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Abstract: Ontology is a machine interpretable way of representing knowledge in a precise and 

complete way favorable to solve many problems in the field of knowledge engineering. Different 

knowledge areas evolve with the time and the applications which use ontologies should be updated 

with new knowledge accordingly. It is more effective to combine the ontologies with new knowledge 

with the existing application ontologies rather than designing a new ontology from scratch. When 

combining ontologies, keeping the original usability of the initial ontologies and the heterogeneity 

of the components of the ontologies are the main obstacles. As there are no universal standard for 

naming of ontology components, this is a major reason for the heterogeneity problem. Methods for 

overcoming these problems are needed. In this research, we have proposed two algorithms to 

overcome the aforementioned problems. These algorithms for finding correspondences of ontology 

concepts and merging domain specific application ontologies keeping the original usability of the 

initial ontologies are the main outcomes of this research. The proposed algorithms are evaluated in 

terms of accuracy by comparing the resultant ontology merged using the proposed algorithm and the 

resultant ontology merged by an expert. The evaluation results prove that the proposed methodology 

merges the domain specific application ontologies very similar to the ontology merged by human 

intervention. 

Keywords: Ontology, Ontology Combining, Ontology Merging, Word2Vec, WordNet 

Introduction 

We have developed an agriculture ontology that 

represents crop knowledge in order to provide 

necessary crop information and knowledge to farmers 

in their context through a mobile-based application 

and a web-based application (Walisadeera et al., 

2015). Now, we need to extend the existing ontology 

(Crop ontology) with new knowledge areas (e.g. 

Fertilizer information, Growing Problems, Controlling 

methods, Harvesting and Post Harvesting 

information). It is very difficult to modify the existing 

ontology which is already being used in different 

applications (mobile-based applications and/or web-

based applications) because we need to modify the 

queries which are used in different applications based 

on the modifications of the ontology. Our requirement 

is to combine the Fertilizer ontology (newly created in 

a different project) with the existing agriculture 

ontology (Crop ontology). As the agriculture ontology 

is used in different applications, one cannot modify 

their structures when merging the Fertilizer ontology. 

Another motivation for this research is the need of a 

course recommender system for students in a 

university. The purpose of this application is 

recommending appropriate jobs for the relevant 

courses that the students follow. The system should 

link three ontologies such as Job ontology, Student 

ontology and Course ontology to provide the most 
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appropriate job that suits the student considering all 

the aspects of the courses, student details and the jobs. 

 

By considering above practical scenarios, we had to 

come up with a practical solution. The ontologies can 

be merged by changing the structures of them to suit 

the requirements of the scenarios. This is crucial 

because we cannot change the structure of every 

ontology. This is the fact that makes the difference 

from the usual combining of ontologies. Both of the 

scenarios we mentioned earlier are already represented 

in ontologies (fully evaluated and validated 

ontologies) that use in different applications like 

mobile-based and web-based. Therefore, changing the 

structures of them while combining is not an option. 

There should be a method to merge ontologies without 

changing their structures, which means, after 

combining, the ontology should be able to be used in 

the existing applications too. This means the original 

usability of the ontologies should be kept in the 

resulting ontology. The information that could be 

retrieved using the existing ontology should be 

retrieved even after combining process as well as can 

retrieve the additional information based on the 

merged one as well. 

 

Different techniques for combining ontologies are 

discussed and implemented in the literature. With the 

time, the methods used by the researchers to address 

the problem of ontology combining evolve. In the 

literature of ontology combining, Klein (2001) 

mentioned that the different terminologies are used in 

combining ontologies, such as: Merging/Integrating: 

Constructing a single ontology using two ontologies 

that have common concepts (overlapping); Aligning: 

Process of determining correspondences between 

ontology concepts; Mapping: Articulating the 

similarities among ontology concepts belonging to 

separate ontologies. More simply, it is trying to find 

the relationships between each pair of concepts of two 

ontologies. As there are many terminologies for 

combining ontologies (integrating, aligning, mapping, 

merging), to be clear, the methodology of this research 

is used as ontology merging. It will combine two 

ontologies to make a single final ontology that can be 

used for many applications. 

 

The main goal of this research is to merge two 

ontologies into single ontology which keeps the 

original usability of both ontologies. As these 

ontologies are used in different applications by 

different user communities (e.g., farmers, Agriculture 

Instructors) who do not have the knowledge about 

ontologies. When achieving this goal, we must address 

the following research questions: 

 

i. How to check the concept names for 

correspondences using semantic techniques?  

ii. How to overcome the problem of determining 

the similarity of multi-word phrases written 

as concept names of ontologies?  

iii. What method to use for handling 

relationships between concepts when 

merging the parent concepts (super concepts) 

to the other ontology?  

iv. How to keep the original usability of the 

ontologies in the resulting ontology? 

 

Ontology merging is a vast research field and it is easy 

to find the research work that has been done by 

different researchers to address this problem of 

merging ontologies. We can consider two ways of 

combining ontologies. Pinto et al., (1999) mentioned 

that two kinds of combinations of ontologies as 

combining ontologies designed for the same domain 

and combining ontologies from different domains. As 

we have practical scenarios in the same domain (eg. 

Agriculture domain), this work will be considered 

only merging the ontologies in the same domain; for 

instance, merging ontologies in the domain of 

agriculture. There is no need of handling 

instances/individuals while merging ontologies as 

there are user-friendly tools available for populating 

ontologies (Akmeemana et al., 2018; Clarkson et al., 

2018). Therefore, we do not consider instances when 

merging ontologies. We only consider the structural 

changes (only TBox - describes the terminology by 

relating concepts and roles; not ABox – contains 

assertions about objects). Since the computational 

completeness should be maximum when merging 

ontologies, only OWL-2 DL (Web Ontology 

Language - 2 Description Logics) ontologies were 

used for this purpose. 

 

The remainder of the paper is organized as follows. 

Section 2 presents related research in this field. The 
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proposed approach is discussed in Section 3. Results 

and evaluation details are described in Section 4 and 5 

respectively. Finally, Section 6 provides a brief 

summary of the proposed work and some future 

directions to enhance the approach. 

 

Related Works 
 

Maree & Belkhatir (2015) have done some work to 

overcome the semantic heterogeneity problem of 

different ontologies by merging ontologies. A 

framework for merging domain specific ontologies 

exploiting the external knowledge bases is proposed in 

this work. The main processes of this work are: 

Inconsistency checking and resolution in ontologies; 

Multiple knowledge base assisted ontology merging; 

Dealing with missing background knowledge and 

Knowledge base enrichment. They exploit external 

knowledge bases like WordNet 

(https://wordnet.princeton.edu/), OpenCyc 

(http://www.cyc.com/opencyc/) and YAGO 

(https://en.wikipedia.org/wiki/YAGO_(database)) to 

merge ontologies together into a coherent single 

ontology. This work compares the relationships 

between the concepts of ontologies with the 

relationships between the same concepts that reside in 

knowledge bases. Different kind of relations like 

equivalence, disjointness, generalization and 

specialization are used when corresponding concepts. 

They have proposed algorithms to merge ontologies. 

The work has also addressed the scenario of handling 

missing knowledge. String similarity measures, 

statistical methods and semantic methods are used 

when matching the concepts of ontologies. The 

evaluation of this methodology is performed using 

different methods and different kinds of ontologies. 

The methodology has given successful results for 

every kind of ontology that they have used. However, 

there are some limitations; for example, it changes the 

structure of the concept hierarchy when more than one 

knowledge base has equal relationships for the same 

pair of concepts. As we use fully evaluated ontologies 

in our work, this situation is not expected; the string 

similarity measure that is used for matching concept 

names lacks intelligence when matching some words. 

 

Heer et al., (2008) addressed the problem of ontology 

integration in terms of ontology merging in the aim of 

solving the problems that arise when knowledge 

modeling. It is a novel approach for integrating two or 

more ontologies together. It is an incremental 

approach which is an interactive one. The user is 

guided through the process of integration by the 

developed tool. The tool ensures the integrity of all 

defined correspondences between the concepts of 

different ontologies. They focused on the integration 

in terms of merging. When relating to the concepts of 

the ontologies to be merged, the types of semantic 

correspondences are equivalence, overlap, 

generalization and disjointness. A tool is implemented 

for assisting the knowledge engineer when choosing 

the corresponding concepts of the ontologies. The 

methodology is evaluated for applicability and 

efficiency using large ontologies used in the building 

design domain. However, it has some drawbacks. 

They are: the algorithm can only be used for 

integrating light-weight ontologies; it assumes that all 

the ontologies use a common top-level ontology and 

this method cannot be used by an ontology illiterate 

person. A knowledge engineer is needed for the 

process. 

 

Stumme & Maedche, (2001) aimed to overcome the 

knowledge overlapping problems in common domains 

in merging domain specific ontologies. In other words, 

this work also addresses the semantic heterogeneity 

problem. The method adopted in this research for 

merging two or more ontologies is using a set of 

natural language documents and a mathematical 

approach called Formal Concept Analysis with 

bottom-up merging. In this process, a lattice of 

concepts is determined applying the Formal Concept 

Analysis using the provided natural language 

documents. The lattice contains the concepts related to 

the context of the domain of input ontologies. Using 

two ontology of tourism domain, they have explained 

how to obtain the concept lattice with the NL (Natural 

Language) documents, and how to generate the final 

ontology from the concept lattice. However, it needs a 

set of domain specific Natural Language documents 

for the process of concept extraction and the merging 

process relies on the background knowledge of a 

domain expert. A knowledge engineer is needed to 

handle merging conflicts and duplicate concepts 

merging. 

 

Wang et al., (2018) have proposed a way to align 

ontologies specific to biomedical domain using entity 
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definitions and context. They use a neural architecture 

to encode additional information when available in the 

process of aligning ontologies. They also use natural 

language information (textual context) to narrow 

down an entity’s meaning when the meaning of the 

entity is not clear. External sources like Wikipedia and 

scientific articles are exploited when using a 

supervised learning model to train the ontology 

alignment model. This work has proved that the 

derived definitions and contexts can be used 

effectively when aligning ontologies to obtain good 

results. 

 

Robin & Uma, (2010) proposed a fully automatic 

ontology merging approach using hybrid strategy 

containing both lexical, semantic matching and 

similarity matching. The semantic matching is done 

using only WordNet. The WordNet is used to find the 

meaning of words. WordNet contains every meaning 

of a considered word. If we consider a word like 

“bank”, it can be the bank which we deposit money or 

the bank that is related to rivers. This work only checks 

synonyms using WordNet and do not evaluate the 

semantic meaning of a word like “bank”. 

 

By considering above literature, it is clear that there is 

no such methodology for merging domain specific 

application ontologies keeping the original usability of 

the initial ontologies. 

 

Proposed Approach 

 

We investigated two compulsory tasks to achieve the 

proposed goal of this research. 

 

These tasks find the answers to the research questions 

mentioned in the section 1. 

 

The main tasks are: 

i. Matching concepts and finding the 

correspondences between them  

ii. Merging two ontologies with the 

correspondences found 

 

We propose a three-layered approach consisting of 

input layer, concept matching layer and ontology 

merging layer to achieve the goal of this research. The 

overview of the proposed methodology is depicted in 

Figure 1 and functionalities of each layer are explained 

in sub-sections. 

 

Finding Correspondences of Ontology Concepts 

 

The ontology designing community has no formal 

conventions of naming concepts of an ontology when 

designing ontologies. Ontology designers design 

ontologies by using different terminologies. Due to the 

cognitive complexity of matching concepts, most of 

the time this task is done by a human (Gal & Shvaiko, 

2008). As a result, an ontology designer would address 

this, for instance: “Seedbed” as “Breeding Ground”, 

leading to the heterogeneity of ontologies of the same 

domain. The first and the second layers of the 

methodology (see Figure 1) find the correspondence 

of the concepts according to the following scenarios. 

 

 

Figure 1: Overview of the Methodology 
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• Syntactic and Semantic matching between 

single-word concept names (i.e., one word, 

e.g., Crop, Variety). 

• Syntactic and Semantic matching between 

multi-word concept names (i.e., concept 

names with more than one word, e.g., 

FarmingStage, AverageYield). 

We use the WordNet and the Word2Vec 

(https://radimrehurek.com/gensim/models/word2vec.

html) for correspondence of concepts. In the first 

layer, we prepare all the necessary processes needed 

for correspondence of the concepts in the second layer. 

The third layer is responsible for merging two 

ontologies with the correspondences found in the 

second layer. 

 

Input Layer (First Layer) 

 

We input two ontologies with a domain specific text 

corpus to the layer one. In this layer, we make the 

ontology with the least number of concepts as the 

source ontology (base ontology) and the other one as 

destination ontology. We use this approach to 

minimize the number of comparisons when checking 

the correspondence of the concepts of two ontologies, 

making the process cost-effective manner. A domain 

specific text corpus is used for determining the 

semantic relatedness of the multi-word concepts using 

Word2Vec. It is important for a machine to know the 

semantic meanings of the words when merging the 

ontology concepts (Gomaa & Fahmy, 2013). We have 

used this approach (Word2Vec) for corresponding 

concepts when the WordNet lacks the concept names 

and as the solution for heterogeneous multi-word 

concepts used by different ontology designers, which 

WordNet does not support. It is difficult to determine 

the meaning of a phrase as it does not have the simple 

composition of the meanings of single words 

(Mikolov, Sutskever, et al., 2013). Using a text corpus 

to match multi-word concepts is more effective rather 

than using NLP techniques, which leads to shortage of 

identifying certain multi-word concept names. The 

domain specific text corpus is pre-processed and the 

Word2Vec models are trained for detecting single-

word and multi-word concept names. The second layer 

uses the WordNet and the trained Word2Vec models 

to correspond the concept names. 

Concept Matching Layer (Second Layer) 

 

When finding correspondence between concepts of the 

source and destination ontologies, we used the 

breadth-first traversal for minimizing the number of 

comparisons. As the concept tree is traversed from top 

to bottom left to right, if a concept in the top is 

matched, all the sub concepts of it can be omitted in 

the next traversal. In this approach, we find whether 

there is a corresponding concept in the destination 

ontology for a certain concept in the source ontology. 

For instance, consider the concepts of the source 

ontology in the order of breadth-first approach are S1, 

S2, S2, …, Sn, and the concepts of the destination 

ontology in the breadth-first approach are D1, D2, D3, 

…, Dn. First, S1 is compared with D1, D2, D3, …, Dn, 

then S2 is compared with D1, D2, D3, …, Dn. This 

way all the concepts of the source ontology are 

compared with all the concepts of the destination 

ontology according to the breadth-first method.  

 

In comparing, the WordNet is used when both 

concepts of source and destination ontologies are 

single-word concepts. The meanings of a single word 

from different semantic aspects are represented in a 

synset in WordNet. The WordNet uses the similarity 

of words using cognitive synonyms that is called a 

synset. The synsets are interlinked by means of 

conceptual-semantic and lexical relations creating a 

network of meaningfully related words. We have used 

the following types of relationships to match the 

concepts using WordNet. 

• Synonym: Similar words 

• Hypernym: A word with broad meaning 

constituting a category into which words with 

more specific meanings fall 

• Hyponym: A word of more specific meaning 

than a general or superordinate term 

applicable for it 

When these relationships are found in the breadth-first 

traversal, these concept pairs are stored in a database 

with the relative relation to be used in the final (third) 

layer for merging ontologies. The format of the 

database table is shown below (Table 1).
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Table 1: Sample Format of Database Table 

Source Ontology Concept Relationship Destination Ontology Concept 

Crop Similar Crop 

Harvest Synonym Yield 

Plant Hypernym House Plant 

Cow Hyponym Herbivore 

Source: Author compiled  

 

For the scenarios of one or both concepts of the source 

and destination ontologies being multi-word concepts, 

or some concept pairs cannot be corresponded with the 

relations in WordNet, then we employ the Word2Vec 

model. 

 

The Word2Vec is a two-layer neural network that 

processes text. When one inputs a large text corpus 

into it, it outputs the words represented in a vector 

space. A word vector represents the meaning of a word 

in a form of a vector which represents a word as a 

floating-point number distributed in where 

semantically similar words are mapped together in the 

vector space. Word2Vec gives vectors for each word 

in the input in a way that the semantically similar 

words have similar vectors. Word2Vec uses the word 

vectors to perform state of the art syntactic and 

semantic similarities for the text provided (Mikolov, 

Chen, et al., 2013). The built-in skip-gram model of 

Word2Vec leads the words of a sentence to be 

surrounded by similar context, making the user who 

uses Word2Vec can query related words for a given 

word in the input context. The continuous bag of 

words (CBOW) model considers a sentence as a bag 

of words which ignores grammar and the order of 

precedence of words when constructing a collection of 

words (Mikolov, Chen, et al., 2013). The skip-gram 

model predicts the surrounding words given a word 

and the CBOW model predicts the word based on a 

given context. The semantic correspondence process 

of this work is inspired by these two models that are 

built-in the Word2Vec model, exploiting a rich 

domain specific text corpus to match the different kind 

of concept names. 

 

 

 

 

Source: Author compiled 

Figure 2: Architecture of the Methodology 
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In a single comparison which employs Word2Vec, the 

concept name (this can be single-word or multi-word) 

of the source ontology is fed into the pre-trained 

Word2Vec model to get a set of similar words that 

resides in the same context. The list of words produced 

by Word2Vec is then compared with the destination 

ontology concept name using a string similarity 

measure. The string similarity measure we use in our 

approach has many advantages over the usual string 

metrics like Levenstein, Needleman-Wunsch, Jaro-

Winkler and Q-Gram that most of the works used in 

the literature. Fastness, stability and intelligence of 

this string metric are the reasons for using it in this 

research (Stoilos et al., 2005). This metric overcomes 

the limitations that the usual string metrics have; for 

instance, Jaro-Winkler metric gives a high score for 

the two words, “store” and “score”, which are 

completely two different words. The string metric 

proposed by Stoilos et al., (2005) is mainly used to 

overcome this limitation. 

 

The matched concept pairs using the Word2Vec model 

is stored in the database using a different relationship 

as same as the format shown in Table 1. In this way, 

all the concepts of two ontologies are compared and 

then the identified correspondences are stored in a 

database. Figure 2 shows the overall architecture of the 

methodology.

 

Input: Two Ontologies, domain specific text corpus 

Output: Pairs of corresponded concepts with relations 

 

1. Pre-process the text corpus and train the word2vec model using the preprocessed text corpus. 

2. Make the ontology with the lesser number of concepts as the source ontology, call it O1. If the 

number of concepts is equal, choose arbitrarily. 

3. Make the other ontology as the destination ontology, call it O2. 

4. Traverse O1 in breadth first way, call the current concept C1. 

5. Traverse O2 in breadth first way, comparing C1 with each concept of C2. 

6. When comparing (ignore the concepts that are already compared), 

If both concept names are single worded, 

If C1 is similar to C2, store in the database with similar relationship. 

Else if C1 is a synonym of C2, store in the database with synonym relationship. 

Else if C1 is a hypernym of C2, store in the database with hypernym relation. 

Else if C1 is a hyponym of C2, store in the database with hyponym relation. 

Else input C1 and C2 into pre-trained word2vec model for most similar words. 

Compare C2 with each word of the results of word2vec using a string metric. 

   If match, store in the database with equal relationship. 

   else ignore C1. 

else one or both of concept names are multi worded, 

 Input C1 and C2 into pre-trained word2vec model for similar phrases. 

 If match, store in the database with equal relationship. 

7. Repeat from step 4 until all the concepts of the source ontology is compared. 
 

Figure 3: Algorithm for finding correspondences. 
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In third layer (Ontology Merging Layer), the two 

ontologies are merged using the identified 

correspondences. The proposed algorithm for finding 

correspondences between the ontology concepts is 

shown in Figure 3. 

 

Ontology Merging Layer (Third Layer) 

 

The main goal of merging ontologies in this work is 

not to change the initial structures of the ontologies 

after merging. After merging, the ontology should be 

able to be used in the existing applications. Further, 

information that could be retrieved using the existing 

ontology should be retrieved even after the merging 

process as well as can retrieve the additional 

information based on the merged one. Therefore, we 

do not change the initial structures when merging 

them. By satisfying this requirement, we addressed 

three structural merging scenarios as follows:  

• Child (sub class) to Child (sub class) Merging 

• Parent (super class) to Parent (super class) 

Merging 

• Parent (super class) to Child (sub class)/Child 

(sub class) to Parent (super class) Merging 

According to the relationship of the correspondence 

between the concept pair, the merging is done. For the 

above mentioned three scenarios, there can be any 

relationship type such as similarity, synonym, 

hypernym, hyponym or equal. Hence, there can be 

altogether 15 scenarios of merging. Here, we map the 

relationships to the method of merging as follows, by 

considering the source ontology concept as C and the 

destination ontology concept as D: 

• Similarity (i.e., both ontologies have same 

concepts): transfer all axioms, constraints, 

restrictions of C to D.  

• Synonym or Equal (i.e., concept in source 

ontology is a synonym of the concept in 

destination ontology): make C equivalent to D. 

• Hypernym (i.e., concept in source ontology is 

a superordinate of the concept in destination 

ontology): make C a superclass of D. 

• Hyponym (i.e., concept in source ontology is 

a subordinate of the concept in destination 

ontology): make C a subclass of D. 

When merging ontologies in different scenarios, we 

might need to merge a whole sub-tree of the source 

ontology to a concept in the destination ontology. With 

the sub-tree, the whole set of axioms of every sub class 

of the sub-tree are needed to be transferred to the 

concept of the destination ontology. Sometimes there 

may be relations that go from the sub-tree to different 

concepts that are not in the sub-tree. We use the 

locality module extractor to find the relationships 

around the concept and alter them and set them as 

axioms of the other ontology. The locality module 

extractor extracts all the domains and ranges of the 

relations that goes out of the sub-tree and comes into 

the sub-tree along with all the subclass-superclass 

relationships. For example, consider the concept 

“Area” of the source ontology and has sub-concepts as 

Costal, Hill and Zone. First, it gets all axioms 

(subClassOf axioms) related to concept “Area”. Then 

all the axioms with the concept “Area” are altered and 

placed to the concept “Area” of destination ontology. 

Now, all the altered axioms are added to the 

destination ontology. The concept “Area” of source 

ontology is merged to the concept “Area” of 

destination ontology. The extractor is built on top of 

the OWL API which we use to manipulate the 

ontology constructs when merging to extract the logic-

based modules from a given ontology (Jiménez-Ruiz 

et al., 2008). This makes the merging process efficient 

in a programmatic perspective as it automatically 

extracts all the relevant axioms of a given sub-tree of 

the ontology. The main reason for employing this in 

our research is the need of merging sub-trees to the 

destination ontology. When merging ontologies as 

mentioned, it is assured that the structures are not 

changed. After the merging process, a reasoner 

attached to the ontology is used to check whether there 

is any inconsistency. The resulting ontology can 

contain concepts with multiple inheritance (concepts 

with more than one parents). This makes ontologies 

harder to maintain manually. However, the multiple 

inheritances make the ontologies richer with better 

axiomatizations (Mikel Egaña Aranguren, 2010). The 

user can get the final merged ontology as an owl file 

to be used with any application they used previously. 

The ontology merging algorithm is depicted in Figure 

4. According to this algorithm, two scenarios such as 

Child to Child and Parent to Parent with respect to the 

Similarity Relationship, are depicted in Annex 01 and 
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Annex 02 respectively. We identify a child concept if 

it has no sub-concepts and a parent class if it has one 

or more sub-concepts. Since we are doing breadth first 

traversing, during the loop, only the valid if-conditions 

will be executed making the comparisons minimal. 

According to the proposed algorithm, it will first 

choose first concept of the source ontology as C1 and 

the first concept of the destination ontology as C2. 

Then it checks whether which of following conditions 

are valid for C1 and C2: 

• C1 and C2 both are child concepts. 

• C1 is a child and C2 is a parent. 

• C1 is a parent and C2 is a child. 

• C1 and C2 both are parents. 

Algorithm for Merging Ontologies with the Found Correspondences 

Input: Two ontologies and matched concept pairs with relations 

Output: Merged ontology 

 

1. Take the first pair of concepts, call the concept from ontology1 C1 and ontology2 C2. 

2. Check whether the C1 and C2 is a child or parents.  

If C1 is a child and C2 is a child,  

     If relationship is similarity 

         transfer all axioms, restrictions and constraints of C1 to C2 

     If relationship is synonym or equal 

        make C1 and C2 equivalent classes. 

     If relationship is hypernym 

        make C1 a superclass of C2 

     If relationship is hyponym 

          make C1 a subclass of C2 

 If C1 is a child and C2 is a parent, 

     If relationship is similarity 

         transfer all axioms, restrictions and constraints of C1 to C2 

     If relationship is synonym or equal 

         make C1 and C2 equivalent classes 

     If relationship is hypernym 

         make C1 a superclass of C2 

     If relationship is hyponym 

         make C1 a subclass of C2 

 If C1 is a parent and C2 is a parent 

     If relationship is similarity 

         transfer all axioms, restrictions and constraints of C1 to C2 

     If relationship is synonym or equal 

         make C1 and C2 equivalent classes 

     If relationship is hypernym 

         make C1 a superclass of C2 

     If relationship is hyponym  

         make C1 a subclass of C2 

 If C1 is a parent and C2 is a child 

     If relationship is similarity 

         transfer all axioms, restrictions and constraints of C1 to C2 

     If relationship is synonym or equal  

         make C1 and C2 equivalent classes 

     If relationship is hypernym 

         make C1 a superclass of C2 

     If relationship is hyponym 

         make C1 a subclass of C2 

3. Take next matched concept pair and repeat step 2 until all concept pairs are merged. 

4. Output the merged ontology as an owl file. 

 

 

Figure 4: Ontology Merging Algorithm 
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Let’s consider C1 and C2 are parent concepts, and the 

scenario is for similarity relationship. The algorithm 

checks whether the correspondence between two 

concepts is similarity, synonym (or equal), hypernym 

or hyponym. If the correspondences in the database 

have no correspondence like this (correspondences 

stored in the database in the first layer of the 

implementation, the correspondences obtained using 

the trained Word2vec and from WordNet), then the 

merging of these two concepts will be skipped. Then, 

in the second loop, according to the breadth first 

traversal, the same process will be repeated. Then if 

the training happened accurately in the previous layer, 

there should be a correspondence in the database 

which says “C1” is equal to “C2”. So, when the 

algorithm detects this, it will transfer all axioms, 

restrictions and constraints of C1 to C2, merging two 

concepts. 

 

Consider a scenario which uses hypernym relations. 

At some point in the loop, C1 can become 

“ControlMethod'' of the source ontology and C2 can 

become “WeedControl” in the destination ontology. 

We clearly see that “WeedControl” can be a 

subconcept of “ControlMethod”. If the training was 

accurate in the previous step, a correspondence should 

be there in the database that says that “ControlMethod'' 

is a hypernym (superconcept) of “WeedControl”. If it 

exists in the database, the algorithm proceeds with 

making C2 is a subconcept of C1. 

 

Results 

In related works, most of the findings with respect to 

the correspondences of the concepts of ontologies are 

done by humans. This makes the work of merging 

ontologies more labor intensive. According to the goal 

of this work, user friendliness is one of the factors we 

address because of the ontology-based applications are 

not always used by the people who have knowledge of 

concepts of ontologies. They may be agricultural 

instructors, experts in agriculture sector and many 

more professions in other sectors. The proposed 

methodology is an automatic approach which can be 

used by any user without the knowledge of ontologies. 

The only requirement is a rich domain specific text 

corpus in addition to two ontologies to be merged. The 

algorithm we proposed for finding correspondences in 

Figure 3 that answers first and second research 

questions mentioned in section 1. The external source 

we employed to find correspondences (WordNet) and 

the domain specific text corpus we used along with 

Word2Vec model helps to match the concepts using 

both lexical and semantic aspects. The Word2Vec also 

helps to find the semantic similarities of the word 

phrases. 

 

Another outcome of this research is the ontology 

merging algorithm in Figure 4 which satisfies our goal 

of keeping the original usability of the ontologies even 

after the merging is done. This algorithm overcomes 

the third and fourth research questions mentioned in 

section 1. 

 

Validation and Evaluation 

 

We have utilized the agricultural ontologies in the 

domain of agriculture for the evaluation. The original 

usage of the ontologies is kept intact with the 

suggested merging process by following the breadth 

first traversal. In the merging process, none of the 

original concept names are changed, therefore, 

keeping the original usage. For evaluating whether we 

kept the original usage in the final merged ontology, 

we can run the same ontology queries in both input 

ontologies and in the final merged ontology and see 

they work as expected. 

 

We evaluated the proposed methodology by 

comparing the output of the methodology with the 

results of expert merging. We used two agricultural 

ontologies to evaluate the merging process. The source 

ontology and destination ontology consist of 18 

concepts separately. Figures 5 and 6 show these 

ontologies. Merging with the help of the expert, the 

following results were obtained. 

Number of correspondences: 9 

Number of Similar concept pairs: 4 

Number of Synonym concept pairs: 4 

Number of Hypernym relations: 1 

Number of Hyponym relations: 0  
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The expert was not allowed to change the structures of 

the ontologies or the concept names. The expert was 

given the same rules as the algorithm but not the 

traversal method. The expert was given the freedom to 

merge the ontologies with every possible 

correspondence. The proposed algorithm gave the 

following results after matching the concepts. 

Number of correspondences: 6 

Number of Similar concept pairs: 4 

Number of Synonym concept pairs: 1 

Number of Hypernym relations: 1 

Number of Hyponym relations: 0 

We received the percentage of correspondences, the 

algorithm successfully identified merged against the 

correspondences identified and successfully merged 

by the expert. This gave an accuracy percentage of 

66.66% which is a promising percentage. 

As we have done this research to improve the ontology 

proposed by Walisadeera et al., (2015) with the 

ontologies that may have designed for the sub domains 

of agriculture for obtaining new knowledge we only 

used the ontologies related to the agriculture domain. 

The accuracy of this merging process completely 

depends on the correspondences we obtain from 

training of the corpus (i.e. it depends on WordNet and 

Word2Vec). Since WordNet is a knowledge base, it 

has its own limitations. But, since Word2Vec is an 

algorithm, we can feed as many texts we want to train 

the model. Word2Vec gives more accurate results 

when the text we feed into it gets bigger. For example, 

if we can see that “ControlMethod” and 

“WeedControl” can be made superconcept and 

subconcept, if this correspondence is not identified by 

WordNet or Word2Vec, those two concepts will not 

be merged by our algorithm. So, the proposed 

algorithm completely depends on WordNet and 

Word2Vec results. The methodology is also applicable 

for merging ontologies of other domains as well with 

a rich domain specific text corpus. 

 

 

 

  

Figure 5: Source Ontology 

Figure 6: Destination Ontology 
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Conclusion 

This research is motivated by practical problems in 

different application domains. One scenario is the 

problem of scaling up the existing agricultural 

ontology proposed by Walisadeera et al., 2015 for 

farmers in Sri Lanka to merge with new knowledge. 

Then they can get more information in the form of the 

existing ontologies which linked with its applications 

like “Govi-Nena” mobile-based application that is 

linked with the crop ontology. As a solution, in this 

research, new algorithms were introduced to merge 

two ontologies. One of the proposed algorithms 

presented in Figure 3 is for finding concept 

correspondences. Another outcome of this research is 

the ontology merging algorithm in Figure 4 which 

satisfies our main goal of keeping the original usability 

of the ontologies even after the merging is done. In 

conclusion, this work addressed the goal of the 

research successfully in merging application 

ontologies by keeping the original structures of the 

ontologies intact.  

With the future improvements, the methodology will 

be used in more advanced and complex ontologies. As 

a future work, the correspondence finding process can 

be improved using an extra layer of intelligence to 

determine the abbreviations and half word concept 

names. Moreover, an information extraction method 

can be used to address the concepts which are not 

correspondence. The concepts that can be related will 

be able to merge introducing new relations. 
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Annex 01: Similarity Relationship: Child to Child Scenario 

 

    

 

 

 

 

Sample Merged Ontology 

Annex 02: Similarity Relationship: Parent to Parent Scenario 

 

 

      Sample Source Ontology 

Sample Merged Ontology 

Sample Source Ontology 
Sample Destination Ontology 

 

Sample Destination Ontology 

Sample Merged Ontology 


