
The Annals of Probability
1999, Vol. 27, No. 4, 1851–1869

A LAW OF LARGE NUMBERS FOR RANDOM WALKS IN
RANDOM ENVIRONMENT

By Alain-Sol Sznitman and Martin Zerner

ETH-Zentrum

We derive a law of large numbers for a class of multidimensional ran-
dom walks in random environment satisfying a condition which first ap-
peared in the work of Kalikow. The approach is based on the existence of a
renewal structure under an assumption of “transience in the direction l.”
This extends, to a multidimensional context, previous work of Kesten. Our
results also enable proving the convergence of the law of the environment
viewed from the particle toward a limiting distribution.

0. Introduction. The main purpose of this article is the derivation of a
law of large numbers for a class of random walks in random environment.
The law of large numbers for one-dimensional random walks in random envi-
ronment is well known and goes back to Solomon [10]. In contrast, in higher
dimension, asymptotic properties of random walks in random environment in
general, and the law of large numbers in particular, are rather poorly un-
derstood. In fact, embarrassingly simple questions are yet unanswered. One
reason for this situation is the truly nonreversible character of the model and
the absence of obviously applicable ergodic theorems. Some of the known re-
sults in this higher dimensional situation can, for instance, be found in [2],
[5], [11], and [12].

Let us now describe the model more precisely. The random environment
is given by i.i.d. �2d�-dimensional vectors �ω�x� e��e∈�d��e�=1, x ∈ �d, with non-
negative components adding to 1 and common distribution µ. Throughout this
work we assume d ≥ 1, and the following ellipticity condition:

�0�1�
There exists κ�µ� ∈ �0�1� such that µ is supported by the
set �κ of �2d�-vectors p�e�, e ∈ �d, �e� = 1, with p�e� ∈ �κ�1�
for all e, and

∑
e p�e� = 1�

More precisely, the random variables ω�x� e�, x ∈ �d, �e� = 1, will be the canon-
ical coordinates on the product space � = � �d

κ endowed with the canonical
product σ-algebra and the product measure � = µ⊗�d . The random walk in
the random environment ω is then the canonical Markov chain �Xn�n≥0, on
��d��, with state space �d and “quenched law” Px�ω starting from x, for which

�0�2� Px�ω�Xn+1 =Xn + e �X0� � � � �Xn�
Px�ω-a.s.= ω�Xn� e�� n ≥ 0� e ∈ �d� �e� = 1� Px�ω�X0 = x� = 1�
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One also defines the “annealed laws” Px, as the semidirect products on � ×
��d��,

�0�3� Px = � ×Px�ω� x ∈ �d �

We shall need the following notation: when U ⊆ �d, TU and HU will stand
for the respective exit and entrance time of X� in U,

�0�4� TU = infn ≥ 0� Xn /∈ U�� HU = infn ≥ 0� Xn ∈ U� �
The annealed laws are in a sense simpler to investigate than the quenched
laws, however, �Xn�n≥0 is typically not a Markov chain under the annealed
laws. This “defect” is in part remedied by constructing certain auxiliary
Markov chains. Following [5], we introduce for U��d, a connected subset
containing 0, the Markov chain on U ∪ ∂U (here ∂U = y ∈ �d\U, ∃ x ∈ U,
�y− x� = 1��, with transition probability

�0�5�

P̂U�x� x+ e�
= Ɛ

[
E0�ω

[ TU∑
0

1Xn = x�
]
ω�x� e�

]/
Ɛ
[
E0�ω

[ TU∑
0

1Xn = x�
]]
�

when x ∈ U and e ∈ �d, with �e� = 1, (the expectations are
easily seen to be finite and positive thanks to (0.1) and the
connectedness of U), P̂U�x� x� = 1� when x ∈ ∂U�

The canonical law of this Markov chain starting from x ∈ U∪∂U is denoted by
P̂x�U. The interest of these objects stems from the following fact (cf. Proposition
1 of [5]):

�0�6� If P̂0�U�TU < ∞� = 1, then P0�TU < ∞� = 1, and XTU
has

the same distribution under P0 and P̂0�U�

We can now formulate what we call Kalikow’s condition relative to l ∈ �d\0�,
namely:

�0�7� There exists ε > 0, such that inf
U�x∈U

∑
�e�=1

l�e P̂U�x� x+ e� ≥ ε �

here U runs over all possible connected strict subsets of �d, which contain 0.
An important result of [5] is that when (0.7) holds,

�0�8� P0-a.s.� lim
n
l�Xn = + ∞ �

The condition (0.7) is hard to check directly, but a more concrete sufficient
condition for (0.7) is known; compare [5], pages 759 and 760, and (2.36) below.
In particular, as shown at the end of Section 2, the nonnestling walks of [12]
[cf. (2.40)], or the random walks in random environment considered in [11],
with (0.1) assumed (see above and Remark 2.5) do satisfy (0.7) for a suitable l.
Interestingly enough, in the one-dimensional situation, the fulfillment of (0.7)
for some nonzero l characterizes the existence of a nondegenerate asymptotic
velocity for the random walk in random environment; see Remark 2.5.
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One of the main goals of the present article is to show (cf. Theorem 2.3
below) that when (0.7) holds,
Xn
n

converges P0-almost surely to a deterministic nondegenerate velocity �

The principal tool for deriving such a law of large numbers turns out to be
the existence of a renewal structure for X� (cf. Section 1). It generalizes to
a multidimensional setting the renewal structure which appears in a one-
dimensional context, in [6] and implicitly in [7]. An important role is played by
a certain renewal time τ1 [cf. (1.13)]. In the present multidimensional setting,
there is a certain arbitrariness in the definition of τ1. Incidentally, the most
straightforward extension of the one-dimensional definition [which roughly
corresponds to replacing D in (1.13), with the first time of going strictly below
levelMk+a, in the direction l) leads to difficulties, due to the “inhomogeneity”
of the discrete boundary of a half-space with a general normal direction.

The main step in the derivation of the strong law of large numbers is then
to prove a certain integrability of the variable τ1 (cf. Theorem 2.3). The re-
newal time τ1 is rather complicated, and the extraction of information on
its tail is not straightforward. In the one-dimensional setting, the key fact
used in [6] and [7] is an identity in law with certain variables expressed in
terms of a branching process with immigration in a random environment. In
the present multidimensional context, we follow a quite different route. The
strategy is roughly to extract information on τ1, by investigating the “easier
variable” l�Xτ1

. We first prove the integrability of l�Xτ1
and use it to derive

the integrability of τ1 (cf. Theorem 2.3).
The above results can be applied to study the asymptotic behavior of the

law of the environment viewed from the particle

�0�9� ωn = tXnω = ω�Xn + ·�� n ≥ 0 �

where tx, x ∈ �d denotes the canonical shift on �. Under P0� �ωn�n≥0, is a
Markov chain with state space �, initial distribution � and transition kernel

�0�10� R�ω�ω ′� =
{
ω�0� e�� if ω ′ = teω, for �e� = 1�

0� otherwise�

We show in Theorem 3.1 that under (0.7) the law of ωn under P0 converges
to an invariant distribution of R. It is an interesting question, left untouched
in the present article, to determine whether this limiting law is absolutely
continuous with respect to �; see the end of Section 3. It is of course also an
interesting question to understand how typical (or untypical) condition (0.7)
is, within the class of random walks in random environment with ballistic
behavior.

Let us describe how the present article is organized. Section 1 develops
in the context of “transience in the direction l,” a renewal structure for X�

under P0. Section 2 derives the strong law of large numbers under (0.7) and
describes some examples where (0.7) holds. Section 3 applies the results of
the previous sections to the analysis of the asymptotic behavior of the law of
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the environment viewed from the particle. Finally, let us mention that at the
time of preparing the final revised version of this article, we learned of the
existence of unpublished handwritten notes of H. Kesten, dating back to 1986,
about results by S. Kalikow similar to our Theorem 2.3.

1. The renewal structure. The object of this section is to develop a cer-
tain renewal structure, under an assumption of “transience in the direction l.”
We recall that throughout this work we assume (0.1). We still need some no-
tations; we denote by �θn�n≥0, the canonical shift on ��d��, and by �n, n ≥ 0,
the canonical filtration of X�, that is, �n = σ�X0� � � � �Xn�, for n ≥ 0. For
l ∈ �d\0�, we let Bl and Cl, respectively, stand for the events

�1�1� Bl = lim
n
l�Xn = + ∞� ∪ lim

n
l�Xn = −∞��

Cl = l�Xn remains of constant sign for large n� �

Lemma 1.1.

�1�2� For l ∈ �d\0�� P0�Bl� = 0 or 1 �

Proof. It follows from [5], page 766, that

�1�3� P0�Cl� = 0 or 1 �

Let us now prove that for M> 0,

�1�4� P0-a.s.� l�Xn ∈ �0�M�� i�o�� ⊆ l�Xn < 0� i�o�� �
To this end, with the help of (0.1), chooseN large enough and c > 0, such that

�1�5� Px�ω�Hz� l�z<0� ≤N� ≥ c for ω ∈ � and x ∈ z� 0 ≤ l�z ≤M� �
One can then define the successive return times to z� 0 ≤ l�z ≤M�

V0 = 0� V1 =Hz� 0≤l�z≤M� ≤ ∞ and by induction

Vk+1 = V1 ◦ θVk+N +Vk +N ≤ ∞ for k ≥ 1 �

Introduce for k ≥ 1, the events Gk and Hk such that

�1�6� 1Gk = 1Vk<∞� and 1Hk
= 1Hz� l�z<0�≤N� ◦ θVk

(the last expression is understood as 0 on Vk = ∞�). It is plain that Gk ∈
�Vk and Hk ∈ �Vk+1

. Moreover from (1.5), the strong Markov property and
�-integration, we see that

�1�7� P0�Hk ��Vk� ≥ c 1Gk� k ≥ 1 �

From Borel-Cantelli’s second lemma (cf. [3], page 207),

�1�8� P0-a.s.�
∑
k≥1

1Hk
= ∞ on

{ ∑
k≥1

1Gk = ∞
}
�



LAW OF LARGE NUMBERS FOR RWRE 1855

which readily implies (1.4). To conclude, observe that Bl ⊂ Cl, so that
P0�Bl� = 0, if P0�Cl� = 0. On the other hand [see (1.3)], if P0�Cl� = 1,
observe in view of (1.4) that for M> 0,

P0�l�Xn is positive for large n� ∩ l�Xn ∈ �−M�M�, i.o.�� = 0 �

Of course a similar statement holds with “negative” in place of “positive.” Thus,
for M> 0,

�1�9� P0�Cl ∩ l�Xn ∈ �−M�M�� i�o��� = 0 �

and as a result P0�Bl� = 1. This completes the proof of (1.2). ✷

We can now define l-transience (for l ∈ �d\0�� of the random walk in
random environment as the requirement

�1�10� P0�Bl� = 1 �

We now consider for the remainder of this section l ∈ �d\0�, such that (1.10)
holds. For specificity, we assume that

�1�11� P0�Al� > 0 with Al = lim
n
l�Xn = + ∞� �

otherwise we simply replace l with −l in the sequel. It is unknown whether
simultaneous occurrence of P0�Al� > 0 and P0�A−l� > 0 is possible (this is an
example of an embarrassingly simple yet unanswered question, as alluded to
in the Introduction).

The renewal structure relies on the introduction of a suitable random vari-
able τ1, P0-a.s. finite on Al, after which the pathX� does not “backtrack in the
direction l.” We need some further notations. We consider the ��n�-stopping
times

�1�12� Tu = infn ≥ 0� l�Xn ≥ u� for u ∈ � and
D = infn ≥ 0� l�Xn < lX0� �

We then introduce a constant a > 0, the value of which is for the time be-
ing immaterial and will only intervene in Sections 1 and 2. We define two
sequences of ��n�-stopping times, Sk, k ≥ 0 and Rk, k ≥ 1, and the sequence
of successive maxima, Mk, k ≥ 0,

�1�13�
S0 = 0� M0 = l�X0�
S1 = TM0+a ≤ ∞� R1 = D ◦ θS1

+S1 ≤ ∞ �
M1 = supl�Xm� 0 ≤m ≤ R1� ≤ ∞ �

and by induction for k ≥ 1,

Sk+1 = TMk+a ≤ ∞� Rk+1 = D ◦ θSk+1
+Sk+1 ≤ ∞ �

Mk+1 = supl�Xm� 0 ≤m ≤ Rk+1� ≤ ∞ �

Of course we have

�1�14� 0 = S0 ≤ S1 ≤ R1 ≤ S2 ≤ · · · ≤ ∞
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and the inequalities are strict if the left member is finite. We now introduce

�1�15� K = infk ≥ 1� Sk <∞� Rk = ∞� ≤ ∞ and
τ1 = SK ≤ ∞ (with the convention S∞ = ∞) �

Thus the random variable τ1, when finite, is on the one hand the first time
at which l�Xn reaches the level l�Xτ1

and on the other hand such that after
τ1, l�Xn never becomes smaller than l�Xτ1

. Now comes the first step in the
analysis of the renewal structure.

Proposition 1.2. Assume (1.11); then

�1�16� P0�D = ∞� > 0 �

�1�17� P0-a.s.� Al = K <∞� = τ1 <∞� �

Proof. We begin with the proof of (1.16). Assume by contradiction that
P0�D = ∞� = 0. Then for all x ∈ �d, Px�D <∞� = 1, and thus

�-a.s., for all x ∈ �d� Px�ω�D <∞� = 1 �

Using the strong Markov property, this implies that

P0-a.s.� lim
n
l�Xn ≤ 0 �

which contradicts (1.11).
We now turn to the proof of (1.17). The second equality is a tautology, and

we need only prove the first equality. Observe that

K <∞� ⊆ lim
n
l�Xn = −∞�c �

and in view of (1.10),

�1�18� P0-a.s.� K <∞� ⊆ lim
n
l�Xn = +∞� = Al �

As for the reverse inclusion, observe first that for k ≥ 1,

�1�19�
P0�Rk <∞� = Ɛ

[
E0�ω

[
Sk <∞� PXSk �ω�D <∞�

]]
= ∑
x∈�d

Ɛ�P0�ω�Sk <∞� XSk
= x� Px�ω�D <∞�� �

Note that P0�ω�Sk < ∞� XSk
= x� and Px�ω�D < ∞� are, respectively,

σ�ω�y� ·�; l�y < l�x� and σ�ω�y� ·�; l�y ≥ l�x�-measurable, and thus
�-independent. The above expression then equals∑

x∈�d
P0�Sk <∞� XSk

= x� P0�D <∞�
= P0�Sk <∞� P0�D <∞� ≤ P0�Rk−1 <∞� P0�D <∞� �

Using induction, we thus find

�1�20� P0�Rk <∞� ≤ P0�D <∞�k� k ≥ 1
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(it is not hard to see that the above inequality is in fact an equality when
P0�Al� = 1�. As a result we see that

�1�21� infk ≥ 1� Rk = ∞� <∞� P0-a.s.

On the other hand,

P0-a.s. on Al� Rk <∞ �⇒ Sk+1 <∞ for k ≥ 1 �

Thus in view of (1.21),

P0-a.s. on Al� K = infk ≥ 1� Sk <∞� Rk = ∞� <∞ �

This completes the proof of (1.21). ✷

We now introduce the σ-algebra (with the convention l�Xτ1
= ∞, on

τ1 = ∞��,
�1�22� �1 = σ�τ1� �Xk∧τ1�k≥0� �ω�y� ·��l�y<l�Xτ1 �
(in a slightly more explicit fashion, �1 is generated by the sets τ1 = k� ∩
Xτ1

= x� ∩ A, with A ∈ σ�ω�y� ·�, l�y < l�x� ⊗ �k, k ≥ 1, x ∈ �d and
τ1 = ∞� ∩A with A ∈ σ�ω�y� ·�, y ∈ �d� ⊗ �∞�, and the probability

�1�23� Q0�·� = P0�· � τ1 <∞� �1�17�= P0�· �Al� �
The next step in the study of the renewal structure is the following proposition.

Proposition 1.3.

�1�24�
Q0��Xτ1+n −Xτ1

�n≥0 ∈ ·� �ω�Xτ1
+ y� ·��l�y≥0 ∈ ·��1�

= P0��Xn�n≥0 ∈ �ω�y� ·��l�y≥0 ∈ · �D = ∞� �

Proof. We consider f�g�h, bounded functions, respectively, σ�Xn�n ≥ 0�,
σ�ω�y� ·�, l�y ≥ 0� and �1-measurable. Recall that tx, x ∈ �d, denotes the
canonical shift on �d. Then

�1�25�

P0�τ1 <∞� EQ0�f�Xτ1+ · −Xτ1
� g ◦ tXτ1h�

= ∑
k≥1

E0�f�Xτ1+ · −Xτ1
� g ◦ tXτ1h� Sk <∞� Rk = ∞�

= ∑
k≥1� x

E0�f�XSk+ · − x� g ◦ tx h� XSk
= x� Sk <∞� Rk = ∞� �

Observe that on the event Xτ1
= x� ∩ τ1 = Sk�, one can find a bounded

σ�ω�y� ·�, l�y < l�x� ⊗ �Sk -measurable random variable hx�k, which coincides
with h [to see this one needs only intersect the above event with Sk =m�, for
m ≥ 0, and come back to the definition (1.22) of �1�. As a result, the rightmost
side of (1.25) equals∑

k≥1� x

Ɛ�E0�ω�f�XSk+ · − x�hx�k� Sk <∞� XSk
= x� D ◦ θSk = ∞� g ◦ tx�
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using the strong Markov property at time Sk; this equals∑
k≥1� x

Ɛ�E0�ω�hx�k� Sk <∞� XSk
= x� Ex�ω�f�X� − x�� D = ∞� g ◦ tx��

Note that E0�ω�hx�k, Sk < ∞, XSk
= x� is σ�ω�y� ·�, l�y < l�x�-measurable

and bounded, whereas Ex�ω�f�X� − x�, D = ∞�g ◦ tx is σ�ω�y� ·�, l�y ≥ l�x�-
measurable and bounded. These two random variables are thus �-independent
and the last expression equals∑

k≥1�x

E0�hx�k� Sk <∞� XSk
= x� E0�fg� D = ∞�

= E0�fg �D = ∞� ∑
k≥1� x

E0�hx�k� Sk <∞� XSk
= x� P0�D = ∞�

= E0�fg�D = ∞� P0�τ1 <∞� EQ0�h� �
where we used the above calculation in the case f = 1, and g = 1, to obtain
the last equality. The claim (1.24) now follows. ✷

In view of (1.10) and (1.17),

�1�26� P0-a.s., D = ∞� ⊂ Al ⊂ τ1 <∞� �
moreover,

�1�27� D = ∞� = D ≥ τ1� ∈ �1

and the above proposition enables defining on τ1 < ∞� a nondecreasing se-
quence τ1 ≤ τ2 ≤ · · ·, via

�1�28� τ2 = τ1�X�� + τ1�Xτ1+ · −Xτ1
� (τ1 is viewed as a function of X�)

and inductively on k ≥ 1,

τk+1 = τ1�X�� + τk�Xτ1+ · −Xτ1
� �

setting τk+1 = ∞ by convention on τk = ∞�, for k ≥ 1. Note that P0-a.s.,
τk <∞� = τ1 <∞� = Al, for k ≥ 1.

We can now introduce the σ-field,

�1�29� �k = σ�τ1� � � � � τk� �Xn∧τk�n≥0� �ω�y� ·��l�y<l�Xτk � �

The main result displaying the renewal structure under the assumption (1.11)
comes in the next theorem showing the independence of the joint variables
�Xτk+· −Xτk

� and �ω�Xτk
+ y� ·��l�y≥0, from �k under Q0.

Theorem 1.4. For k ≥ 1,

�1�30�
Q0��Xτk+n −Xτk

�n≥0 ∈ ·� �ω�Xτk
+ y� ·��l�y≥0 ∈ ·��k�

= P0��Xn�n≥0 ∈ ·� �ω�y� ·��l�y≥0 ∈ · �D = ∞� �
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Proof. Observe that up to Q0-null sets, �k+1 is generated by �1 and
ψ−1��+

k �, where ψ is the Q0-a.s. defined map

ψ�X��ω� = �Xτ1+ · −Xτ1
� tXτ1

ω�
and �+

k is defined analogously to (1.29), with the additional constraint 0 ≤ y�l.
Noting that D = ∞� is �1-measurable [cf. (1.27)], Theorem 1.4 now follows
by induction using (1.28) and Proposition 1.3. ✷

As a direct consequence of Theorem 1.4, we now have the following explicit
renewal structure.

Corollary 1.5. UnderQ0, �Xτ1
� τ1�, �Xτ2

−Xτ1
, τ2 −τ1�� � � � , �Xτk+1

−Xτk
,

τk+1 − τk�� � � � , are independent variables. Furthermore, �Xτ2
−Xτ1

, τ2 − τ1��
� � � � �Xτk+1

−Xτk
, τk+1 − τk�� � � � � are distributed under Q0 as �Xτ1

� τ1� under
P0�· �D = ∞�.

We now introduce the random variable

�1�31� M = supl�Xm − l�X0� 0 ≤m ≤ D� ≤ ∞ �

The sufficient condition on the Q0-integrability of Xτ1
l, stated in the next

proposition will be useful in the next section.

Proposition 1.6.

�1�32� E0�M �D <∞� <∞ �⇒ E0�Xτ1
�l� τ1 <∞� <∞ �

Proof. Observe that P0-a.s., on τ1 <∞�, thanks to (1.13), (1.15),

�1�33�

l�Xτ1
= l�XS1

+ ∑
1≤k′<K

l�XSk′+1
− l�XSk′

= l�XS1
+ ∑

1≤k′<K

l�XSk′+1
−Mk′ +Mk′ − l�XSk′

≤ c+ ∑
1≤k′<K

c+Mk′ − l�XSk′

with

�1�34� c = a+ sup
i∈�1� d�

�li�

and where a has been introduced above in (1.13). Therefore,

�1�35�

E0�l�Xτ1
� τ1 <∞�

≤ cP0�τ1 <∞� + ∑
k′≥1

E0�c+Mk′ − l�XSk′ � k
′ < K <∞�

= cP0�τ1 <∞� + ∑
1≤k′<k

E0�c+Mk′ − l�XSk′ � Sk <∞� Rk = ∞�

and using a similar argument as in (1.19), this equals

cP0�τ1 <∞� + ∑
1≤k′<k

E0�c+Mk′ − l�XSk′ � Sk <∞� P0�D = ∞� �
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Now for 1 ≤ k′ < k, using repeatedly the argument of (1.19), we find

�1�36�
E0�c+Mk′ − l�XSk′ � Sk <∞�

≤ E0�c+Mk′ − l�XSk′ � Rk′ <∞� P0�D <∞�k−1−k′

= P0�Sk′ <∞� E0�c+M� D <∞� P0�D <∞�k−1−k′

≤ P0�D <∞�k′−1 E0�c+M� D <∞� P0�D <∞�k−1−k′
�

Coming back to (1.35), we find

�1�37�

E0�lXτ1
� τ1 <∞� ≤ cP0�τ1 <∞�

+�c+E0�M �D <∞�� ∑
1≤k′<k

P0�D = ∞� P0�D <∞�k−1

= cP0�τ1 <∞� + �c+E0�M �D <∞��
( 1
P0�D = ∞� − 1

)
<∞ �

since
∑
k≥1�k− 1� P0�D = ∞� P0�D <∞�k−1 = 1

P0�D=∞� − 1.
This completes the proof of (1.32). ✷

2. The law of large numbers. Similarly to the previous sections, we
tacitly assume (0.1) and d ≥ 1. The main object of the present section is
to show that under Kalikow’s condition (0.7), one has a strong law of large
numbers for �Xn� under P0. We begin with a preparatory result.

Proposition 2.1. Assume that (1.11) holds for some l ∈ �d\0�, and
�2�1� E0�τ1 �D = ∞� <∞�
then

�2�2� E0��Xτ1
� �D = ∞� <∞�

�2�3� Q0-a.s.,
Xn

n
−→ v = E0�Xτ1

�D = ∞�
E0�τ1 �D = ∞�

and

�2�4� v�l > 0 �

Proof. Since Q0-a.s., �Xτ1
� ≤ τ1, (2.2) follows immediately from (2.1). Let

us prove (2.3). As a consequence of Corollary 1.5, and the strong law of large
numbers,

�2�5� Q0-a.s.,
τk
k

−→ E0�τ1�D = ∞�� Xτk

k
−→ E0�Xτ1

�D = ∞� as k→ ∞ �

Let us then define the nondecreasing sequence kn, n ≥ 0, Q0-a.s., tending to
+∞, such that

�2�6� τkn ≤ n < τkn+1 (with the convention τ0 = 0) �
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Dividing the above inequalities by kn, and using (2.5), we find

�2�7� Q0-a.s.,
kn
n

−→ 1
E0�τ1�D = ∞� as n→ ∞ �

As a result,

�2�8� Xn

n
=
Xτkn

n
+
Xn −Xτkn

n
�

where in view of (2.5), (2.7),

Xτkn

n
=
Xτkn

kn

kn
n

−→n→∞
E0�Xτ1

�D = ∞�
E0�τ1�D = ∞� � Q0-a.s.

and by (2.5), Q0-a.s.,

�Xn −Xτkn
�

n
≤ τkn+1 − τkn

n
= τkn+1

kn + 1
kn + 1
n

− τkn
kn

kn
n

→ 0 �

Coming back to (2.8), this proves (2.9). As for (2.4), it suffices to observe that
E0�Xτ1

�l �D = ∞� > 0, by construction. ✷

We shall now bring Kalikow’s condition (0.7) into play. We postpone to
Proposition 2.4 and Remark 2.5 the discussion of examples of random walks
in random environment, where (0.7) is fulfilled. The next lemma will already
show that (0.7) implies some ballistic behavior of the walk. For the time being
let us recall that in the notation of (1.11) [see Theorem 1 of [5]; (0.1) is tacitly
assumed],

�2�9� when (0.7) holds, P0�Al� = 1 �

In particular when (0.7) holds, P0 and Q0 coincide. We shall now derive a
useful consequence of (0.7).

Lemma 2.2. Under (0.7), for any finite connected set U containing 0,

�2�10� E0�l�XTU
� ≥ ε E0�TU� �

where ε is as in (0.7).

Proof. As a consequence of (0.5) and (0.7), for x ∈ U,

E0

[ TU∑
0

1Xn = x� ∑
�e�=1

l�e ω�Xn� e�
]

≥ ε E0

[ TU∑
0

1Xn = x�
]

and the expectations are finite thanks to (0.1). Summing over x ∈ U, we find

�2�11� E0

[TU−1∑
0

∑
�e�=1

l�e ω�Xn� e�
]

≥ ε E0�TU� �
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The left-hand side of (2.11) also equals

Ɛ
[
E0�ω

[ ∑
n≥0

1n < TU� E0�ω�l�Xn+1 − l�Xn ��n
]]

= Ɛ
[
E0�ω

[ ∑
n≥0

1n < TU� �l�Xn+1 − l�Xn�
]]

= E0�l�XTU
� �

This completes the proof of (2.10). ✷

We now come to the main result of this section.

Theorem 2.3. Assume (0.7); then E0�τ1 �D = ∞� <∞ and

�2�12� P0-a.s.,
Xn

n
−→ v = E0�Xτ1

�D = ∞�
E0�τ1 �D = ∞� where v�l > 0 �

Proof. In view of Proposition 2.1 and the fact that P0 and Q0 coincide
under (0.7), the claim (2.12) will follow from

�2�13� E0�τ1 �D = ∞� <∞ �

The first step in the proof of (2.13) is to show that the assumption of Proposi-
tion 1.6 is satisfied, namely,

�2�14� E0�M �D <∞� <∞ �

To this end, in analogy with (1.12), we introduce for u ∈ �,

�2�15� T̃u = infn ≥ 0� l�Xn ≤ u� �
Then for m ≥ 0 (recall that P0�Al� = 1),

�2�16�

P0�2m ≤M< 2m+1�D <∞� ≤ P0�T̃0 ◦ θT2m
< T2m+1 ◦ θT2m

�
≤ P0

[ ∣∣∣XT2m
− 2m

l

�l�2
∣∣∣ ≥ 2

2m

ε

]
+P0

[ ∣∣∣XT2m
− 2m

l

�l�2
∣∣∣ < 2

2m

ε
� T̃0 ◦ θT2m

< T2m+1 ◦ θT2m

]
�

Let us first analyze the first term in the rightmost side of (2.16). IfUm denotes
the set

Um = x ∈ �d� l�x < 2m� �
then 0 ∈ Um and Um is easily seen to be connected. As a result of (0.7), it is
routine to argue that

�2�17� P̂0�Um�TUm <∞� = 1 �

indeed under P̂0�Um , l�Xn is the sum of a martingale with bounded increments
and an increasing process, which tends to +∞ on the event TUm = ∞�. Thus
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P̂0�Um-a.s., on TUm = ∞�, lim sup l�Xn = + ∞, which implies (2.17). Observe
that thanks to (0.6),

�2�18� P0

[ ∣∣∣XT2m
− 2m

l

�l�2
∣∣∣ ≥ 2

2m

ε

]
= P̂0�Um

[ ∣∣∣XTUm
− 2m

l

�l�2
∣∣∣ ≥ 2

2m

ε

]
�

Moreover, note that the local drift

�2�19� d̂�x� =


∑

�e�=1

P̂Um�x� e�e� x ∈ Um�

0� x ∈ ∂Um�
of the Markov chain with kernel P̂Um and law P̂0�Um , is such that

�2�20� d̂�x��l ≥ ε and �d̂�x�� ≤ 1, when x ∈ Um �
Thus denoting by C the cone

�2�21� C =
{
y ∈ �d�

∣∣∣y− y� l�l�2 l
∣∣∣ ≤ 1

ε
y�l

}
�

we see that

�2�22� d̂�x� ∈ C for x ∈ Um ∪ ∂Um �
Since under P̂0�Um , Xn − ∑n−1

n′=0 d̂�Xn′ � is an �n-martingale with uniformly
bounded increments, it follows from Azuma’s inequality (see [1], page 85) that
for a suitable c1 > 0, for any number η > 0 and integer N ≥ 1,

�2�23� P̂0�Um

[
sup

0≤n≤N

∣∣∣Xn −
n−1∑
n′=0

d̂�Xn′ �
∣∣∣ ≥ ηN

]
≤ 2dN exp�−c1η2N� �

As a result of (2.20) and (2.23), for a suitable c2 > 0, when m is large,

P̂0�Um

[
TUm ≥ 2

2m

ε

]
≤ exp�−c22m� �

Using the fact that
∑TUm−1

0 d̂�Xn� ∈ C, we see that for suitable c3� c4 > 0, for
large m,

�2�24�

P̂0�Um

[ ∣∣∣XTUm
− 2m

l

�l�2
∣∣∣ ≥ 2m+1

ε

]
≤ exp�−c22m�

+P̂0�Um

[
TUm <

2m+1

ε
� sup
0≤n≤2m+1/ε

∣∣∣Xn −
n−1∑
0

d̂�Xn′ �
∣∣∣ ≥ c3

2m+1

ε

]
≤ exp�−c42m� �

using (2.23) in the last step. As for the rightmost side of (2.16), for a suitable
c5 > 0, and large m, it is smaller than

�2�25� c5 2m�d−1�P0�T̃−2m < T2m� �
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Defining now the set

Ũm = y �ly� < 2m� �
which for largem is connected, contains 0 and is such that P̂0� Ũm

�TŨm <∞� =
1, we obtain as a result of (0.6),

�2�26� P0�T̃−2m < T2m� = P̂0� Ũm
�l�XT

Ũm

< 0� ≤ exp�−c 2m�

for large m, using a similar argument to (2.24). Combining (2.24)–(2.26), we
see that

E0�M�D <∞� ≤ 1 + ∑
m≥0

2m+1P0�2m ≤M< 2m+1�D <∞� <∞ �

thus proving (2.14). We can now apply Proposition 1.6 and see that the P0-
a.s. positive random variable l�Xτ1

is also P0-integrable [recall that P0�Al� =
P0�τ1 < ∞� = 1, under (0.7)]. An application of the strong law of large num-
bers and Corollary 1.5 shows that

�2�27� P0-a.s.,
τk
k

−→ E0�τ1 �D = ∞� ∈ �0�∞� �

Introduce the increasing sequence k′
m, m ≥ 0, P0-a.s. tending to + ∞ (we use

the convention τ0 = 0), such that

�2�28� τk′
m

≤ Tm < τk′
m+1 �

From the definition of the sequence τk, k ≥ 1, P0-a.s.,

�2�29� l�Xn < l�Xτk
≤ l�Xn′ for 0 ≤ n < τk ≤ n′ �

therefore for m ≥ 0,

�2�30� l�Xτk′
m

≤ l�XTm
< l�Xτk′

m+1

and

�2�31� �l�XTm
−m� ≤ sup

�1� d�
�li� �

From the law of large numbers, we know that

�2�32� P0-a.s.,
l�Xτk

k
−→ E0�l�Xτ1

�D = ∞� ∈ �0�∞� �

Dividing both members of (2.30) by k′
m and using (2.31), we find

�2�33� P0-a.s.
k′
m

m
−→ 1

E0�l�Xτ1
�D = ∞� �

Coming back to (2.28), we see from (2.27), (2.33) that

�2�34� Tm
m

≥ τk′
m

k′
m

k′
m

m
−→P0−a�s�

E0�τ1 �D = ∞�
E0�Xτ1

�l �D = ∞� ∈ �0�∞� �



LAW OF LARGE NUMBERS FOR RWRE 1865

However, using (2.10) and the exhaustion of y l�y < m� by an increasing
sequence of finite connected sets containing 0, we see that

�2�35� E0

[
limm

Tm
m

]
≤ limm E0

[Tm
m

]
≤ 1
ε
�

This and (2.34) now imply (2.13) and completes the proof of Theorem 2.3. ✷

We now come back to the discussion of Kalikow’s condition (0.7). It is shown
in [5], pages 759 and 760, that when d ≥ 1 and (0.1) hold, a sufficient condition
for (0.7) is

�2�36� inf
f∈F

Ɛ

[ ∑
�e�=1ω�0� e�l�e∑

�e�=1ω�0� e�f�e�

]/
Ɛ

[
1∑

�e�=1ω�0� e�f�e�

]
≥ ε �

where ε is as in (0.7) and F denotes the collection of f = �f�e���e�=1� e∈�d , with
f�e� ∈ �0�1�, for each e, and f != 0. Condition (2.36) only involves the law of
the random environment at one site and enables concrete applications. For
instance [recall (0.1) is implicitly assumed]:

Proposition 2.4. (d ≥ 1). Let l ∈ �d\0�, if

�2�37�
the support of the law of the local drift d�0�ω� =∑

�e�=1ω�0� e� e is contained in the half-space z ∈ �d, l�z ≥
0�, but not in the hyperplane z ∈ �d, l�z = 0�,

then (2.36) and thus (0.7) hold.

Proof. From (2.37) it follows that

�2�38� �-a.s.,
∑

�e�=1

ω�0� e� l�e ≥ 0

and for a suitable η > 0, on a set E of positive �-probability,

�2�39� ∑
�e�=1

l�e ω�0� e� ≥ η �

However, as a result of (0.1), for a suitable κ > 0, for f ∈ F, maxe f�e� ≥∑
�e�=1ω�0� e�f�e� ≥ κ maxe f�e�. Therefore, for f ∈ F,

Ɛ

[ ∑
�e�=1

l�eω�0� e�
/ ∑

�e�=1

f�e�ω�0� e�
]/

Ɛ

[
1
/ ∑

�e�=1

f�e�ω�0� e�
]

≥ η Ɛ�1E�max
e
f�e��−1�/Ɛ��κ max

e
f�e��−1� = κη��E� =def ε > 0 �

This proves (2.36). ✷

In particular, as a result of the above proposition, when (0.1) holds, the
nonnestling walks (cf. [12]), where

�2�40� 0 does not belong to the convex hull of the support of the
law of d�0�ω� (which is a compact set)
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automatically satisfy (2.37) and thus (0.7) for some l ∈ �d\0�. Further, when
(0.1) holds, the class of random walks in random environment considered in
[11], which are “either neutral or with a local drift pointing in the e1-direction”
also satisfy (2.37) and (0.7) with l = e1. We also refer to [5], Corollary to
Theorem 1, for further examples where (2.36) hold. The next remark also
sheds some light on why (2.36) ensures “a nondegenerate strong law of large
numbers” as stated in Theorem 2.3.

Remark 2.5. (i) In the case of dimension d = 1, it is known (cf. [10]) that
when (0.1) holds, the random walk in random environment satisfies a strong
law of large numbers with a deterministic velocity, which possibly vanishes.
This velocity is positive if and only if

�2�41� Ɛ
[q
p

]
< 1 where p = ω�0�1�� q = ω�0�−1� �

As we shall now see, this last condition is equivalent [under (0.1)] to (2.36),
when d = 1 and l = 1, namely,

�2�42� inf
a� b>0

Ɛ
[ p− q
ap+ bq

]/
Ɛ
[ 1
ap+ bq

]
> 0 �

Indeed, choosing a = 1 and letting b tend to 0, we see that Ɛ��p− q�/p� > 0,
which implies (2.41). Conversely, observe that thanks to (0.1), (2.42) follows
from

�2�43� min
x∈�0�1�

Ɛ
[ p− q
p+ xq

]
> 0 and min

y∈�0�1�
Ɛ
[ p− q
yp+ q

]
> 0 �

However, defining for x ≥ 0,

h�x� = Ɛ
[ p− q
p+ xq

]
so that h′�x� = Ɛ

[
− �p− q�q

�p+ xq�2
]
�

we see that p → ��p − q�/p + xq� and p → �−q/p + xq� are nondecreasing
functions. Indeed, with q = 1 − p,

d

dp

p− q
p+ xq = x+ 1

�p+ xq�2 > 0�
d

dp

( −q
p+ xq

)
= 1

�p+ xq�2 > 0�

Thus they are positively correlated under � and

�2�44� h′�x� ≥ h�x� Ɛ
[ −q
p+ xq

]
� x ≥ 0 �

Since h�0� > 0, by assumption, it easily follows from (2.44) that

�2�45� h�x� ≥ h�0� exp
{ ∫ x

0
Ɛ
[ −q
p+ uq

]
du

}
for x > 0 �

This implies the first inequality of (2.43). By a similar reasoning, using the
symmetry of the roles p and q, defining for y ≥ 0,

g�y� = Ɛ
[ p− q
yp+ q

]
�
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we see that

�2�46� −g′�y� ≥ −g�y� Ɛ
[ −p
yp+ q

]
�

since g�1� = h�1� > 0, it easily follows from (2.46) that

g�y� ≥ g�1� = h�1� for y ∈ �0�1� �
This completes the proof of (2.43) and thus of the equivalence of (2.41) and
(2.42) under (0.1).

(ii) Collecting all these results and Theorem 2.3, we see that when d = 1
and (0.1) holds, Kalikow’s condition with respect to l != 0, is equivalent to
(2.36) and characterizes the situation of walks having a nonvanishing velocity
with the same sign as l. ✷

3. Asymptotic law of the environment viewed from the particle.
We recall the standing assumptions d ≥ 2 and (0.1). We further assume in
this section that Kalikow’s condition (0.7) relative to l ∈ �d\0� is fulfilled.
The main object of this section is to investigate the asymptotic behavior of
the law under P0 of ωn, the environment viewed from the particle [cf. (0.9)].
As mentioned in the introduction, ωn, n ≥ 0, under P0 is a Markov chain
with state space � initial distribution � and transition kernel R, defined in
(0.10). The state space� [see after (0.1)] is endowed with the canonical product
topology, for which it is compact.

Theorem 3.1.

�3�1� The law �n of ωn underP0 converges weakly to an invariant
distribution �∞ of R.

Proof. Observe that �n = �Rn, and

Rf�ω� = ∑
�e�=1

ω�0� e� f�te�ω�� for ω ∈ � �

so thatR preserves the set of bounded continuous functions on �. We therefore
simply need to prove that

�3�2� �n is weakly convergent �

since the limit �∞ will automatically be an invariant measure for R.
We then consider a bounded function f on � which depends measurably on

ω�x� ·� for x such that �l ·x� ≤ C. We also choose a > 0 in the definition (1.13),
so that

�3�3� a < sup
i∈�1� d�

�lei�, with �ei�i∈�1� d�, the canonical basis of �d �

As a result,

�3�4� P0�τ1 = 1� D = ∞� = P0�S1 = 1� R1 = ∞� > 0 �

In particular, this shows that the law of τ1 under P0�· �D = ∞� is aperiodic, a
fact which will be useful when later applying the renewal theorem. We choose
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N ≥ 1, large enough so that

�3�5� Na ≥ C+ 1 �

For n ≥ 1, we can write

�3�6� E0�f�ωn�� = E0�τN+1 > n� f�ωn�� +E0�τN+1 ≤ n� f�ωn�� �
where the first term of the right-hand side tends to 0 as n tends to infinity.
Then
E0�τN+1 ≤ n� f�ωn��

= ∑
k≥1

E0�τk+N ≤ n < τk+N+1� f�tXnω��

= ∑
k�m≥1
x�y

E0�τk+N ≤ n < τk+N+1� τk =m� Xτk
= x� Xn = y� f�tyω�� �

Observe that on the event τk+N ≤ n < τk+N+1, τk = m, Xτk
= x, Xn = y�,

l�x = l�Xτk
≤ l�Xτk+N−Na �3�5�≤ ly−C−1, and therefore f�tyω� is a measurable

function of �ω�z� ·�; l�z ≥ l�x�. Using Theorem 1.4, the above expression equals∑
k≥1�0≤m≤n

x�y

P0�τk =m�Xτk
= x�

E0�τN ≤ n−m < τN+1�Xn−m = y− x� f�ty−xω��D = ∞��

setting u = n−m and performing the summation over y, it equals∑
k≥1�0≤u≤n

x

P0�τk = n− u� Xτk
= x��

E0�τN ≤ u < τN+1� f�tXuω��D = ∞�
= ∑

0≤u≤n
P0�n− u equals τk for some k ≥ 1��

E0�τN ≤ u < τN+1� f�tXuω��D = ∞� �
Note that f is bounded and from Theorem 1.4, (1.27) and (2.13),

�3�7� ∑
u≥0

P0�τN ≤ u < τN+1 �D = ∞� = E0�τ1 �D = ∞� <∞ �

Further, from the renewal theorem (cf. [4], page 313) and Corollary 1.5,

P0�n− u equals τk for some k ≥ 1�
= P0�n− u− τ1 = τk − τ1 for some k ≥ 1� −→n→∞ 1/E0�τ1�D = ∞�

for any u ≥ 0. Coming back to the rightmost expression of (3.6), we see that
when n tends to infinity, it converges to

�3�8� ∑
u≥0

E0�τN ≤ u < τN+1� f�tXuω��D = ∞�
E0�τ1 �D = ∞� �

This proves the convergence of E0�f�ωn�� for f an arbitrary bounded mea-
surable function depending on finitely many coordinates. Since � is compact,
the claim (3.2) follows by routine arguments and this completes the proof of
(3.1). ✷
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Remark 3.2. In the one-dimensional case, a similar theorem can be found
in [6], under the assumption [see (2.41)]

�3�9� Ɛ
[q
p

]
< 1 �

The limiting distribution �∞ can in fact be found in [9], page 274 [the situation
where Ɛ�p/q� < 1, so that the random walk in random environment tends to
−∞, is considered in this reference]. Expressed in the present situation (3.9),
the measure �∞ is absolutely continuous with respect to � and the relative
density depends measurably on the nonnegative coordinates, p�x�ω�, x ≥ 0.

The existence of an invariant distribution for the “environment viewed from
the particle,” which is absolutely continuous with respect to the basic law
describing the environment, is known to be an important assumption in the
investigation of random motions in random environments. We refer on this to
[8]. It is an interesting question whether �∞ in (3.1) is absolutely continuous
with respect to � or not.
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XXII. Lecture Notes in Math. 1581 242–411. Springer, Berlin.
[10] Solomon, F. (1975). Random walks in a random environment. Ann. Probab. 3 1–31.
[11] Sznitman, A.-S. (1999). Slowdown and neutral pockets for a random walk in random envi-

ronment. Probab. Theory Related Fields. To appear.
[12] Zerner, M. P. W. (1998). Lyapunov exponents and quenched large deviation for multidi-

mensional random walk in random environment. Ann. Probab. 26 1446–1476.

Department of Mathematics
ETH-Zentrum
CH-8092 Zurich
Switzerland
E-mail: sznitman@math.ethz.ch

mzerner@math.ethz.ch


