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ABSTRACT.    In this article the following results are established.

Theorem A.   Let \X(t): 0 < t < coj  be a stationary Gaussian process with

continuous sample functions and  E(X(t)i = 0.   Suppose that the covariance

function  r(t) satisfies the following conditions.

(a) r(t)= 1 - |í|a/7(í) + o(|t|a/Y(í)) as 1^0, where   0 < a < 2 and H

varies slowly at zero, and

(b) rU) = 0(l/log') as t —>°c.

Then for any nondecreasing positive function   4>(t) defined on La, °o) with

d>(oo) = oo, P(X(t)  > 4>U)  i.o. for some sequence   t    —> ooj = 0 or 1 according

r°° — 1 2      /
as the integral  I(4>) = J     g(4>(t)) </>(')      exp(— 4> (t)/2)dt  is finite or infinite,

where  g(x) = l/cr~   (l/x) is a regularly varying function with exponent i/a.

and 3?2(7) = l\t\aH(t\

Theorem C.   Let \X  : n > l|  be a stationary Gaussian sequence with

zero mean and unit variance.   Suppose that its covariance function satisfies,

for some y > 0,  r(n) = 0(l/zi   ) as n —► °°.   Let ¡<j5(zi): zz,  > lj  be a nonde-

creasing sequence of positive numbers with  lim 4>(n) = <*>; suppose that

S(l/<î5(z2))exp(-ç*2(n)/2) = oc.    Then

lim       L    'l /  Z    E[L]= 1
\<k<n      I   \<k<n

where  I,   denotes the indicator function  of the event  \X,   > 4>(k)\.

1. Introduction. Let \S : n > 11 denote the sequence of partial sums of in-

dependent and identically distributed Gaussian random variables. The classical

law of iterated logarithm states that lim sup S /y 2s log log s = 1 a.s., where

s = Var(5 ). Feller's generalization and the "best possible" result [l], [2], when

applied to this case states that for any nondecreasing sequence of positive num-

bers  \d>  : n > 11 with lim ça    = °°,   P[S    > ó s    i.o.] = 0 or 1 according as
'zz — "z2 ' n       " n   n "

£(oS  /z7)exp(- (p  /2) < °° or = °°.   (The classical law of iterated logarithm follows

trivially from Feller's result.)   During the past five years, Pickands [4], Quails
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186 IP. K. PATHAK AND C. QUALLS

and Watanabe [7], [8], Quails, Simmons and Watanabe [9], and others have obtained

a number of Feller-type results for stationary Gaussian processes.   The main ob-

ject of this paper is to make a careful study of these results and to show that some

of these results are valid under weaker conditions.   We also propose certain new

lines of investigation.   An outline of our results is as follows.

Theorem A.   Let \X{t): 0 < i < °°!  be a stationary Gaussian process with con-

tinuous sample functions and F[X(i)] = 0.   Suppose that the covariance function

r{t) satisfies the following conditions:

(a) rit) = 1 - |i|aß(i) + o(|i|aß(i))as i —> 0, for some a with 0< a < 2  and

some function  H{t) which is slowly varying at zero, and

(b) r(/)= 0(l/logi) as t -> 00.

Then for any nondecreasing positive function c4(i) defined on  [a, 00) with çS(°°) =

00,  P[X{t) > </>(i)  z'.o. for some sequence  t    —» °°] = 0 or 1 according as the integral
00 _ 1 2 n

I{cb) = J     g{ch{t))ch (i)      exp(-oS  {t)/2)dt  is finite or infinite where g{x) =

l/o~ (1 /x)  is a regularly varying function with exponent  2/a and o   (i) =

2|i|aß(i).

That the probability of the event considered above is zero or one is not sur-

prising.   It is easily seen (see [9]) that the mixing condition:   lim ^oori0 = 0 is

sufficient for the zero-one law.   In fact the ergodic condition: lim7._iX)(l/T)/n r{t)dt = 0

would suffice.

Theorem A was first established by Watanabe [ll] under the stronger mixing

condition:  r{t) = 0(l/i) as t —> <*>.   Later Watanabe and Quails [7] showed that the

theorem remains valid under the weaker mixing condition-:  r{t) — 0{l/t   ) as t —► 00.

In this paper, the Paley-Zygmund lemma, Lemma 2.4 below, allows us to attain a

still weaker mixing condition.

Theorem B, which appears in §3, furnishes an analogous result for discrete

parameter stationary Gaussian processes. This theorem strengthens similar re-

sults due to Pickands [4] and Quails, Simmons  and Watanabe [9].

It is perhaps worth mentioning that similar improvements are possible for cor-

responding results in random fields (see Quails and Watanabe [l0]) and for certain

nonstationary processes (see Quails and Watanabe [8]).

In §4, we propose a new line of investigation and establish the following

sharper results in the discrete parameter case:

Theorem C.   Let \X  : n > l!  be a stationary Gaussian sequence with zero

mean and unit variance.   Suppose that its covariance function satisfies, for some

y>0,

(b) 7(72)= 0(1 /n7) as 72 —00.

Let \cf>{n): n > 1S  be a nondecreasing sequence of positive numbers with

lim   ^00 0(72)=°°  and suppose that  ~Ï-{1/ch{n))exp{-ch  (n)/2) = °°.   Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Ä LAW OF ITERATED LOGARITHM 187

Hm     £    lk/Z    E[,,] = l    a.s.
72—oo

lSZeSzz       /   l¿k<n

where  I,   denotes the indicator function of the event \X    > <p(k)\.

2. Proof of Theorem A.  We refer the reader to Quails and Watanabe [8] for the

proof of the theorem when  I((p) < °°.   For the crucial second half of the proof, we

need the following lemma from [8j:

Lemma 2.1.   // condition (a) of Theorem A holds and r(s) 4 1 for 0 < s < t

then for any  a > 0

PLmax 0s/esm Xika/gix)) > x]       H ¿a)
lim

ti2n)~V2gix)x-1expi-x2/2)

where  m = [tg(t)/a] with [ ] denoting the greatest integer function, and Hj.a) is a

certain positive constant.   Note that  a  (t) = 2\t\  H(t) is monotone near zero and

that  a2(t) ^ a2(t) as t -> 0, where  a2(t) = E(X(t) - X(0))2 = 2(1 - r(t)), and recall

the notation g{x)=l/"a~  (l/x).

We also need the following lemmas from [7] and L8j:

Lemma 2.2.   Let  I((p) - <*>  and suppose that the second part of Theorem A

holds under the following added restriction: for large t

2 log t < (p2(t) < 2 log t + 2A log log t,

where A > 1/2+ l/a.   Then the theorem holds without this restriction.

Lemma 2.3.   Let  En = ÍX(in „) > xn v: v = 0, • • •, mj, with all tn_v distinct.

Then

m .     m ■

\P(E.nE.)-PiE.)PiE.)\ < ¿   ¿  \r\Pon(x.iV. xjv; Xr)dr

where n(x, y; \r) is the standard bivariate normal density with correlation coef-

ficient \r = \r(t .     - t.    ).   This result is also true for the events, Ec.
' /.A*-        1,v ri

We shall also need the following lemmas:

Lemma 2.4 (Paley-Zygmund). Let X > 0 be a random variable satisfying

E\X2\ < B(E[X])2 < oo. Then P[X > aE(X)]> (1 - a)2/B, for 0 < a < 1. (See

Zygmund [l2, Lemma 8.2.6, p. 216].)

Lemma 2.5.   Let  \l ■ n > 1 \  be a sequence of indicator functions such that
n —

S^F[/fe]=~.   If for some A,  0 < A < c»,  Var(2~ I ¡A < A(l" E[l k])2  for all suffi-

ciently large  n  then   P[S,  /,  = oo] > 1/(1 + A ).

Proof.   Let  Jn = S, ski„lk.   Then  F[/2] < (1 + A )(F[/J)2.   Lemma 2.4 now
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188 P. K. PATHAK AND C. QUALLS

yields   P[jn > aE[jJ] > (1 - a)2/(l + A) for 0 < a< 1 and for large n.   Since

limßt/J = oo,   P[Z°flk = oo] > (1 - a)2/(l + A) for 0 < a. < 1.

With these lemmas we can now furnish the proof of Theorem A when  /(</>) = °o.

Proof of Theorem \ where   I{ch) = oo.  Consider a sequence of intervals   [«A,

72A + ß] with A > 0 and 0 < ß < A.   For arbitrary a > 0, let  Gfe = iife v = kA +

va/nk: v = 0, • • • , Yßnja]\, where  72 ̂ = [g(cS(M + ß))].   Let  F^ = [maxjf(.   X(s) >

</>(zeA + ß)] and /fe = ¡E     and consider partial sums, S    < , <    /, , of these indicator

functions.   Now Lemma 2.1 implies that there is a positive K such that

E[lk] - Kßg{ch{kA + ß))ch{kA + ß)~ l exp Í- </,2UA + /3)/2 !

as  ch{kA + ß) —>°°.   To see that the hypotheses of Lemma 2.1 are satisfied, note

that condition (b) of Theorem A excludes periodic  r{t).   Consequently

oo=/(0)<      Z      (277)-ig(ç5UA))ç6UA)-1expi-02(TfeA)/2S • A
777 < k < 00

implies

V
777 < fe < 00

It is also easily seen that

Z    E[l,] > {K. /A) f ** g{ch{t))ch(t)- l exp (- 02)/2 dt.

That the integral  /(<£) can be estimated by the above sums follows from its inte-

grand being monotone for m sufficiently large.   Denoting <£(z"A + ß) ~ <ß .7 we obtain,

via Lemma 2.3,

Var(¿/fe)=2       £       (£/./.-E/.£J.)+     £     iElk-iElk)2)
\m       j msi<jan m<k<n

(2.1) [ßn/a] [ßn/a] I \2

=2 ii   2:    x irir;B(^,0,Ar)¿A + oie,j ,

where  r = r{t .     - t .    ).    Because   t. ,, - t.     > /A - zA - ß > A - ß  and because of
7>v *>/" 7>v 7,Z-2— r- _ r-

condition (b) of Theorem A, we have, for A large enough,

H'/, v - A, y)\ * M(2 log (/'A - 'A - ß»~ ! < S/3 < S/2.

Consequently
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A LAW OF ITERATED LOGARITHM 189

\m<k<n    J       msi<jsn   O1 log(jA-iA-ß)

■ expi- (</>2 + <f>* - 2|r|^.^.)/2] + o(£  E/fc

(n-Dn-i g(0f)g(0l.   fe)      _  ci2/2 -*■.,/2
-"2- --e        '     e

(2.2)

exp {-;- >   + o   Y   E/,

2

K,M
f-*-Ar*-.,g(0U))g(0(s + f)) _ expj_ {<f)2{s) + 02(s + i))/2}

Jm¿  Ja loo '^2     J mi    J A log  t

where z is a continuous variable with  tz = [z/A],   M' is arbitrarily close to M, and

M' > M.

Consider the ratio

Vat il"  I.)     K7M'                  /*TA/i"S/(*. ')^rfs(2.3) _ZL_L<_J_J"'aJA-/3/     _   +oÜ)

(2*   Elk)2   ■     K]      i^gi(kit)mtrle^(-<p2i,)/2)d,y

as  7z = [z/A] —> oo, where the integrand  f(s, t) appears in the last line of (2.2).

Using L'Hospital's rule in (2.3), we obtain

Var (£"/.)       K.M' fz'áfis, z - s)ds
<-   + o(l )

ÍZnmElk)2     -    K2     2gi(piz))(pizrlexpi-(p2iz)/2)licpiz))

(2'4) K2   / rz-& ,      aA, ,-,   M'dAsWz) Í M'MsMz) \      \i

K2\Jm**^ 2 log(z-s) v2 1og(z-s)J      //

+ o(l)

as  n -, oo, where   /(c4(z)) = /*A g(c/>(/))c/.(0~ 1e-*2(i)/2 ¿,.     Note that the new z

in (2.4) is not the same as the 'z' in (2.3).

Divide the integral in the numerator of (2.4) into two parts according as

z7zA<s< dzz- Aotdzz - A < s < z - A, where   1 - dz = z~y(logz)-1 and S < y < 1.

The integral from  8 Z — A to z - A  can be ignored since we can replace

M  /log(z - s) by S and bound this part of the integral by

(z - t?zz)g(c6(c7zz - A))(ßi6zz - A)-1expi- (p2iOzz - A)/2lS(log z)zS.
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190 P. K. PATHAK AND C. QUALLS

This contribution to the integral in the   numerator  of (2.4) divided by a lower esti-

mate of the denominator leaves the ratio (1 - 0 )z log z = z  ~7  which goes to

zero as z goes to oo.   For  s < d z — A,

M'ch{s)ch{z) i M'ch{s)ch{z)\ M'ch2{z) <      "'-i2'j M'cß{s)cß{z)\  < M'ch2{z) o      /     M'ch2{z)_)

"XP 12 log(z-s)J   * 2 logzQ- 9 ) CXP 12 log zil- 0 ))2log{z-s) U log (z-s)J        2 1ogz(l-(9z)

Now   log z(l -0  ) -v. (1 -y)logz as z —> oo and, by Lemma 2.2, cß (z)(2 logz)-  —»

1.   Consequently (2.4) becomes

„«     Var(27;V      (l-S2)-1^     M' / M'   \       ,n
(2.5)-< -    - exp I - I   + o(l)    as  tz—» oo.

il" El,)2 H2{a)        H-y) \l-y/
777      k a

From Lemma 2.1 in [8] it follows that

oo

1-2 X   (l-^U«)a/2))<«>)< 1

feal

so that  lim HJiz) = 1.   Since a, S, y and M    (> M) can be chosen arbitrarily,

(2.5) becomes

Vai(2£/fc)
(2.6) - < M exp(M) + o(l)    as  tz—> oo.

HnElA2
m      k

As noted in the introduction, condition (b) of Theorem A implies that we have a

0-1 probability for the event under study; and now equation (2.6) and Lemma (2.5)

imply that the event has probability one.    Q.E.D.

Corollary lo Theorem  \.  // condition (a) of Theorem A is simplified to (a)

r{t) = 1 - C|i|a+ o(|i|a) as t —> 0, where 0 < a < 2 and C > 0, then Theorem A holds

with   /(</.)= /^rA(i)2,a"1exp(-ç62(i)/2)£i'i.

3. The discrete ease.   In this section we give Theorem B which is the discrete

version of Theorem A.

Theorem IÎ.   Let \X : n > lS  be a stationary Gaussian sequence with zero

mean and unit variance. Suppose that the covariance function r{n) satisfies the

mixing condition:

(b) r{n) = Oil/log n)    as  n —■> oo.

Then for any nondecreasing sequence of positive numbers ch{n) with cS(oo) = oo,

P[X   > cS(t2) z'.o.] = 0 or 1 according as the sum

ließ) =   ¿    cf>in)~1expi-<ß2in)/2)

"="0

is finite or infinite.
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A LAW OF ITERATED LOGARITHM 191

Indication of the proof.  When   /(</>) < oo, the proof that   P[X   > (p(n)i.o.[ = 0 is

the same as that of Quails, Simmons and Watanabe [9].   When   /(c/j) = oo, we define

/    to be the indicator function of the event ÍX   ., > d>(n.N)\ with N a sufficiently
72 tzN       r '

large number suitably chosen.   The proof of the theorem then follows on showing

that the ratio  Var(£,        /  )/(Z F[/ J)    is bounded.   This fact is established

in a manner similar to that of Theorem A.   For other relevant details in this con-

nection we refer the reader to [91.

Remarks.   If  r(n) > 0 for all 77 and (logn)r(n) —"»as zz —> 00 and c/j  (n) =21ogz7,

then one can show that the ratio Var(S,        /,)/(£,        E[7, J)    —> 00 [3].   This shows
k < n   & ZeSTz zs

that our Theorem B (and Theorem A) is in a certain sense the best result that

Lemma 2.5 will produce.

4. Rate ol growth ol the number ol upcrossings.   In this section we shall

primarily concentrate on the discrete case and develop a new line of investigation

concerning the rate of growth of upcrossings.   We now establish Theorem C stated

in §1 whose conclusion is stronger than that of Theorem B of the preceding section.

Prool ol Theorem C.  For simplicity, we shall furnish an outline of the proof.
00        - -    .

We use the notation of Theorem B.   That  Z   EU, i = °° is immediate since   ELL J —

(2tt)- 1/2
(p(k)~  exp(- (p  (k)/2) as (p(k) —> 00.   The mixing condition that we use

here is  t(t2) = 0(1/n   ) as n —> 00.   Under this condition Quails, Simmons and Wat-

anabe [9] have established that, for all sufficiently large m,

lim
72-00

ZZ   Cor it., I.)
m<i<j<n

Let   Í    = ¿ /,   and consider a subsequence   \ I     : k > 1S from \ I   : n > 11 such that
1 n k ' nk       ~ ' n       —

El]     ] ~ k as k —> 00.    Then
J72 2,

P\\Jn    -E[jn  ]\>eE[]n]\
"k "k k

Var(/     )
"k

e2E[]2  ]
( Z Z  CoV(/.,/.)+ Z v(/,))/2e[;2 ] = o(-i).
\m<2<7<72, ' * \«    '

Therefore   2,     . Pi \]      - EJ     | > eEJ     \ < 00,  so that for each  £ > 0

PiI;   /ei    - il >€ i.o.] = 0.

Consequently  lim, I     /EJ    = 1   a.s.   We show that a similar result holds for
-1 y k-~™J„k      Jnk

the entire sequence  ! /   : n > 1 \.   For each  k > 1, let  D    - J
^ J n        ~ — k n{

for each  e > 0,

- /     .   Then
'(ze+1)        "k
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192 P. K. PATHAK AND C. QUALLS

P\Dk><EJ     \<E[D2k]/(2(E]     )2
k k

= (      II        Cov (/.,/.)+     II       Vat{l.) + {EDk)2)/e2iEJn)2

= (1A2)[0(1/t44) + 0{l/k2) + 0(lA3)]    as k -, oo.

Thus  lkilP\Dk > (EJnk\ < oo.  This implies that  1'im^^Ck/E]n    = 0 a.s.

Now for each  tz > 1, with  72, < 72 < n,    ., we write

} /El    = ]    /£/ E]    /E]    + (/    - /     )/E]  .
J n       J n n u n L y h

Since   \{]   - j     )/EJ   | < D./EJ      and E] /El      at 1. it follows that
1VJ77 7 77 7, J 77 '   —        fe J 77 7J J77/e+] -"t?^

lim      „]   /EJ    =1   a.s.
77 — 00 J n      J n

Remarks.   For continuous parameter processes a result analogous to that of

Theorem C can be established as follows.   Suppose we subdivide the time interval

into subintervals of length e each and define   /    to be the indicator function of the

event iX(i) > </>(/) for some i in {ne, (72 + l)f)S.   Then an application of our Lemma

2.1 and a proof similar to that of Theorem C will show that  lim      _ ^-  L/2- El, =
r 77 — 00        k k

1   a.s.   Although this last result furnishes some information about the rate of growth

of upcrossings of the process, the events   /,   do not truly represent upcrossings.

A more satisfactory definition of í-upcrossing is the one given by Pickands

[5], namely  X(i) has an f-upcrossing of cS(i) at iQ if X(iQ) = ci(i0) and X(i) < eß{t)

for all t such that iQ - e < t < tQ.   If we let  N{T) be the number of 6-upcrossings

up to the time T, we would like to establish that  lim   ^x¡N{T)/EN{T) = 1   a.s.

Results about the tail distribution of maxX(i) sharper than those of Lemma 2.1

are being investigated in order to prove this suggested rate of growth for continuous

time stationary processes.
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