice for the group T of translations, with £ consisting of all translates of B.
A family X; (i € .#) of elements of & has its union | J;c ¢ X; as supremum,

while its infimum is the set
(ﬁ Xl> o B,

ied

where o denotes the opening operation defined by setting X o B equal to the
union of all translates of B included in X. When B is bounded, the elements of £
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///////////

B ////
WWJ‘:"{%:
ijf::ﬁ?:
i
LvM=LUuM MnH
A
AN
ALV
| {“;u.ﬂu.
LvM)nH MAH=
MnH)oB
LvM)yAH= Lv(MAH)=
[LvM)nH]oB LuMAH)

Fig. 3. The Minkowski lattice % consists of all subsets of Z* which can be decomposed as a
union of translates of B (the latter are the sup-generators of .%). Three elements L, M, and H of
&, where L. < H(L and M are shown hatched, H is transparent). We see thatL v (M A H) is a
strict subset of (L. v M) A H. Hence the lattice . is not modular

(the translates of B) are atoms, and so & is atomic. This lattice is generally not
modular, and hence not distributive; we illustrate this fact in Fig. 3 ford = 2
and B consisting of a square.

(c) The family Lip(R¢) of Lipschitz functions RY — R with Lipschitz con-
stant 1 (including the constantly infinite functions +o00 and —oc¢) is a Minkowski
lattice for the same group of translations as in Fun(RY) (see (3.2)); here the
members of £, instead of being the “impulse” functions f ., defined in (3.1),
are the “cone” functions ¢ 4 (for b € RYandv e R) defined by:

cam(p)=v—Ilp—hl  (peR?.

Note that in Lip(R¥), the infimum and supremum of a family of Lipschitz func-
tions is their usual infimum and supremum in Fun(IR¢); thus Lip(IR?) inherits
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the HD and ISD propetiies of Pun(R7). See [10] for a detailed study of this

satlwe.

Fromn now on, we sl freely use the techmigues introduced in {7, Section 3 for
smanipuisting Minkowski operations in conjunction with elements of £, Readers
winy want W study our proots in depth are referred w this fundamental paper,
W will consuder the generalivation o Minkowski lattices of annular il-
ters und symumeine structunng elements, but this requires first a few technical

resulisg
Lemma 3.5 Ler (2 80Ty be a Minkowski lattice.
(i) Forx. v € {owe have

X &y e 7, €T, &= -y € -y & T, ST,

iy Fora b et wehiveavb el o (~alvi-bretanda bhel

(—a} A=) € L Furthermore, if €is lower then the four siatements are
equivalent:

avh et == {(—a)v{~b) € ¢ e arh & e {~—gin{—bta £,

Proof. (i)t x < viothenforevery i € ¢ we have 7001 < ryivioand soby {7,
Lemma 3.3}, forevery 2 € & we get:

T, L) = \/ T.x) < \/ r.ivt= 144,

cedid} R3ar4

and hence 1, < v, Conversely, if r. = v, then x = {0} < .00} = v, am
the two are equivelent. We get similarly the equivalence between —yv < -2
and -, < ... Finally, since 7. () = —vand 1., - (3) = —x, we get
RS M- GRS S o B SN B B el TR

1ii) We have 1o, .0ta) = —b and 1, »(b} = —a. Thus t_,_pla v b} =
Topenl@ VT nthy = (=bYvi—mrand 1, planb) = 1, pladnt , 4ih) =

{—h) A (—a). so that we get
avbet & T oplavb el &= (—a)Vi~het

and
anbet e T, Wanblet e (—ayAi-b et

Suppose now that ¢ is fower, in other words O < v < x € ¢ implies v € ¢
Ifav b et thenwriting ¢ = ¢ Vb, we have o < cand b < ¢, so that
by (i) we get —¢ < —g and —¢ < —b, that is —¢ < {—a) A (=5 thus
—~d 2 (=g} A=b) > —¢ > O, and as £ is lower, we get (—d) S (=) € ¢
Conversely,if (—aiA(—b) € {Lthenwritingd = (—a) (b)Y wehaved < —u
andd < —b,sothatby (/) we geta < —d and b < —d.thatisa v b < —d:
thus O < a < avhb < —d andas tis lower, we get a v b € . Therefore
¢

v h et & (—a)A{~b) € ¢, und the four staterents are equivalent, §
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Let us now generalize to the framework of Minkowski lattices the notion of a
symmetric structuring element (used for annular filters on sets):

Definition 3.6 Let (&, £, T) be a Minkowski lattice, and let A € ..
(i) Let —£(A) = {—a | a € £(A)}. The symmetric part of A is the set
0*(A) = L(A) N —L(A) ={a € £L(A) | —a € L(A)}.

(i) We say that A is symmetric if A = \/ £*(A).
(iii) We say that A is annular if for every a € £(A) there is some a’ € £*(A)
such that @’ > a.

For & = #(E), these definitions of a symmetric set and of an annular set reduce
to the usual notion of a set which is symmetric w.r.t. the origin. In the case where
¥ = Fun(E), a function F is symmetric if and only if it is annular, and this
means in fact that the support of F (the set of x € E such that F(x) > —o0)
is symmetric and F(x) 4+ F(—x) > 0 for every x in that support. For example
if E = R, the function F given by F(x) = x for x = 0 and F(x) = 0 for
x < 0is symmetric, and also annular. Thus for functions, unlike sets, the word
“symmetric” does not take the usual meaning of “invariant under the central
symmetry of E”.

In [13] we restricted ourselves to annular openings and to annular structuring
elements (see equation (3.4) and Theorems 3.3 and 3.4 there). Here we will
study annular openings id A 84, annular closings id Vv &4, and finally annular
filters £ Vid A 84, and we will also consider both conditions on the structuring
elements, namely being symmetric or annular, the former being in fact slightly
more general, but aiso easier to use. The following result gives the relation
between these two properties:

Proposition 3.7 Let (%, £, T) be a Minkowski lattice. An annular element of
& is symmetric; if & is ISD and € is lower, then conversely a symmetric element
of & is annular.

Proof. Let A be annular. Forevery a € £(A) wehavea’ € £*(A) such thata <
a’,sothata < \/ £*(A); we deduce that \/ £(A) < \/ £*(A). As £*(A) C £(A),
we get the equality \/ £*(A) = \/ £(A) = A, meaning that A is symmetric.

Suppose now that ¢ is ISD and ¢ is lower, and let A be symmetric. For
a € £(A) wehavea < A = \/ £*(A) and ISD gives

a=an(\/ewWw)=\/ @nby
bel*(A)

as a > O we deduce that there is some b € £*(A) suchthata A b > O. As
a>aAb> O and{islower, we geta A b € £, and by Lemma 3.5 (ii) we
haveavbecf letad =avb,;asa b e f(A)wehavea' < Ajash < a',
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by Lemma 3.5 (i) we have —a’ < —b, and as b € £*(A), we have —b < A, s0
that —a’ < A. Thus @’ € £ with both @’ < A and —a’ < A, so that @’ € £*(A),
and of courses ¢ < a@’. Therefore A is annular. g

The foll(J)wing result generalizes well-known properties of symmetric parts of
R or Z4:

Proposition 3.8 Given a Minkowski lattice (&, £, T), the family of symmetric
elements of & is closed under the supremum operation, and it contains the
universal bounds O and I. Furthermore, the Minkowski sum A & B of two
symmetric elements A and B is symmetric.

Proof. As £(I) = £ and £(0) = ¥, O and [ are symmetric. Consider a family
X;,i € .7, of symmetric elements of &, and let ¥ = \/ief X;. If 7 is empty,
then ¥ = O, which is symmetric. Otherwise we set

ty=|]Jex:
ied
we have £ 4 C £*(Y), and forevery i € #, X; = \/ (X)) < Vg We

deduce that
r<\is=s\Vems\Veay =y,

so that Y = \/ £*(Y), in other words, Y is symmetric.
Let A and B be symmetric. As the Minkowski sum distributes the supremum
operation (see [7, Subsection 3.2]), we have

aeB=(\Vewls(Vewm)=\ V wen=\ \/ @b
ael*(A) bet*(B) ael*(A)bet*(B)

now for a € £*(A) and b € ¢*(B) we have —a € £*(A) and —b € £*(B), so
that both « + b and —(a + b) belong to £(A & B) (we used the fact that for
x < Aandy < B,wehavex +y < A @ B, see [7, Section 3]). Therefore

aeB=\ \/ @+hz\/ruaep <\/taeB =408
act*(A) bet*(B)
and A @ B is symmetric. R

Note that this result does not extend to the infimum and Minkowski ditference.
For example in the Minkowski lattice Fun(R), the functions C and D defined

by
Clx)y=ux and D(x) = —x

are symmetric, but their meet C A D satisfies

(C AD)(x) = —|xl,
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and it is not symmetric. Similarly the functions A and B defined by

| : 1<2, o ifl <1,
Ax) = {—oo if x| > 2, and  B(x) = {—oo if x| > 1,

are symmetric, but A & B satisfies

x—1iflx <1,
(46 B)(x) = {——oo if x| > 1

and it is not symmetric.

From Proposition 3.8 we deduce that the set ¥ of symmetric elements
of & is itself a complete lattice for the ordering by <. Here the supremum
operation coincides with the one in & (for X; € &, i € J, \/,cg Xi € &),
but the infimum is different: the infimum in & of a family X; € &, i € .4,
is the greatest element of ¥ whichis < A, s X;; we write it [ [, # X;; thus
[Ties Xi € Fand [],c s Xi < N\jey Xi- For A, B € &, we write AN B for
their meet in the lattice .%; in other words A M B is the greatest symmetric C
such that C < A A B.

In [13, Theorem 3.3] we showed that given an ISD Minkowski lattice
(#£,£,T) and an annular A ¢ &, then id A §, is idempotent, and the ele-
ments of . fixed by id A §4 are suprema of terms of the form x vV (x +a)
for x € £ and a € £*(A). We will extend here this result to the case where
A 1s symmetric, and obtain the dual result for £4 Vv id when & is IID instead;

we rely on the following general result, which should be compared to [13,
Proposition 3.2]:

Proposition 3.9 Let ¥ be a complete lattice, and let & be a family of automor-
phisms of & such that foreveryo € &, 07 € ¥, setd =\/ S and ¢ = N,
in other words §(X) = \/,cp 0 (X) and e(X) = N\, 0 (X).

(i) If £ is ISD, then id A § is idempotent, and an element of & is fixed by

id A & if and only if it is a supremum of terms of the form X v o (X) for
XeYando € .

(1) If & is 1D, then e vid is idempotent, and an element of & is fixed by ¢ vid

if and only if it is an infimum of terms of the form X A o (X) for X € &
and g € .

Proof. (i)Foro € ¥ and X € &, we have
S[X Vo] zo[XvaX)]ve[Xvo(X)]
=[o) vl X)) Ve X)) vX] = X vo(X),
from which we derive that

AdAS[X vo)]=[XVvoX)]As[XVvaX)]=XVo(X).
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Thus X Vv o(X) is fixed by id A 8: by [13, Proposition 2.2], a supremum of
terms having that form X v o (X) (with ¢ € &) is fixed by id A 5.

Take any ¥ € &. As ¢ is invariant under the permutation o + o', we
have

s =\ o=\ o'm =\ [o"' ") vo)].
aes oed e
As #1s ISD, we get

yaswy =y a(\/[o v U(Y)])z\/([) A ]V [¥ Aa(r)])

O’E-,()"’7 Ut:/

V ([¥ no~' ] voly AoT!)]).

oge

Hence (idA8)(Y) = Y A8(Y) is a supremum of terms of the form X v o (X)
(for X € ¥ and 0 € %), and so it must be fixed by id A 8. This means that
(id A 8)*(Y) = (id A 8)(Y), and id A § is idempotent.

Finally, forevery ¥ € ¥ fixedbyidAd, wehave ¥ = ¥ Ad(Y), which takes
the above form of a supremum of terms X V ¢(X) where ¢ € .. Therefore
this form characterizes elements of & invariant under id A 8.

(i) 18 the dual of (i) under the inversion of the order relations <and >. 8

Lemma 3.10 Ler (&£, £, T) be a Minkowski lattice and let A € ¥ be symmetric.
Then

\/ T, = \/ T_y and /\ T, = /\ Ty, (3.4)

aet*(A) act*(A) aef*(A) ael*{A)

in other words for every X € & we have

xeA= \/ X.=\/ X, and

aet*(A) aef*(A) aet*{A) aei*{A)

(3.5)

Proof. Let X € . As A is symmetric, we have A = \/ £*(A), and the fact
that the Minkowski sum distributes the supremum operation implies that

xea=xo(\Vrw)=\/ xeq \/ X,.
agt*(A) aeet

As £*(A) is invariant under the permutation a — —a, we get

XPA= \/ Xa‘: \/ X"U‘

act*(A) ael*(4)

xea= N\ Xo= \ X
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in other words the left half of (3.5), and we deduce the formula

da = \/ Ty = \/ Tg = \/ Teu»

asé(A) aef*(A) ael*(A)

that is the left half of (3.4). Thanks to [7, Lemma 3.4] we deduce from this
equality the following one:

Eq = /\ T = /\ Tea = /\ Tas

acl{A) acf*(A) act*(A)

in other words the right half of (3.4), which gives

X6A= /\ Xa= /\ X—tu

ael*(A) acf*{A)

that is the right half of (3.5). &

Combining the above two results for ¥ = {z, | a € £*(A)}, we obtain the
following:

Corollary 3.11 Let (&, £, T) be a Minkowski lattice and let A € & be sym-
metric.

(i) If & is ISD, then id A 84 is idempotent, and an element of ¥ is fixed by
id A 84 if and only if it is a supremum of terms of the form X v X, for
X e Panda c £*(A).

(ii) If & is IID, then g4 v id is idempotent, and an element of & is fixed by
ea Vidifand only if it is an infimum of terms of the form X A X, for X € &
anda € £*(A).

The following example shows that we cannot avoid the ISD condition for prov-
ing the idempotence of id A 54:

Example 3.12 Let & be the family of all closed subsets of R?, ordered by
inclusion. Then it is an IID Minkowski lattice, where the infimum and supremum
of a family of closed set are given respectively by their intersection and the
closure of their union, £ consists of all singletons, and T is the family of all
translations of IR?. Moreover ¢ is atomic, the elements of ¢ forming the atoms,
but . is not ISD. There is nevertheless a symmetric structuring element A for
which id A 84 is not idempotent: we take

A={(z,0) |z € Zand z # 0}.

Indeed, let X be the closed set consisting of the two points (0, 1) and (0, —1),
and of the curve made of all points (x, f(x)) for x € R, where f is a strictly
increasing continuous function satisfying lim,_, ;oo = +1 and Hm,, o = —1
(for example f(x) = % arctan(x)). We illustrate X and A in Fig. 4 (a)).
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(a) ——oeoo—‘-—oooo~—
A

(c) - e ° ® [ ° ® ° ® = -
B -+
UY,=U Y.

a6A 2 aeA 8

Fig. 4. The cross indicates the position of the origin in R, (a) We show two closed sets A and
X; A is symmetric (in the sense of Definition 3.6). (b) In the Minkowski lattice of closed sets
of R?, the dilation 84 (X) of X by A is the supremum of translates X, of X by points a € A, in
other words the closure of their union; now Y = (id A §,)(X) is obtained by intersecting X with
SA(X). (¢) The union of translates Y, of Y by points a € A is closed; it is thus the dilation 8§, (Y)
of Y by A; clearly the intersection of Y and 8,(Y) is empty, so that Y # (id A §.)(Y) = .
Hence id A 84 isnot idempotent. Thus Corollary 3.11 fails here because the Minkowski laitice
of closed sets of R? is only distributive, but not ISD

As explained in [7, Subsection 4.2], §4(X) is the closure of the union of
all X, fora € A. Now all X, (for a € A) are disjoint from X, but the points
(x, 1) and (x, —1) (for x € R) are adherent to the union of all X,; thus (0, 1)
and (0, —1) are the only points of X inside the closure of the union of all
X,, and so ¥ = (id A 84)(X) consists of the two points (0, 1) and (0, —1):
see Fig. 4 (b). Now it is easily seen that (id A d4)(Y) = # # Y, that is
Gd A 84)2(X) # (id A 84)(X): see Fig. 4 (¢).
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Our next example shows that we cannot avoid distributivity for proving the
idempotence of €4 Vv id:

Example 3.13 Let & be the family of all “horizontally convex™ subsets of
RZ, in other words sets S € R” such that for every t € R, the horizontal

cross-section
X, ={xeR|(x,1) e}

is convex. Ordered by inclusion, it is a complete lattice: the infimum of a family
of “*horizontally convex” sets S; is their intersection, while the supremum of that
family is HC H({J; Si), the “horizontally convex hull” of their union; here the
“horizontally convex hull” HC H(S) of a set S is the set whose horizontal cross-
sections are the convex hulls of the corresponding horizontal cross-sections of
S:

X,(HCH(S)) = CH(X,(S)),

where C H(X) denotes the convex hull of X. Taking £ consisting of all single-
tons, and T the family of all translations of IR?, & is a Minkowski lattice. Note
that % is not distributive. We take the symmetric structuring element

A=[-1,11x{-1,1}
and the horizontally convex set
X =(0,3]x{=2,0,2) U{(=2, =1), (=2, 1)}

shown in Fig. 5. (a). Here we have

(ea Vid)(X) = HCH((X 8 A) U X),

where X © A is taken in the usual sense (of the lattice #(IR?)), and this gives
(see Fig. 5. (b)):

(24 Vid)(X) = ([0,3] x {~2,0,2}) U ([-2,2] x {~1, 1}).
We get then (see Figure 5 (¢))

(4 Vid)*(X) = (g4 Vid)(X) U ([—1,0[x{0}) D (e4 v id)(X).
Thus &4 Vv id is not idempotent.

The following result represents in some way a converse of Corollary 3.11 (i).
It generalizes [13, Theorem 3.4] in the sense that it uses a weaker hypothesis,
namely that ¢ is distributive, where in [13] we required the elements of £ to
be “co-prime” (something which implies the distributivity of &, see [13, Ex-
ample 3.2]; note also that the original statement of [13, Theorem 3.4] mentions
the condition that & is ISD, but the proof uses only the fact that % is distribu-
tive). Recall that the definition of the translation by an element p of £, of the
Minkowski operations @ and ©, and of symmetric elements of %, depend on
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(8) X
A @
X

b [} — ——————————
)] Yoo

£,(X) Y=Xve, (X)
(© SRV C

£,(Y) Yve,(Y)>Y

Fig. 5. The cross indicates the position of the origin in R?. (a) We show two horizontally convex
sets A and X; A is symmetric (in the sense of Definition 3.6). (b) In the left figure, hollow circles
and dashed lines indicate X; in the Minkowski lattice of horizontally convex sets of IRl, ea(X)is
the horizontal convex hull of the usual erosion of X by A, and X v £4(X) is the horizontal convex
hull of X U g4 (X). (¢) We construct similarly £, (Y) and Y v e4(Y) for Y = X v g5 (X): here in
the left figure dashed lines indicate Y. The two arrows point to a segment included in Y Vv £ (Y)
but not in Y. Thus Corollary 3.11 fails here because the Minkowski lattice of horizontally convex
subsets of IR? is not distributive

the choice of the “origin” o in ¢ (the same happen in Euclidean space); thus
it is not astonishing that this element o will appear explicitly in the conditions
imposed on the elements of & from which dilations or erosions are made.

Proposition 3.14 Let (¥£,4,T) be a distributive lower Minkowski lattice. Let
A € & suchthat o ¢ £(A) and id A 84 is idempotent; then A is annular.

Proof We have (id A §4)(0) = o A A. Suppose thato A A # O. Then the
fact that £ is lower implies that o A A € £; weseto A A = x. Asid A da is
idempotent, we have

XA A= ({d Ay (x) = (id Ada)(d A ) 0) = (ld A da)o) = x,

that is x < A,, and by translating by —x, we get o < A, contradicting the

hypothesis. Therefore 0 A A = O. For every z € ¢ we have thus
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aA ={on A= 00= a.

“~

{3.6)

Take g ¢ #lAn andlet X = ovaand ¥ = (id ~ S(X). We have
SalX)= AV A, and (id A8 (X3 = X A&y =tovaln AV AL By
distributivity, this gives

Y=iovalAldv A =AAV@rA)v(oa AV ian A

Nowo A A =ar A, = 0by(3.6%alsoa e t{A) implies thata < Al in
otherwords g A A = ¢. Hence ¥ = avie n A Twehado A A, = O.
then we would get ¥ = a.andas ¥ ={( id A 843 X) and id A 84 is idempotent,
this would imply thata = (id A §4)a@) =a A Ag.buta n A, = O by (36l a
contradiction. Hence o 4 A, # Onas fislower,o A A, € Lrwesetu = 0N A,
Thus

<o H< A, (37

and ¥ = a v a. As ¥ = {id A §4)(X) and id A 84 is idempotent, we have
(id A 80Y ) = Yinow 841Y) = A, v A, and s0 (d A S0 Y) = {a v uy A
(A, v Ay): distributivity gives thus:

aviu=lavidA{d, vA)=@AAD VA ADVI@ANAD Y A AL

Now (36t givesa A 4, =un A, =0 also u < A, by (3.7). in other words
u ~ A, = u. Therefore the above equation reduces to

avu=uvi{aAAy).

nd applying again distributivity together with the fact that 2 = a vV u. we
biain:

i o= d Ay = a..»'x{u\v*(as\A“)} = (zz./\u)\/[a/\(a/\Au)] = (aAu)V{iarnA,).

Butu < A, by (3.7, sothata Au < a A A, = O by (3.6), and the above
equation leads 50 g = a A A, thatis

(3.8)

a< Ay

Leta =a—u. Asu < obyt3.7). wehavea = (a—u)+o = (a—u)+u =
a.Ast < A by (3.7hwehave —a’ = u—a < (Ay)-, = A, thatis—a’ € £(A).
Asa < A, by 3.8) wegeta =a —u < (A, = A thatisa’ € £(A).

Therefore we have shown that for every a € £(A) there is ' € ¢(A) such
thata' > g and —a’ € £{A). thatis A is annular. §

Note that for every A € & such that o € £(A), we have id A §4 = id, which
is obviously idempotent. It would be interesting to obtain such a result in the
case of the idempotence of £4 v id.

In order to build an annular filter we will require two symmetric elements
A and B of . such that e < 84, and verify the idempotence of e Vid A 4.
We ¢an state our main result:

- osiheoretical fra)

proposition 315 1
alliD. Let A, B
empotent.

prof. Let € =
150= O forevi
wking ¢ € #(C),
gebnition (3.3) 9f
c € ((B), this &V
g {(4) wehave

£}

mdwededucethz

Since & is IS
implies that id A ¢

Leta € £(A),
adx € Z(O A (&
Ax < b+a-+
pradtc <ot
bea el(A) N4

et Xelar
othat y+b <
Asa' € £(A) anc
yrb+d £ X,

7-’lr-}-a“l—c()’) = ()
A Tprarpe(y) <
fb-{-a’-l—c(;
forevery X € %
LetX € &,

thenz < YOI
W=(z+e)A.

t+e=(z+

50 that
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Proposition 3.15 Ler (£, £.T) be a Minkowski lattice such that & is both ISD
and 1ID. Let A, B € ¥ be symmetric and such thato < A @& B @& (AN B).

Then eg < 84 and the three operatorsid A 84, eg Vv id, and g5 v id A 84, are
idempotent.

Proof. Let C = AMB.Aso < A@® B& C, we have C # O (because
X&® O = O forevery X € £,[7]), and as C is symmetric, £*(C) is not empty;
taking ¢ € £*(C), wehave ¢ < C < Band —c < C < A.Let X € &. By
definition (3.3) of X © B, forevery b € £(B) we have X © B < X_,; as
¢ € £(B), this gives X & B < X_.. By definition (3.3) of X & A, for every
a € t(A)ywehave X, < X B A;as—c € £(A), thisgives X_. < X @ A. Hence

eg(X)=XOB<X_,<X®A=84X),

and we deduce that 5 < §,4.

Since .# is ISD and IID, while A and B are symmetric, Corollary 3.11
implies that id A 84 and £p Vv id are idempotent.

Leta € £(A), b € £(B), and ¢ € £*(C) suchthato A (a + b +¢) # O,
and x € oA (b+a+c)). Weseta' =x—b—cithusx =b+a +c
Asx < b4 a+4c, wehave a’ < g, so that a’ € £(A); as x < o, we have
b-+a +c <oandhence b+ a’ < —¢; also ¢c. —¢ € €(A) N £(B), so that
b+a € £(A)NLB).

let X e andy € £(X © B). Asbe £(B),wehavey < X © B < X_,,
so that y + b < X, similarly, as b +a' € ¢(B), we have y + b +d’ < X.
Asa € l(A)andy +b < X, wegety+b+a <X, <X A, and since
v+b+4+a <X, wegety+b+a <X A(X@ A). Nowc < A, sothat

Thrate(M) = (v +b+ad)+c < (XA XS A)) < (XA XSA) S A

AS Tpia4e(y) < (X A(X @ A)) @ Aforevery y € £(X © B), we deduce that

Tppar+c(X © B) = \/ Tb+a’+z-(_\’) =< (X AX B A)) @A
yel(XOB)

for every X € &, in other words 7,65 = Thya+c68 < Sa(id A S4).

LetX e £, Y =(XOB)Vv X,andz € £(Y & B). As ¢ € {(B), we have
thenz < Y& B <VY_.sothatz+c<Y.LetV=(z+c)A(XOB)and
W= (Gz+c)AX:asz+c <Y = (X6 B)VvXand & is distributive, we have

zre=@E+OAY =@+)A[(XSB)VX]
=[z+rXeB|V[z+)AX]=V VW

so that

c+e=(Ven)v (Vew) =\ uew).
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Forv e £(V),asv < X& Bandb € £(B),wegetv < X_p,andsov+b < X,
and as @’ € £(A), wegetv+b+a’ < Xy < X @ A. On the other hand, for
wel(W),asw < Xandb+a' € {(A),wegetw+b+a < Xpro S XD A,
Hence forevery u € £(V) UL(W),u+b+a’ < X @ A; now

tctbta = mae+0) = mrw( \/ ((V) U L))
= \/{tb+a«(u) | u e L(V)uew)}
=\/{u+b+d luetv)yuewl}

from which we deduce that 7y,44.(z) = 2+ ¢+ b+a’ < X @ A. Asthis holds
for every z € £(Y © B), it follows that

T1,+ar+c(((X@B)VX)eB) = l’b+u'+¢v(yeB) = \/ Tpta+c(2) T XBA
7€l (YSB)

for every X € &, in other words t,65(ep Vid) = Tpyp+.e5(ep Vid) < 84.

Now A®B = \/aee(m \/bee(B)(a‘H?) andLemma 3.10 gives (A® B)HC =
\/cef*(c)(A & B)., so that

AeBoC=\/ \/ \ @+b+oy;

acl(A) bet(B) cel*(C)
180 <A@ B C,byISD we have
o=on(aeBaC)=\/ \/ \/ (eala+b+0)

acl(A)bel(B)cet*(C)

= \/ \/ \/ \/Z(oA(a+b+c))=\/-’[,

ael{A)bel(B)cet*(C)
where

r=|J{tlorn@+b+0)laetA), bet(B), cet(C)and
0/\(a+b+c‘);ﬁ0}.

Then [7, Lemma 3.4] gives

id=r1, = \/ Ty

xed

Now we showed above that for every such x € # we have .65 < §4(id A 8,4)
and 1,ep(ep Vv id) < &4, so that we get

en=(\/ n)es = \/ (weep) < 84lid A 80)

e e
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and

entrs vid) = (\/ 1 )epten v id) = \/ (nestep vid) < 8.

v A ve

Combining the inequalities £5 < S4008d » 840 and epleg v id) < 84 with the
wdempotence of id A 8, and £ 5 v id. it follows from the sufficient condition for
sempotence given in Corollary 2.4 that ¢5 v id ~ 34 1s idempotent.  §

The above proofs that rap, . ep < S400d ~ 840 and 10, wonlry vid) < 8,
were inspired by the arguments given after (2.10) for 0- and 1-triple points in
the case where ¥ = #(E).

When A = B, we have A M A = A, and Proposition 3,15 becomes:

Corollary 3.16 Ler (€. Ty be a Minkowski lattice such that # is both ISD
and HD. Ler A € & be svmmerric and such that o < AGAS A Thene, < 8,4
and the three operators W/ A 8y, e4 v id, and £ v id A 8y, are idempaotent,

Let us now consider the meaning of the above results in the lattice #(F) of
subsets of £ and the lattice Fun( £, 771 of grey-level functions £ — 7, where
E=R{orZand 7 =R=RU{+0c, —ocor Z = Z J {+=x. —x]. Both
are Minkowski lattices satisfying all the properties mentioned above. namely
they are both ISD and IID. and ¢ is lower. Therefore all our results apply in
these two cases.

In the case of A(E), a structuring element A I8 symmetric (in the sense
of Definition 3.6) if and only if it is annular, and this simply means that
A=A = {—a | a e A}, in other words that it is symimetric in the ordi-
nary geometric sense. The family of symmetric structuring elements is closed
under union and Minkowski sum (cfr. Proposition 3.8}, but also under inter-
section, complementation, and Minkowski difference. By Corollary 3.11 and
Proposition 3.14, for any structuring element A, id A 8, is idempotent if and
only if A is symmetric or 0 € A, where o is the origin in £. Thanks to the
duality by complementation, the analogue of Proposition 3.14 for erosions 1s
also true, so that £4 Vv id is idempotent if and only if A is symmetricore € A
Note that foro € A, id A 84 = ¢4 vid = id. In Proposition 3,15, AN B is
symmetric, so that A 1 B = AN B. and hence the hypothesis reduces to the
fact that A and B are symmetric and that ¢ € (AN BY® A & B: now this
condition means that thereis v € AB Band v € AN B with x + v = o, that
isx = —y,and as A N B is symmetric, this holds iff x = —v € AN B, and so
the condition is equivalent to A N BN (A © B) # ¥ we obtain here what we
said in {8, Proposition 6.1].

In the case of Fun(E. 7} (see {7, Section 4]). the "origin™ in ¢ is the "im-
pulse™ f, ¢ (cfr. (3.1)) where o is the origin of space E. in other words the func-
tion having value 0 on ¢ and — ¢ elsewhere; the formulas for the Minkowski
operations are:



78 C. Ronse, H.J.A.M. Heijmans

(F ® G)(x) = sup (F(x ~ h) + G(h))

heR4

and (F&G)x) = hinnfl(F(x +h) — G(h)),
cR-

with the further conventions, in cases of ambiguous expressions of the form
+00—00, that F(x —h)+G(h) = —oowhen F(x—h) = —ococor G(h) = —o0,
and that F(x + k) — G(h) = 4+o00 when F(x + h) = oo or G(h) = —o0.
Now a structuring function A is symmetric (cfr. Definition 3.6) if and only if
it is annular, and as explained in [13], this means that supp(A), the support of
A (i.e., the set of points p € E such that A(p) > —00), is symmetric and that
for all x € supp(A) we have A(x) + A(—x) > 0 (cfr. (1.3)). The family of
symmetric structuring functions is closed under supremum and Minkowski sum
(cfr. Proposition 3.8), but not under infimum and Minkowski difference (see the
examples given after Proposition 3.8). By Corollary 3.11 and Proposition 3.14,
forany structuring function A, id A8 4 isidempotentif and only if A is symmetric
or A(o) > 0, where o is the origin in E. Thanks to the duality by grey-level
inversion, the analogue of Proposition 3.14 for erosions is also true, so that
g4 V id is idempotent if and only if A is symmetric or A(¢) > 0. Note that for
A(0) = 0,id A 84 = g4 vid = id. Given two symmetric structuring functions
A and B, AN B is defined by setting for every point p € E:

min(A(p), B(p)) if p € supp(A) N supp(B) and
- min(A(p). B(p))
(AnBp) = +min(A(—p), B(—p)) = 0,
—00 otherwise.

In Proposition 3.15 we must check that [A SBH(AN B)](o) > 0.

Let us give a concrete example with space E = Z¢ and grey-level set
7 = Z. We take two symmetric sets So and S; not containing the origin o,
which represent the neighbourhood of the origin in dark (background) and
light (foreground) conditions respectively. We take two grey-levels 1o, t; > 0,
which indicate thresholds in grey-level difference with the neighbourhood at
which isolated dark and light points respectively must be eliminated. We define
the structuring functions Ao and A, having respective supports Sy and S;, on
which they take constant grey-levels # and #; respectively, in other words

t; forpels, .
A"(p)z{—ooforg¢5;, 1=01
Since §; is symmetric and#; > 0, itfollowsthat A; is symmetric (orequivalently,
annular) for i = 0, 1. Note that Ao A has support Sy N Sy, and has grey-level
min(fo, 1;) on it. For a grey-level image [ : E — 7, we have (id A Sa)(I) =
I AN @A), where (I ® A)(p) = [sup,cs, {(p + a)] + 1;. Thus, whenever
the grey-level of a point p is lighter than (superior to) that of all its neighbours
(according to ;) by more than #;, it is decreased accordingly. Similarly (id v
€4,)I) =1V (I © Ag) where (I © Ag)(p) = [infues, I(p +a)] — 1g. Thus,

sl
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whenever the grey-level of a point p is durker than (inferior to) that of all its
netghbours (according 1o S by more than gy, it is increased accordingly. The
two operators i ~ 84, and id v ¢, are idempotent, because Ay and A are
annular: they constitute an annular opening and closing respectively, Now for
80 VS Wwe have £, < 84, and so we can consider the annular operator
g ovid ~dy  Here (ey vid <8yl = (0 S Ay v A (D & Ay is given
as follows

i(i @ Astv i Al B A;ﬁi@[‘}) = (§ & Ag;ﬁ[ﬂ Vlipy o

o Apipritioy
fipy il e A,

(& Anipyif

28]

where

e Appr = [mf Iip +ay] = 1.

8 Ny 4

and (!@Ag}(m:[suplw%wm} + 1.
wels
The behaviour of the annular operator £, v id A 84 combines that of
the annular opening id A 84, and the annular closing id v ¢4,. When o <
(Se NS @ Sy @ Sy, as 1y, 1y > 0, we have

[(AgmAD @ 4@ A f(0) = minto, 1) + 1 + 1y 2 0.

Indeed. Ap T Ay, Ag. and A; are what one calls flas functions, that is functions
having constant value on their support: Ag 71 A; has support Sy 7 §p with value
min{f,. £;) on it, Ag has support Sy with value 7y on it, and A; has support S,
with value #; on it; now it is well-known (and easily verified from formulas)
that the Minkowski sum of flat functions is the flat function whose support is
the Minkowski sum of their supports, and whose value on it is the sum of their
respective values. Thus by what we said above, ¢4, vid A 8, is idempotent: it
is an annular filter. We illustrate its behaviour for d = 1 in Fig. 6.

4 Composing annular openings and closings, and strong annular filters

In Section 2 we studied sufticient conditions for the idempotence of an annular
filter of the form & v id A § (with & < &), defined on an arbitrary modular
lattice, where ¢ v id and id A & are themselves idempotent, representing an
annular closing and opening respectively. In Section 3, & and 8 were defined
in a Minkowski lattice as an erosion and a dilation by symmetric elements:
we generalized there previous results on annular closings and openings. In this
section we will investigate under which conditions the annular filter £ vid A S
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Fig. 6. We consider the one-dimensional discrete space E = Z. Top: the two symmetric struc-
turing functions A and A, satisfy the condition (A, [ A|)®Ag® A, > o, so that for the erosion
&y by Ag and the dilation §; by A, the annular operator g V id A 8, is idempotent. Below we
show a function I and the result of applying the filter g v id A §, to I; the filtered function is
invariant under further filtering

can be obtained by composing the annular opening id A8 and the annular closing
e Vv id, in other words

evidAa s = (e vid)(id A §) 4.1

or  eVidAS = (id A8)(e vid). (4.2)

We will see that these equations (4.1) and (4.2) are related to certain proper-
ties of the operator & V id A 8, namely being an inf-overfilter, a sup-underfilter,
and inf-filter, a sup-filter, or a strong filter (cfr. below). We will then show how
to obtain such properties when the object space on which the operators § and
¢ act is the family of parts of a Euclidean or digital space, and also when they

are translation-invariant operators on a Minkowski lattice (such as the one of
grey-level functions).
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Throughout this section we assume as in Section 2 that the object space is
a modular lattice (%, <). Note that we do not assume that % is complete. We
recall a few definitions from [15,13]:

Definition 4.1 Let ¢ be a lattice and ¥ : ¥ — % an operator on .&. We say
that:

(i) ¥ 1s an inf-overfilter if ¥ is increasing and ¢ = ¥ (id A ¥).
(i1) ¥ is a sup-underfilter if ¢ is increasing and ¢ = ¥ (id v ).
(iit)  is afilter if ¢ is increasing and idempotent.
(iv) ¥ is an inf-filter if ¢ is an idempotent inf-overfilter.
(v) V¥ is a sup-filter if i is an idempotent sup-underfilter.
(vi)  is a strong filter if ¥ is both an inf-overfilter and a sup-underfilter.

The following properties are proved in [15,13]:

Lemma 4.2 If is an inf-overfilter, then id A is idempotent and ¥ > . If
¥ is a sup-underfilter, then id Vv r is idempotent and W* < . If ¢ is a strong
filter, then yr, id A ¥, and id v  are idempotent.

We can now consider what this means for the operator & v id A §:

Proposition 4.3 Let ¢, be two increasing operators on the modular lattice
£, such that e < §, and let r = e Vv id A 6.

(i) W is an inf-overfilter if and only if id A 8 is idempotent and = (& v

id)(id A §).
(i) Ifid A 8 and € v id are idempotent and W = (g v id)(id A 8), then  is
an inf-filter.
(iii)  is a sup-underfilter if and only if € Vv id is idempotent and = (id A
8)(e vid).

(iv) Ifid A 8 and e v id are idempotent and y = (id A §)(e Vv id), then ¥ is
a sup-filter.

(v) Y is a strong filter if and only if id A & and € Vv id are idempotent and
¥ = (e vid)(id A 8) = (id A 8)(e vid).

Proof. (i) By Lemma 2.2 (ii),id A ¢ = id A 8. If id A § is idempotent, then
this and Lemma 2.2 (v) give

Ywdd A ) = (e vid)(id A 8). 4.3)

Now, if ¥ is an inf-overfilter, then id Ay = id A8 is idempotent by Lemma 4.2,
and as ¥ = ¥(id A ), (4.3) gives ¥y = (¢ Vv id)(id A §). Conversely, if
¥ = (¢ vid)(id A ) and id A § = id A ¥ is idempotent, then (4.3) gives
Y(id A ¥r) = (e vid)(id A 8) = ¢, and  is an inf-overfilter.
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(ii) By (i), ¥ is an inf-overfilter. Since id A § and ¢ Vv id are filters satisfying
id A 8 < e Vv id, by [15, Criterion 4.6], ¥ = (¢ v id)(id A 8) is idempotent. It
is thus an inf-filter.

(iii) and (iv) are proved in the same way as (/) and (/i) (using item (iv)
of Lemma 2.2), or follow by duality. Finally (v) is just the combination of (i)
and (iii). B

We will now give sufficient conditions for having the decompositions (4.1)
and (4.2) of & v id A §. Let us say that the operator & is meer-distributive if
(X AY) = eX) Ae(Y) forall X,Y € &; similarly, let us say that the
operator § is join-distributive if §(X v Y) = 8(X) v 8(Y) forall X, Y € «.

Lemma 4.4 Let g and § be operators on the modular lattice &, suchthate < §,
and let = g vid A b.

(i) Ife < &8 and ¢ is meet-distributive, then ¢ = (& v id)(id A 8).
(ii) If8e < 8 and § is join-distributive, then = (id A 8)(e Vv id).

Proof. (i) Since ¢ is meet-distributive, we have e(id A §) = eid A ed = & A g6;
now if & < &4, then this gives e(id A 8) = ¢, and so we get

(evid)id A é) = e(id Ad) vidid AS) = e vV (id A ) = .

(ii) is proved in the same way, or follows by duality. &

Corollary 4.5 Let ¢ and § be operators on the modular lattice ¥, such that ¢
is meet-distributive, § is join-distributive, ¢ < 6, and let r = ¢ v id A 4.

(i) Ife < e8andid A § is idempotent, then i is an inf-overfilter.

(i) Ife < &b andid A S and e v id are idempotent, then Vr is an inf-filter.
(iii) [fde < & and e Vv id is idempotent, then r is a sup-underfilter.
(iv) Ifde < S andid A § and ¢ Vv id are idempotent, then \r is sup-filter.

(v) Ife < €6, de < 8, andid Ad and e vid are idempotent, then  is a strong
Silter:

Proof. We combine Proposition4.3 and Lemma 4.4: items (i) and (i) of Propo-
sition 4.3 with item (/) of Lemma 4.4, items (i) and (iv) of Proposition 4.3
with item (/i) of Lemma 4.4, and item (v) of Proposition 4.3 with both items (i)
and (/i) of Lemma 4.4, and we get then items (i, ii, iii, iv, v) respectively of
the present statement. @

We will study equivalent forms of the conditions ¢ < &8 and 8¢ < § of
Lemma 4.4,

Let us first recall from [7] that two operators ¢ and § form an adjunction
(¢,8) if and only if forevery X,Y € £ wehave §(X) < Y < X < &(Y).
In [7, Proposition 2.5] we showed that when .# is a complete lattice, in every
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adjunction (g, 8), & distributes the (infinite) supremum operation (and is called
a dilation), while & distributes the (infinite) infimum operation (and is called
an erosion); in the general case where ¢ is not necessarily complete, the same
argument as in [7, Proposition 2.5] shows that § is join-distributive while ¢ is
meet-distributive, and that both are increasing.

We will use the following general result, which has many useful conse-
quences in addition to our present problem:

Proposition 4.6 Let (¢,, 8,) and (g, 8p) be two adjunctions, and n, 8 two in-
creasing operators. Then

ne, < epf = 8§, < 04,. (4.4)

Proof. The adjunction (g,, §,) gives £,8, > id and §,&, < id (see [7, Propo-
sition 2.6]). If ne, < &,6, since €,8, > id, every X € .& gives

N(X) < neu8a(X) < 68,(X),

and the adjunction (g, §,) implies then that §,7(X) < 84,(X); thus §pn < 86,.
Conversely, if 8,1 < 84, since §,&, < id, every X € ¥ gives

3};778u(X) =< 98[,8[;(}() = Q(X),

and the adjunction (g, 8) implies then that ne, (X) < €,60(X);thus ne, < 0.
]

This result has many interesting particular cases, which we will present here.
We consider first some inequalities used in the previous section. We have twc
adjunctions (&g, &) and (g1, 1), and we consider the annular filter & Vid A § for
¢ = gy and & = §,. The first requirement is that ¢ < §, in other words, &g < §;.
Using Proposition 4.6 with (e,. 8,) = (0. o), (€5, 8p) = (id, id), n = id, and
6 = §;, we obtain the equivalence

g < 8 < id < §,do. 4.5

In order to obtain the idempotence of £ Vid A8, we considered the conditions
¢ < 8(idA8) ande(evid) < & (cfr. Corollary 2.4). Taking 4.4y with (g,,8,) =
(0, 80). (&b, 85) = (id, id), n = id, and 8 = §,(id A §1), we get

gp <8, (id A 8)) > id < 8,(id A §;)do. (4.6)

Interchanging the two sides of (4.4) with (4, 8.) = (&1, 81), (&b, 8p) =
(id, id), n = go(gp Vv id), and & = id, gives

go(go vid) < 8 <= golep Vid)e; <id. 4.7

In the case where % is a Minkowski lattice, taking for &, the dilation 84 :
X— X®AbyAc€ & and for g, the erosion ep : X > XS Bby B € ¥, then
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3485 = Spaa, the dilation by B @ A, while id is the dilation by the “origin” o;
thus combining (4.5) with the isomorphism Z +— 87 between . and the lattice
of T-invariant dilations (see [7, Theorem 3.8]), we get:

ep <84 &= id <046 < 0< B A. (4.8)

This is a particular case of a result due to Van Droogenbroeck (see
[2, Theorem 1]), namely that given the erosions €4, €5, &c, €p and dilations
84,88, 8¢, 8p by structuring elements A, B, C, D € &, we have the equiva-
lences

Spea < epdc &= Spbg <8césy < B D<AGC. (4.9)

The first equivalence springs from (4.4) with (g4, §,) = (€4, 84), (65, 8p) =
(¢p,8p), n = 8p,and & = 8¢, while the second one is due to the isomorphism
Z > 52.

Let us now give equivalent forms of the conditions ¢ < &8 and §¢ < &
of Lemma 4.4 using Proposition 4.6. Let ¢ = &y and § = &, where (&g, &y)
and (g, 8;) are adjunctions. Taking (&,, 8,) = (&p, 8p) = (£0. 80), n = id, and
8 = &, (4.4) gives

gy < 6061 &= by < 8,8p. (4.10)
Taking next (&, 8,) = (€0, 80), (€, 8p) = (id, id), and n = 8 = §;, we get
Sigo <81 <> 8§ < 81do. ' (4.11)

When ¢ is a Minkowski lattice, taking for §; the dilationd, : X — X B A
and for g the erosion gz : X + X © B, where A, B € ¢, then combining the
above two equations with the isomorphism Z +— §z, we get:

cp < €pdy &> 0p < 84dp < B<ADB, (4.12)

S48 <64 &= 54, <8a8p &< A<ADB. (4.13)

Suppose now that ¥ = 2(E), the family of parts of a set E, and that the

adjunctions (&g, 8y) and (¢, §;) arise from two adjacency relations R and ~
(see [8], and the end of Section 2). Here id A §; and & V id are idempotent
(see the discussion at the end of Section 2, especially the paragraphs between
(2.10) and (2.11)). By (4.5), we have &g < §; & id < 8,8y, and the latter
means that forevery x € E thereis some y € E such that x 2 v L x: thisis [8,
Assumption 5.1]. By (4.10) the condition ¢y < €08, is equivalent to 8y < 8,4y,
and the latter means that forevery x, y € E

0

0 i
x~y = dze€ekE, x~z~y
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if itis sat.isﬁed, then gy Vv id A 8 is an inf-filter by Corollary 4.5 (ii). By (4.11)
the condition §;gg < &, is equivalent to §; < 818y, and the latter means that for
every x,y € E,

1 0 1
x~y =>3dzeE, x~z~y;

if it is satistied, then gy Vv id A §; is a sup-filter by Corollary 4.5 (iv). If both
conditions are satisfied, then gy Vv id A §; is a strong filter. This result was
announced without proof in [8] (see Proposition 5.10 there).

In the case of a Minkowski lattice, combining Corollary 3.11, Lemma 4.4,
and Corollary 4.5 with equations (4.8), (4.12), and (4.13), we get the following:

Proposition 4.7 Let (&, £, T) be a Minkowski lattice such that & is ISD and
IID. Let A, B € & such that o < A @ B. Then gg < 84. Furthermore, for
Y o= eg Vid A 84, we have:

() If B < A® B and A is symmetric, then id A 64 is idempotent, Y =
(ep v id)(id A 8,4), and ¢ is an inf-overfilter.
(ii) If B < A& B and A and B are symmetric, then id A 84 and ey v id are
idempotent, ¥ = (ep Vv id)(id A §,4), and v is an inf-filter.
(iil) If A < A® B and B is symmetric, then gg Vv id is idempotent, Y =
(id A 84)(eg Vid), and \ is a sup-underfilter.
(iv) If A < A® B and A and B are symmetric, then id A 84 and ep Vv id are
idempotent, ¥ = (id A 84)(ep V id), and y is sup-filter.
(v) IfAV B < A® B and A and B are symmetric, thenid A 84 and ep Vv id
are idempotent, ¥y = (id A 84)(ep Vid) = (ep Vid)(id A 84), and ¥ is
a strong filter.

Consider now the particular case where A = B > O.If A is symmetric, we
have some a € £(A) with —a € £(A), and hence o = a+ (—a) < A@ A.
Therefore Proposition 4.7 reduces to the following:

Corollary 4.8 Let (¢, ¢, T) be a Minkowski lattice such that & is ISD and
IID. Let A € & suchthat O < A < A® A and A is symmetric. Theney < 84,
id A §4 and ¢4 Vv id are idempotent,

AV idAdy = (id AB4)(EsV id) = (g4 V id)(ld A84),
and the latter operator is a strong filter.

When 2 = #(E), where E = Z¢ or R, the condition "o < A & B” means
here that A @ B contains the origin, and this is equivalent to A N B # ¥
for A and B symmetric, this means that A N B # . An example where
AU B C A ® B is given for A and B being respectively the 8-neighbourhood
and the 4-neighbourhood of the origin (excluding that origin, see Fig. 7.); thus
ey Vid A 8, is a strong filter. Note that we have then also A C A® A, and
g4 Vid A 84 is a strong filter.
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Fig. 7. InE = Z*, we choose for A and B the 8-neighbourhood and 4-neighbourhood of the
origin respectively (the cross indicates the position of the origin, which is excluded from both A
and B). Clearly A and B are symmetric and A & B contains A U B, so that the annular operator
sp V id A 84 is a strong filter, and sg V id A 84 = (g5 Vid)(id A 8p) = (id A 64) (s V id)

Let us apply Proposition 4.7 and Corollary 4.8 when ¥ = Fun(E, 7),
i.e., the lattice of grey-level functions £ — 7, where £ = Z¢ or R and
7 =R = RU{+o0, —oo}or Z = ZU{+00, —oc}. As said above, a structuring
function A € % is symmetric if and only the support supp(A) of A (that s, the
set of points p € E such that A(p) > —o0) is a symmetric subset of E, and
for every h € supp(A) we have A(h) + A(—h) = 0. The conditiono < A@ B
translates as follows:

sup A(h) + B(—h) = 0;
hesupp(A)Nsupp(B)
A sufficient condition is having some 4 € supp(A) N supp(B) with A(h) +
B(—h) > 0. The condition A v B < A & B means here that

Vx € supp(A) U supp(B),
max{A(x), B(x)} < sup{A(x — h)+ B(h) | h € supp(B)
and x — h € supp(A)}.

This inequality requires in particular that the support of the smaller function
is contained in that of the larger one, that is:

supp(A) U supp(B) C supp(A) & supp(B).

In order to illustrate Corollary 4.8, we take a structuring function A whose
support is a symmetric subset S of E such that § € § @ S, and such that for
every x € S, A(x) = ||lx||, where || x|| denotes a norm (L', L?, or L*°). Then
A is symmetric; now for every x € S, there is & € S with x — h € S, we have
x|l < |lx — A| + | All, and this shows that A < A @ A. Thus 4 vid A 84 is
a strong filter. The effect of this filter on an image / is to bring the grey-level
I(p) of a point p to the interval

[Jo(p). Ji(p)],  where  Jo(p) = inf(7(p+h) = ||n]) and

Ji(p) = iulg(l(p+h) + [I121),
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in other words, it transforms 7 into the new image /' defined by

, Jo(p) i 1(p) < Jo(p),
I'(p)=1{ I(p) if Jo(p) = I(p) < Ji(p), (4.14)
J(p) it Ji(p) < I(p).

Here noisy isolated extrema (either dark or bright) are reduced to a value
comparable to their surrounding, in a sense that we will explain now. Given
p € E.wehave I(p) < Ji(p) = sup,s((p + h) + [|h]) if and only if for
every real & > () there is some € S suchthat I(p) —e < I(p+h)+ |k, that
is ([(p +h) = I{(p))/llhll > —1 — /| k|, in other words it is equivalent to

I h) —
sup (ptm—1Ip)
hes liAll

Similarly, I (p) = Jo(p) = inf;les(l(p—}—h) - ||h[|) if and only if for every
real ¢ > 0 there is some h € S such that /(p) +& > I(p + h) — ||k, that is
(1(p + h) — I(p))/llhn < I 4+ &/llh|, in other words it is equivalent to

- Ap ) —1(p) _
hes [ -

(4.15)

4.16)

Thus from (4.14) we get that I'(p) = I(p) (the image does not change
grey-level at p) if and only if both (4.15,4.16) hold. Now since the filter is
idempotent, [’ does not change from applying again the filter £4 Vid A §4; thus
by (4.15.4.16) for every point p € E we have

1/ 1 — [/ § I3 _— /
up (p+h) (p) S and inf I'(p+hy—1'(p) <
hes 4]l hes il

This property of [” is weaker than the Lipschitz condition studied in [10] (see
also Example 3.4 (¢)), which would imply here that

I h) — 1’
Vhes. i< (p+HZ“ (p) <

For example, if £ = R and .7 = R, every monotonic increasing function
[ : R — R will be invariant under the filter £, Vv id A 84, even if its slope does
not belong to the interval [—1, 1] required by the Lipschitz condition.

5 Conclusion

We have investigated the idempotence of operators of the form & Vid A § (where
e < & and both £ and § are increasing) on a modular lattice .2, in relation to the
idempotence of the operators & V id and id A §. Our motivation, following [8],
lies in the application of our theory to a particular branch of image processing,
called mathematical morphology, where many operations have been formalized
in the framework of lattice theory [4]. In this respect, the idempotent operator
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id A 8 is called an annular opening, and it removes isolated light spots in a
picture, while the idempotent operator ¢ V id is called an annular closing, and
it removes isolated dark spots in a picture; the idempotent compound operator
e Vv id A 8, called annular filter, combines the behaviour of the above two
(removing isolated spots, either dark or light).

Besides general results given in Section 2, there are two instances where
the idempotence of these operators can be analysed:

(1°) When ¥ = 2(E), the lattice of parts of an arbitrary space E. We dealt
with this question in [8], using adjacency relations to characterize the
“isolation” of points in background or foreground conditions.

(2°) When . is a Minkowski lattice, in other words, when it is a complete lat-
tice having a sup-generating family £ and an abelian group T of automor-
phisms, such that T preserves £ and acts transitively on it. This was studied
in Section 3. Here ¢ and 8 are assumed to be an erosion and a dilation aris-
ing through Minkowski operations on ., and they are T-invariant. This
framework applies in particular when % = Fun(E, ), where £ = R4
or Z¢ and 7 = R or Z; here T consists of translations combining a spa-
tial component in E and a numerical component in 7~ \ {£zo0}, while ¢
consists of “impulse” functions. The practical application of this theory is
the processing of grey-level pictures.

It might be possible to extend both (1°) and (2°) to the situation of a complete
lattice % with a sup-generating family £ on which we would define adjacency
relations, without any constraint of invariance under a given group of automor-
phisms. Possible fields of applications of such a theory include the processing
of pictures for which the group of “translations” is either non-existent or non-
transitive on the generators in £ (which represent coloured points); indeed this
is the case when the space E is a bounded part of Z°, or when the grey-level set
7 is a bounded interval in Z, or else with colour pictures having colours in a
3-dimensional RGB space, for which translations cannot permute transitively
the colours. We have not (yet) studied this possible extension of our theory.

The second problem that we have studied is whether the annular filter & v
id A & can be obtained by composing the annular closing ¢ Vv id and opening
id A 8. As we saw in Section 4, this question is related to ¢ being an inf-
overfilter, a sup-underfilter, or a strong filter (three notions coming again from
mathematical morphology). Surprisingly, we can answer these questions in an
arbitrary modular lattice, without recourse to adjacency relations (for sets) or
translation-invariance and Minkowski lattices.

Another question concerns the practical applications of annular filters in
image processing. In [8] we gave examples of the use of annular filters for
removing ‘‘salt-and-pepper” impulsive noise in grey-level images; we chose
there for A and B two flat structuring functions (in other words, their value
is constantly zero on their support), because in this case the behaviour of the
filter can be described in terms of a filter for sets acting on each level set

R q
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I, ={p € E | I(p) = t}, where t ranges over the grey-level set 7 [3,14]. We
have not yet investigated specific applications of annular filters using non-flat
structuring functions. Note however that when the structuring functions A and
B have positive values, isolated grey-level values (corresponding to light or
dark spots in the image) are not completely removed, but rather modified to a
level closer to their surrounding (see for example Fig. 6). Hence such filters with
non-flat structuring functions would not be interesting for removing impulsive
noise. However they could perhaps find applications in feature detection: the
arithmetic difference between the original image and the filtered one could
reveal some types of local grey-level patterns.
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