
Journal of the University of Ruhuna
Volume 8 No 1, May, 2020. Pp 18-31

DOI: http://doi.org/10.4038/jur.v8i1.7961
ISSN 2659-2053

*corresponding author: waindika@dcs.ruh.ac.lk https://orcid.org/0000-0002-4749-9190

 17
This article is published under the Creative Commons CC-BY-ND License (http://creativecommons.org/licenses/by-nd/4.0/).

This license permits commercial and non-commercial reuse, distribution, and reproduction in any medium, provided the

original work is not changed in any way and is properly cited.

A Layered Approach for Merging Application Ontologies: A Case
Study from Agriculture Domain

S. A. A. Amarasinghe1, Walisadeera Anusha Indika1*, Jeevani Goonetilake2
1Department of Computer Science, Faculty of Science, University of Ruhuna, Matara 81000, Sri

Lanka
2Department of Information Systems Engineering, University of Colombo School of Computing,

Colombo 00700, Sri Lanka

Abstract: Ontology is a machine interpretable way of representing knowledge in a precise and

complete way favorable to solve many problems in the field of knowledge engineering. Different

knowledge areas evolve with the time and the applications which use ontologies should be updated

with new knowledge accordingly. It is more effective to combine the ontologies with new knowledge

with the existing application ontologies rather than designing a new ontology from scratch. When

combining ontologies, keeping the original usability of the initial ontologies and the heterogeneity

of the components of the ontologies are the main obstacles. As there are no universal standard for

naming of ontology components, this is a major reason for the heterogeneity problem. Methods for

overcoming these problems are needed. In this research, we have proposed two algorithms to

overcome the aforementioned problems. These algorithms for finding correspondences of ontology

concepts and merging domain specific application ontologies keeping the original usability of the

initial ontologies are the main outcomes of this research. The proposed algorithms are evaluated in

terms of accuracy by comparing the resultant ontology merged using the proposed algorithm and the

resultant ontology merged by an expert. The evaluation results prove that the proposed methodology

merges the domain specific application ontologies very similar to the ontology merged by human

intervention.

Keywords: Ontology, Ontology Combining, Ontology Merging, Word2Vec, WordNet

Introduction

We have developed an agriculture ontology that

represents crop knowledge in order to provide

necessary crop information and knowledge to farmers

in their context through a mobile-based application

and a web-based application (Walisadeera et al.,

2015). Now, we need to extend the existing ontology

(Crop ontology) with new knowledge areas (e.g.

Fertilizer information, Growing Problems, Controlling

methods, Harvesting and Post Harvesting

information). It is very difficult to modify the existing

ontology which is already being used in different

applications (mobile-based applications and/or web-

based applications) because we need to modify the

queries which are used in different applications based

on the modifications of the ontology. Our requirement

is to combine the Fertilizer ontology (newly created in

a different project) with the existing agriculture

ontology (Crop ontology). As the agriculture ontology

is used in different applications, one cannot modify

their structures when merging the Fertilizer ontology.

Another motivation for this research is the need of a

course recommender system for students in a

university. The purpose of this application is

recommending appropriate jobs for the relevant

courses that the students follow. The system should

link three ontologies such as Job ontology, Student

ontology and Course ontology to provide the most

Open access article

RESEARCH ARTICLE

mailto:samanthak@badm.ruh.ac.lk
http://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

19

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

appropriate job that suits the student considering all

the aspects of the courses, student details and the jobs.

By considering above practical scenarios, we had to

come up with a practical solution. The ontologies can

be merged by changing the structures of them to suit

the requirements of the scenarios. This is crucial

because we cannot change the structure of every

ontology. This is the fact that makes the difference

from the usual combining of ontologies. Both of the

scenarios we mentioned earlier are already represented

in ontologies (fully evaluated and validated

ontologies) that use in different applications like

mobile-based and web-based. Therefore, changing the

structures of them while combining is not an option.

There should be a method to merge ontologies without

changing their structures, which means, after

combining, the ontology should be able to be used in

the existing applications too. This means the original

usability of the ontologies should be kept in the

resulting ontology. The information that could be

retrieved using the existing ontology should be

retrieved even after combining process as well as can

retrieve the additional information based on the

merged one as well.

Different techniques for combining ontologies are

discussed and implemented in the literature. With the

time, the methods used by the researchers to address

the problem of ontology combining evolve. In the

literature of ontology combining, Klein (2001)

mentioned that the different terminologies are used in

combining ontologies, such as: Merging/Integrating:

Constructing a single ontology using two ontologies

that have common concepts (overlapping); Aligning:

Process of determining correspondences between

ontology concepts; Mapping: Articulating the

similarities among ontology concepts belonging to

separate ontologies. More simply, it is trying to find

the relationships between each pair of concepts of two

ontologies. As there are many terminologies for

combining ontologies (integrating, aligning, mapping,

merging), to be clear, the methodology of this research

is used as ontology merging. It will combine two

ontologies to make a single final ontology that can be

used for many applications.

The main goal of this research is to merge two

ontologies into single ontology which keeps the

original usability of both ontologies. As these

ontologies are used in different applications by

different user communities (e.g., farmers, Agriculture

Instructors) who do not have the knowledge about

ontologies. When achieving this goal, we must address

the following research questions:

i. How to check the concept names for

correspondences using semantic techniques?

ii. How to overcome the problem of determining

the similarity of multi-word phrases written

as concept names of ontologies?

iii. What method to use for handling

relationships between concepts when

merging the parent concepts (super concepts)

to the other ontology?

iv. How to keep the original usability of the

ontologies in the resulting ontology?

Ontology merging is a vast research field and it is easy

to find the research work that has been done by

different researchers to address this problem of

merging ontologies. We can consider two ways of

combining ontologies. Pinto et al., (1999) mentioned

that two kinds of combinations of ontologies as

combining ontologies designed for the same domain

and combining ontologies from different domains. As

we have practical scenarios in the same domain (eg.

Agriculture domain), this work will be considered

only merging the ontologies in the same domain; for

instance, merging ontologies in the domain of

agriculture. There is no need of handling

instances/individuals while merging ontologies as

there are user-friendly tools available for populating

ontologies (Akmeemana et al., 2018; Clarkson et al.,

2018). Therefore, we do not consider instances when

merging ontologies. We only consider the structural

changes (only TBox - describes the terminology by

relating concepts and roles; not ABox – contains

assertions about objects). Since the computational

completeness should be maximum when merging

ontologies, only OWL-2 DL (Web Ontology

Language - 2 Description Logics) ontologies were

used for this purpose.

The remainder of the paper is organized as follows.

Section 2 presents related research in this field. The

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

20

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

proposed approach is discussed in Section 3. Results

and evaluation details are described in Section 4 and 5

respectively. Finally, Section 6 provides a brief

summary of the proposed work and some future

directions to enhance the approach.

Related Works

Maree & Belkhatir (2015) have done some work to

overcome the semantic heterogeneity problem of

different ontologies by merging ontologies. A

framework for merging domain specific ontologies

exploiting the external knowledge bases is proposed in

this work. The main processes of this work are:

Inconsistency checking and resolution in ontologies;

Multiple knowledge base assisted ontology merging;

Dealing with missing background knowledge and

Knowledge base enrichment. They exploit external

knowledge bases like WordNet

(https://wordnet.princeton.edu/), OpenCyc

(http://www.cyc.com/opencyc/) and YAGO

(https://en.wikipedia.org/wiki/YAGO_(database)) to

merge ontologies together into a coherent single

ontology. This work compares the relationships

between the concepts of ontologies with the

relationships between the same concepts that reside in

knowledge bases. Different kind of relations like

equivalence, disjointness, generalization and

specialization are used when corresponding concepts.

They have proposed algorithms to merge ontologies.

The work has also addressed the scenario of handling

missing knowledge. String similarity measures,

statistical methods and semantic methods are used

when matching the concepts of ontologies. The

evaluation of this methodology is performed using

different methods and different kinds of ontologies.

The methodology has given successful results for

every kind of ontology that they have used. However,

there are some limitations; for example, it changes the

structure of the concept hierarchy when more than one

knowledge base has equal relationships for the same

pair of concepts. As we use fully evaluated ontologies

in our work, this situation is not expected; the string

similarity measure that is used for matching concept

names lacks intelligence when matching some words.

Heer et al., (2008) addressed the problem of ontology

integration in terms of ontology merging in the aim of

solving the problems that arise when knowledge

modeling. It is a novel approach for integrating two or

more ontologies together. It is an incremental

approach which is an interactive one. The user is

guided through the process of integration by the

developed tool. The tool ensures the integrity of all

defined correspondences between the concepts of

different ontologies. They focused on the integration

in terms of merging. When relating to the concepts of

the ontologies to be merged, the types of semantic

correspondences are equivalence, overlap,

generalization and disjointness. A tool is implemented

for assisting the knowledge engineer when choosing

the corresponding concepts of the ontologies. The

methodology is evaluated for applicability and

efficiency using large ontologies used in the building

design domain. However, it has some drawbacks.

They are: the algorithm can only be used for

integrating light-weight ontologies; it assumes that all

the ontologies use a common top-level ontology and

this method cannot be used by an ontology illiterate

person. A knowledge engineer is needed for the

process.

Stumme & Maedche, (2001) aimed to overcome the

knowledge overlapping problems in common domains

in merging domain specific ontologies. In other words,

this work also addresses the semantic heterogeneity

problem. The method adopted in this research for

merging two or more ontologies is using a set of

natural language documents and a mathematical

approach called Formal Concept Analysis with

bottom-up merging. In this process, a lattice of

concepts is determined applying the Formal Concept

Analysis using the provided natural language

documents. The lattice contains the concepts related to

the context of the domain of input ontologies. Using

two ontology of tourism domain, they have explained

how to obtain the concept lattice with the NL (Natural

Language) documents, and how to generate the final

ontology from the concept lattice. However, it needs a

set of domain specific Natural Language documents

for the process of concept extraction and the merging

process relies on the background knowledge of a

domain expert. A knowledge engineer is needed to

handle merging conflicts and duplicate concepts

merging.

Wang et al., (2018) have proposed a way to align

ontologies specific to biomedical domain using entity

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

21

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

definitions and context. They use a neural architecture

to encode additional information when available in the

process of aligning ontologies. They also use natural

language information (textual context) to narrow

down an entity’s meaning when the meaning of the

entity is not clear. External sources like Wikipedia and

scientific articles are exploited when using a

supervised learning model to train the ontology

alignment model. This work has proved that the

derived definitions and contexts can be used

effectively when aligning ontologies to obtain good

results.

Robin & Uma, (2010) proposed a fully automatic

ontology merging approach using hybrid strategy

containing both lexical, semantic matching and

similarity matching. The semantic matching is done

using only WordNet. The WordNet is used to find the

meaning of words. WordNet contains every meaning

of a considered word. If we consider a word like

“bank”, it can be the bank which we deposit money or

the bank that is related to rivers. This work only checks

synonyms using WordNet and do not evaluate the

semantic meaning of a word like “bank”.

By considering above literature, it is clear that there is

no such methodology for merging domain specific

application ontologies keeping the original usability of

the initial ontologies.

Proposed Approach

We investigated two compulsory tasks to achieve the

proposed goal of this research.

These tasks find the answers to the research questions

mentioned in the section 1.

The main tasks are:

i. Matching concepts and finding the

correspondences between them

ii. Merging two ontologies with the

correspondences found

We propose a three-layered approach consisting of

input layer, concept matching layer and ontology

merging layer to achieve the goal of this research. The

overview of the proposed methodology is depicted in

Figure 1 and functionalities of each layer are explained

in sub-sections.

Finding Correspondences of Ontology Concepts

The ontology designing community has no formal

conventions of naming concepts of an ontology when

designing ontologies. Ontology designers design

ontologies by using different terminologies. Due to the

cognitive complexity of matching concepts, most of

the time this task is done by a human (Gal & Shvaiko,

2008). As a result, an ontology designer would address

this, for instance: “Seedbed” as “Breeding Ground”,

leading to the heterogeneity of ontologies of the same

domain. The first and the second layers of the

methodology (see Figure 1) find the correspondence

of the concepts according to the following scenarios.

Figure 1: Overview of the Methodology

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

22

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

• Syntactic and Semantic matching between

single-word concept names (i.e., one word,

e.g., Crop, Variety).

• Syntactic and Semantic matching between

multi-word concept names (i.e., concept

names with more than one word, e.g.,

FarmingStage, AverageYield).

We use the WordNet and the Word2Vec

(https://radimrehurek.com/gensim/models/word2vec.

html) for correspondence of concepts. In the first

layer, we prepare all the necessary processes needed

for correspondence of the concepts in the second layer.

The third layer is responsible for merging two

ontologies with the correspondences found in the

second layer.

Input Layer (First Layer)

We input two ontologies with a domain specific text

corpus to the layer one. In this layer, we make the

ontology with the least number of concepts as the

source ontology (base ontology) and the other one as

destination ontology. We use this approach to

minimize the number of comparisons when checking

the correspondence of the concepts of two ontologies,

making the process cost-effective manner. A domain

specific text corpus is used for determining the

semantic relatedness of the multi-word concepts using

Word2Vec. It is important for a machine to know the

semantic meanings of the words when merging the

ontology concepts (Gomaa & Fahmy, 2013). We have

used this approach (Word2Vec) for corresponding

concepts when the WordNet lacks the concept names

and as the solution for heterogeneous multi-word

concepts used by different ontology designers, which

WordNet does not support. It is difficult to determine

the meaning of a phrase as it does not have the simple

composition of the meanings of single words

(Mikolov, Sutskever, et al., 2013). Using a text corpus

to match multi-word concepts is more effective rather

than using NLP techniques, which leads to shortage of

identifying certain multi-word concept names. The

domain specific text corpus is pre-processed and the

Word2Vec models are trained for detecting single-

word and multi-word concept names. The second layer

uses the WordNet and the trained Word2Vec models

to correspond the concept names.

Concept Matching Layer (Second Layer)

When finding correspondence between concepts of the

source and destination ontologies, we used the

breadth-first traversal for minimizing the number of

comparisons. As the concept tree is traversed from top

to bottom left to right, if a concept in the top is

matched, all the sub concepts of it can be omitted in

the next traversal. In this approach, we find whether

there is a corresponding concept in the destination

ontology for a certain concept in the source ontology.

For instance, consider the concepts of the source

ontology in the order of breadth-first approach are S1,

S2, S2, …, Sn, and the concepts of the destination

ontology in the breadth-first approach are D1, D2, D3,

…, Dn. First, S1 is compared with D1, D2, D3, …, Dn,

then S2 is compared with D1, D2, D3, …, Dn. This

way all the concepts of the source ontology are

compared with all the concepts of the destination

ontology according to the breadth-first method.

In comparing, the WordNet is used when both

concepts of source and destination ontologies are

single-word concepts. The meanings of a single word

from different semantic aspects are represented in a

synset in WordNet. The WordNet uses the similarity

of words using cognitive synonyms that is called a

synset. The synsets are interlinked by means of

conceptual-semantic and lexical relations creating a

network of meaningfully related words. We have used

the following types of relationships to match the

concepts using WordNet.

• Synonym: Similar words

• Hypernym: A word with broad meaning

constituting a category into which words with

more specific meanings fall

• Hyponym: A word of more specific meaning

than a general or superordinate term

applicable for it

When these relationships are found in the breadth-first

traversal, these concept pairs are stored in a database

with the relative relation to be used in the final (third)

layer for merging ontologies. The format of the

database table is shown below (Table 1).

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

23

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

Table 1: Sample Format of Database Table

Source Ontology Concept Relationship Destination Ontology Concept

Crop Similar Crop

Harvest Synonym Yield

Plant Hypernym House Plant

Cow Hyponym Herbivore

Source: Author compiled

For the scenarios of one or both concepts of the source

and destination ontologies being multi-word concepts,

or some concept pairs cannot be corresponded with the

relations in WordNet, then we employ the Word2Vec

model.

The Word2Vec is a two-layer neural network that

processes text. When one inputs a large text corpus

into it, it outputs the words represented in a vector

space. A word vector represents the meaning of a word

in a form of a vector which represents a word as a

floating-point number distributed in where

semantically similar words are mapped together in the

vector space. Word2Vec gives vectors for each word

in the input in a way that the semantically similar

words have similar vectors. Word2Vec uses the word

vectors to perform state of the art syntactic and

semantic similarities for the text provided (Mikolov,

Chen, et al., 2013). The built-in skip-gram model of

Word2Vec leads the words of a sentence to be

surrounded by similar context, making the user who

uses Word2Vec can query related words for a given

word in the input context. The continuous bag of

words (CBOW) model considers a sentence as a bag

of words which ignores grammar and the order of

precedence of words when constructing a collection of

words (Mikolov, Chen, et al., 2013). The skip-gram

model predicts the surrounding words given a word

and the CBOW model predicts the word based on a

given context. The semantic correspondence process

of this work is inspired by these two models that are

built-in the Word2Vec model, exploiting a rich

domain specific text corpus to match the different kind

of concept names.

Source: Author compiled

Figure 2: Architecture of the Methodology

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

24

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

In a single comparison which employs Word2Vec, the

concept name (this can be single-word or multi-word)

of the source ontology is fed into the pre-trained

Word2Vec model to get a set of similar words that

resides in the same context. The list of words produced

by Word2Vec is then compared with the destination

ontology concept name using a string similarity

measure. The string similarity measure we use in our

approach has many advantages over the usual string

metrics like Levenstein, Needleman-Wunsch, Jaro-

Winkler and Q-Gram that most of the works used in

the literature. Fastness, stability and intelligence of

this string metric are the reasons for using it in this

research (Stoilos et al., 2005). This metric overcomes

the limitations that the usual string metrics have; for

instance, Jaro-Winkler metric gives a high score for

the two words, “store” and “score”, which are

completely two different words. The string metric

proposed by Stoilos et al., (2005) is mainly used to

overcome this limitation.

The matched concept pairs using the Word2Vec model

is stored in the database using a different relationship

as same as the format shown in Table 1. In this way,

all the concepts of two ontologies are compared and

then the identified correspondences are stored in a

database. Figure 2 shows the overall architecture of the

methodology.

Input: Two Ontologies, domain specific text corpus

Output: Pairs of corresponded concepts with relations

1. Pre-process the text corpus and train the word2vec model using the preprocessed text corpus.

2. Make the ontology with the lesser number of concepts as the source ontology, call it O1. If the

number of concepts is equal, choose arbitrarily.

3. Make the other ontology as the destination ontology, call it O2.

4. Traverse O1 in breadth first way, call the current concept C1.

5. Traverse O2 in breadth first way, comparing C1 with each concept of C2.

6. When comparing (ignore the concepts that are already compared),

If both concept names are single worded,

If C1 is similar to C2, store in the database with similar relationship.

Else if C1 is a synonym of C2, store in the database with synonym relationship.

Else if C1 is a hypernym of C2, store in the database with hypernym relation.

Else if C1 is a hyponym of C2, store in the database with hyponym relation.

Else input C1 and C2 into pre-trained word2vec model for most similar words.

Compare C2 with each word of the results of word2vec using a string metric.

 If match, store in the database with equal relationship.

 else ignore C1.

else one or both of concept names are multi worded,

 Input C1 and C2 into pre-trained word2vec model for similar phrases.

 If match, store in the database with equal relationship.

7. Repeat from step 4 until all the concepts of the source ontology is compared.

Figure 3: Algorithm for finding correspondences.

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

25

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

In third layer (Ontology Merging Layer), the two

ontologies are merged using the identified

correspondences. The proposed algorithm for finding

correspondences between the ontology concepts is

shown in Figure 3.

Ontology Merging Layer (Third Layer)

The main goal of merging ontologies in this work is

not to change the initial structures of the ontologies

after merging. After merging, the ontology should be

able to be used in the existing applications. Further,

information that could be retrieved using the existing

ontology should be retrieved even after the merging

process as well as can retrieve the additional

information based on the merged one. Therefore, we

do not change the initial structures when merging

them. By satisfying this requirement, we addressed

three structural merging scenarios as follows:

• Child (sub class) to Child (sub class) Merging

• Parent (super class) to Parent (super class)

Merging

• Parent (super class) to Child (sub class)/Child

(sub class) to Parent (super class) Merging

According to the relationship of the correspondence

between the concept pair, the merging is done. For the

above mentioned three scenarios, there can be any

relationship type such as similarity, synonym,

hypernym, hyponym or equal. Hence, there can be

altogether 15 scenarios of merging. Here, we map the

relationships to the method of merging as follows, by

considering the source ontology concept as C and the

destination ontology concept as D:

• Similarity (i.e., both ontologies have same

concepts): transfer all axioms, constraints,

restrictions of C to D.

• Synonym or Equal (i.e., concept in source

ontology is a synonym of the concept in

destination ontology): make C equivalent to D.

• Hypernym (i.e., concept in source ontology is

a superordinate of the concept in destination

ontology): make C a superclass of D.

• Hyponym (i.e., concept in source ontology is

a subordinate of the concept in destination

ontology): make C a subclass of D.

When merging ontologies in different scenarios, we

might need to merge a whole sub-tree of the source

ontology to a concept in the destination ontology. With

the sub-tree, the whole set of axioms of every sub class

of the sub-tree are needed to be transferred to the

concept of the destination ontology. Sometimes there

may be relations that go from the sub-tree to different

concepts that are not in the sub-tree. We use the

locality module extractor to find the relationships

around the concept and alter them and set them as

axioms of the other ontology. The locality module

extractor extracts all the domains and ranges of the

relations that goes out of the sub-tree and comes into

the sub-tree along with all the subclass-superclass

relationships. For example, consider the concept

“Area” of the source ontology and has sub-concepts as

Costal, Hill and Zone. First, it gets all axioms

(subClassOf axioms) related to concept “Area”. Then

all the axioms with the concept “Area” are altered and

placed to the concept “Area” of destination ontology.

Now, all the altered axioms are added to the

destination ontology. The concept “Area” of source

ontology is merged to the concept “Area” of

destination ontology. The extractor is built on top of

the OWL API which we use to manipulate the

ontology constructs when merging to extract the logic-

based modules from a given ontology (Jiménez-Ruiz

et al., 2008). This makes the merging process efficient

in a programmatic perspective as it automatically

extracts all the relevant axioms of a given sub-tree of

the ontology. The main reason for employing this in

our research is the need of merging sub-trees to the

destination ontology. When merging ontologies as

mentioned, it is assured that the structures are not

changed. After the merging process, a reasoner

attached to the ontology is used to check whether there

is any inconsistency. The resulting ontology can

contain concepts with multiple inheritance (concepts

with more than one parents). This makes ontologies

harder to maintain manually. However, the multiple

inheritances make the ontologies richer with better

axiomatizations (Mikel Egaña Aranguren, 2010). The

user can get the final merged ontology as an owl file

to be used with any application they used previously.

The ontology merging algorithm is depicted in Figure

4. According to this algorithm, two scenarios such as

Child to Child and Parent to Parent with respect to the

Similarity Relationship, are depicted in Annex 01 and

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

26

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

Annex 02 respectively. We identify a child concept if

it has no sub-concepts and a parent class if it has one

or more sub-concepts. Since we are doing breadth first

traversing, during the loop, only the valid if-conditions

will be executed making the comparisons minimal.

According to the proposed algorithm, it will first

choose first concept of the source ontology as C1 and

the first concept of the destination ontology as C2.

Then it checks whether which of following conditions

are valid for C1 and C2:

• C1 and C2 both are child concepts.

• C1 is a child and C2 is a parent.

• C1 is a parent and C2 is a child.

• C1 and C2 both are parents.

Algorithm for Merging Ontologies with the Found Correspondences

Input: Two ontologies and matched concept pairs with relations

Output: Merged ontology

1. Take the first pair of concepts, call the concept from ontology1 C1 and ontology2 C2.

2. Check whether the C1 and C2 is a child or parents.

If C1 is a child and C2 is a child,

 If relationship is similarity

 transfer all axioms, restrictions and constraints of C1 to C2

 If relationship is synonym or equal

 make C1 and C2 equivalent classes.

 If relationship is hypernym

 make C1 a superclass of C2

 If relationship is hyponym

 make C1 a subclass of C2

 If C1 is a child and C2 is a parent,

 If relationship is similarity

 transfer all axioms, restrictions and constraints of C1 to C2

 If relationship is synonym or equal

 make C1 and C2 equivalent classes

 If relationship is hypernym

 make C1 a superclass of C2

 If relationship is hyponym

 make C1 a subclass of C2

 If C1 is a parent and C2 is a parent

 If relationship is similarity

 transfer all axioms, restrictions and constraints of C1 to C2

 If relationship is synonym or equal

 make C1 and C2 equivalent classes

 If relationship is hypernym

 make C1 a superclass of C2

 If relationship is hyponym

 make C1 a subclass of C2

 If C1 is a parent and C2 is a child

 If relationship is similarity

 transfer all axioms, restrictions and constraints of C1 to C2

 If relationship is synonym or equal

 make C1 and C2 equivalent classes

 If relationship is hypernym

 make C1 a superclass of C2

 If relationship is hyponym

 make C1 a subclass of C2

3. Take next matched concept pair and repeat step 2 until all concept pairs are merged.

4. Output the merged ontology as an owl file.

Figure 4: Ontology Merging Algorithm

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

27

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

Let’s consider C1 and C2 are parent concepts, and the

scenario is for similarity relationship. The algorithm

checks whether the correspondence between two

concepts is similarity, synonym (or equal), hypernym

or hyponym. If the correspondences in the database

have no correspondence like this (correspondences

stored in the database in the first layer of the

implementation, the correspondences obtained using

the trained Word2vec and from WordNet), then the

merging of these two concepts will be skipped. Then,

in the second loop, according to the breadth first

traversal, the same process will be repeated. Then if

the training happened accurately in the previous layer,

there should be a correspondence in the database

which says “C1” is equal to “C2”. So, when the

algorithm detects this, it will transfer all axioms,

restrictions and constraints of C1 to C2, merging two

concepts.

Consider a scenario which uses hypernym relations.

At some point in the loop, C1 can become

“ControlMethod'' of the source ontology and C2 can

become “WeedControl” in the destination ontology.

We clearly see that “WeedControl” can be a

subconcept of “ControlMethod”. If the training was

accurate in the previous step, a correspondence should

be there in the database that says that “ControlMethod''

is a hypernym (superconcept) of “WeedControl”. If it

exists in the database, the algorithm proceeds with

making C2 is a subconcept of C1.

Results

In related works, most of the findings with respect to

the correspondences of the concepts of ontologies are

done by humans. This makes the work of merging

ontologies more labor intensive. According to the goal

of this work, user friendliness is one of the factors we

address because of the ontology-based applications are

not always used by the people who have knowledge of

concepts of ontologies. They may be agricultural

instructors, experts in agriculture sector and many

more professions in other sectors. The proposed

methodology is an automatic approach which can be

used by any user without the knowledge of ontologies.

The only requirement is a rich domain specific text

corpus in addition to two ontologies to be merged. The

algorithm we proposed for finding correspondences in

Figure 3 that answers first and second research

questions mentioned in section 1. The external source

we employed to find correspondences (WordNet) and

the domain specific text corpus we used along with

Word2Vec model helps to match the concepts using

both lexical and semantic aspects. The Word2Vec also

helps to find the semantic similarities of the word

phrases.

Another outcome of this research is the ontology

merging algorithm in Figure 4 which satisfies our goal

of keeping the original usability of the ontologies even

after the merging is done. This algorithm overcomes

the third and fourth research questions mentioned in

section 1.

Validation and Evaluation

We have utilized the agricultural ontologies in the

domain of agriculture for the evaluation. The original

usage of the ontologies is kept intact with the

suggested merging process by following the breadth

first traversal. In the merging process, none of the

original concept names are changed, therefore,

keeping the original usage. For evaluating whether we

kept the original usage in the final merged ontology,

we can run the same ontology queries in both input

ontologies and in the final merged ontology and see

they work as expected.

We evaluated the proposed methodology by

comparing the output of the methodology with the

results of expert merging. We used two agricultural

ontologies to evaluate the merging process. The source

ontology and destination ontology consist of 18

concepts separately. Figures 5 and 6 show these

ontologies. Merging with the help of the expert, the

following results were obtained.

Number of correspondences: 9

Number of Similar concept pairs: 4

Number of Synonym concept pairs: 4

Number of Hypernym relations: 1

Number of Hyponym relations: 0

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

28

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

The expert was not allowed to change the structures of

the ontologies or the concept names. The expert was

given the same rules as the algorithm but not the

traversal method. The expert was given the freedom to

merge the ontologies with every possible

correspondence. The proposed algorithm gave the

following results after matching the concepts.

Number of correspondences: 6

Number of Similar concept pairs: 4

Number of Synonym concept pairs: 1

Number of Hypernym relations: 1

Number of Hyponym relations: 0

We received the percentage of correspondences, the

algorithm successfully identified merged against the

correspondences identified and successfully merged

by the expert. This gave an accuracy percentage of

66.66% which is a promising percentage.

As we have done this research to improve the ontology

proposed by Walisadeera et al., (2015) with the

ontologies that may have designed for the sub domains

of agriculture for obtaining new knowledge we only

used the ontologies related to the agriculture domain.

The accuracy of this merging process completely

depends on the correspondences we obtain from

training of the corpus (i.e. it depends on WordNet and

Word2Vec). Since WordNet is a knowledge base, it

has its own limitations. But, since Word2Vec is an

algorithm, we can feed as many texts we want to train

the model. Word2Vec gives more accurate results

when the text we feed into it gets bigger. For example,

if we can see that “ControlMethod” and

“WeedControl” can be made superconcept and

subconcept, if this correspondence is not identified by

WordNet or Word2Vec, those two concepts will not

be merged by our algorithm. So, the proposed

algorithm completely depends on WordNet and

Word2Vec results. The methodology is also applicable

for merging ontologies of other domains as well with

a rich domain specific text corpus.

Figure 5: Source Ontology

Figure 6: Destination Ontology

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

29

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

Conclusion

This research is motivated by practical problems in

different application domains. One scenario is the

problem of scaling up the existing agricultural

ontology proposed by Walisadeera et al., 2015 for

farmers in Sri Lanka to merge with new knowledge.

Then they can get more information in the form of the

existing ontologies which linked with its applications

like “Govi-Nena” mobile-based application that is

linked with the crop ontology. As a solution, in this

research, new algorithms were introduced to merge

two ontologies. One of the proposed algorithms

presented in Figure 3 is for finding concept

correspondences. Another outcome of this research is

the ontology merging algorithm in Figure 4 which

satisfies our main goal of keeping the original usability

of the ontologies even after the merging is done. In

conclusion, this work addressed the goal of the

research successfully in merging application

ontologies by keeping the original structures of the

ontologies intact.

With the future improvements, the methodology will

be used in more advanced and complex ontologies. As

a future work, the correspondence finding process can

be improved using an extra layer of intelligence to

determine the abbreviations and half word concept

names. Moreover, an information extraction method

can be used to address the concepts which are not

correspondence. The concepts that can be related will

be able to merge introducing new relations.

References

Akmeemana, R. A. O. M. P. D., Walisadeera, A. I.,

Goonathilake, M. D. J. S., & Ginige, A. (2018).

A Semi-automatic Approach to Collaboratively

Populate an Ontology for Ontology-Illiterate

Users. In International Conference on

Computational Science and Its Applications,

120–135.

Clarkson, K., Gentile, A. L., Ghul, D., Ristoski, P.,

Terdiman, J., & Welch, S. (2018). User-Centric

Onology Population. In Europian Semantic

Web Conference, 112–127.

Gal, A., & Shvaiko, P. (2008). Advances in ontology

matching. In Advances in Web Semantics I,

176–198.

Gomaa, W. H., & Fahmy, A. A. (2013). A survey of

text similarity approaches. International

Journal of Computer Applications, 68(13), 13–

18.

Heer, T., Retkowitz, D., & Kraft, B. (2008). Tool

support for the integration of light-weight

ontologies. In International Conference on

Enterprise Information Systems, 175–187.

Jiménez-Ruiz, E., Grau, B. C., Sattler, U., Schneider,

T., & Berlanga, R. (2008). Safe and economic

re-use of ontologies: A logic-based

methodology and tool support. In European

Semantic Web Conference, 185–199.

Klein, M. (2001). Combining and relating ontologies:

an analysis of problems and solutions. In

IJCAI-2001 Workshop on Ontologies and

Information Sharing, 53–62.

Maree, M., & Belkhatir, M. (2015). Addressing

semantic heterogeneity through multiple

knowledge base assisted merging of domain-

specific ontologies. In Knowledge-Based

Systems (73rd ed., pp. 199–211).

Mikel Egaña Aranguren. (2010). Automatic

maintenance of multiple inheritance ontologies.

http://ontogenesis.knowledgeblog.org/49

Mikolov, T., Chen, K., Corrado, G., & Dean, J.

(2013). Efficient estimation of word

representations in vector space. Proceedings of

Workshop at ICLR. arXiv:1301.3781.

https://arxiv.org/pdf/1301.3781.pdf%C3%AC%

E2%80%94%20%C3%AC%E2%80%9E%C5

%93.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,

& Dean, J. (2013). Distributed representations

of words and phrases and their

compositionality. In Advances in Neural

Information Processing Systems, 3111–3119.

Pinto, H.S., Go´mez-Pe´rez, A. and Martins, J.P.

(1999) Some issues on ontology integration. In

Proceedings of the Workshop on Ontologies

and Problem Solving Methods IJCAI-99,

Stockholm, Sweden.

https://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.46.6489&rep=rep1&type=pdf

Robin, C. R., & Uma, G. V. (2010). A novel

algorithm for fully automated ontology

merging using hybrid strategy. Europian

Journal of Scientific Research, 47(1), 74–81.

Stoilos, G., Stamou, G., & Kollias, S. (2005). A

string metric for ontology alignment. In

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

30

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

International Semantic Web Conference, 624–

637.

Stumme, G., & Maedche, A. (2001). FCA-Merge:

Bottom-up merging of ontologies. In IJCAI, 1,

225–230.

Walisadeera, A. I., Ginige, A., & Wikramanayake, G.

N. (2015). User centered ontology for Sri

Lankan farmers. Ecological Informatics, 26,

140–150.

Wang, L.; Bhagavatula, C.; Neumann, M.; Lo, K.;

Wilhelm, C.; and Ammar, W. 2018. Ontology

alignment in the biomedical domain using

entity definitions and context. In Proceedings

of the BioNLP 2018 workshop, 47–55.

J.Univ.Ruhuna 2020 8(1): 18-31 S. A. A. Amarasinghe, et al.,

31

Journal of the University of Ruhuna, Sri Lanka 8(1), 2020

Annex 01: Similarity Relationship: Child to Child Scenario

Sample Merged Ontology

Annex 02: Similarity Relationship: Parent to Parent Scenario

 Sample Source Ontology

Sample Merged Ontology

Sample Source Ontology
Sample Destination Ontology

Sample Destination Ontology

Sample Merged Ontology

