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Abstract

O�ce delivery robots have to perform many tasks.
They have to determine the order in which to visit of-
�ces, plan paths to those o�ces, follow paths reliably,
and avoid static and dynamic obstacles in the process.
Reliability and e�ciency are key issues in the design
of such autonomous robot systems. They must deal
reliably with noisy sensors and actuators and with in-
complete knowledge of the environment. They must
also act e�ciently, in real time, to deal with dynamic
situations. Our architecture is composed of four ab-
straction layers: obstacle avoidance, navigation, path
planning, and task scheduling. The layers are indepen-
dent, communicating processes that are always active,
processing sensory data and status information to up-
date their decisions and actions. A version of our robot
architecture has been in nearly daily use in our build-
ing since December 1995. As of July 1996, the robot
has traveled more than 75 kilometers in service of over
1800 navigation requests that were speci�ed using our
World Wide Web interface.

1 Introduction
A basic function of o�ce delivery robots is to satisfy
requests of the form \go to X, then go to Y." When
the robots arrive at location X, an item, such as a doc-
ument, is given to them, which is then removed when
they visit location Y. To carry out such tasks, the robots
must determine the order in which to visit o�ces, plan
paths to those o�ces, follow paths reliably, and avoid
static and dynamic obstacles while traveling. Several
issues arise for such autonomous o�ce delivery robots,
the main ones being how to perform the tasks reliably
and e�ciently in the face of uncertainty and incom-
plete information. Moreover, the robots have to act in
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real-time to cope with a dynamic environment, such as
moving people and changing delivery requests.
While many techniques exist for handling various

parts of the delivery problem, comparatively little work
has been done on building complete robot architectures.
Only complete architectures, however, allow researchers
to study interactions between the layers. Our architec-
ture is based on layers of increasing abstraction. Upper
layers in the architecture provide guidance to lower lay-
ers, while lower layers handle details that the upper
layers have abstracted away. We show that not only
does each individual layer provide for reliable and ef-
�cient behavior, but also that the overall architecture
achieves synergistic e�ects by suitably partitioning sys-
tem functionality.
A version of our robot architecture has been in almost

daily use in our building since December 1995. As of
July 1996, the robot has served over 1800 navigation
requests, traveling a total of more than 75 kilometers.
These experiments demonstrate that our robot archi-
tecture leads to fast and reliable navigation. The robot
can travel at speeds of up to 60 centimeters per second
in peopled environments. Its planning time is negligible
and its task completion rate is now about 95 percent.
The robot's travel speed is currently limited only by the
cycle time of its sonar sensors, and tasks fail mainly due
to problems with the wireless network at CMU { both
problems are unrelated to the robot architecture.
Xavier, the robot used in these experiments [Nour-

bakhsh et al. 1993; O'Sullivan & Haigh 1994], is built
on top of a 24 inch diameter RWI B24 base, which is a
four-wheeled synchro-drive mechanism that allows for
independent control of the translational and rotational
velocities (Figure 1). The sensors on Xavier include
bump panels, wheel encoders, a sonar ring with 24 ul-
trasonic sensors, a Nomadics front-pointing laser light
striper with a 30 degree �eld of view, and a color cam-
era on a pan-tilt head. Control, perception, and plan-
ning are carried out on three on-board 486 computers.
The computers are connected to each other via thin-
wire Ethernet and to the outside world via a Wavelan
wireless Ethernet system [Hills & Johnson 1996].
Section 2 presents an overview of our architecture and

a scenario that illustrates how the various parts of the
architecture work. Section 3 discusses each layer in de-



Figure 1: Xavier
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Figure 2: The Navigation Architecture

tail, including its functionality and its interface to the
other layers. Section 4 presents the integration frame-
work used and Section 5 discusses issues of user inter-
action with the robot. The paper concludes with per-
formance data on the overall architecture and presents
some of the lessons learned.

2 Overview of the Robot Architecture
Our robot architecture (Figure 2) consists of four lay-
ers: obstacle avoidance, navigation, path planning, and
task scheduling. Each layer abstracts the raw sensor
data, and higher layers work with the more abstract
representations (Figure 3). The layers are implemented
as separate code modules (processes). Other parts of
the architecture include real-time servo control, which
is provided with the commercially available hardware
(robot base and pan-tilt head), an integration package
that provides interprocess communication and synchro-
nization between modules, and user interfaces for spec-
ifying requests and monitoring robot progress.
While this division of functionality is certainly

not novel, each module o�ers novel approaches
with solid theoretical foundations. Obstacle avoid-
ance is performed by our Curvature-Velocity Method
(CVM) [Simmons 1996]. Navigation is done using
Partially Observable Markov Decision Process models
(POMDPs) [Simmons & Koenig 1995]. Path Planning
uses our decision-theoretic generate, evaluate and re-
�ne strategy that is based on ideas from sensitivity
analysis [Koenig, Goodwin, & Simmons 1996]. Task
scheduling is performed using our symbolic planning
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architecture [Haigh & Veloso 1996; 1997]. Interpro-
cess communication and synchronization is provided by
our Task Control Architecture (TCA) [Simmons 1994b].
The user interface uses both the World Wide Web and
Zephyr. We illustrate the modules of our navigation
architecture using a typical delivery scenario.
The user interfacemodule allows users, such as sec-

retaries, to enter delivery requests (including desired
delivery times and priorities). It also provides a means
for monitoring the progress of the robot, such as its
current position and delivery request being carried out.
Assume that there is one delivery request pending, a
delivery from A to B (Figure 4), when another user en-
ters a new delivery request: to carry a print-out from
C to D.
The task scheduling module now has to determine

the order in which to visit the four locations. Possi-
ble orders are ABCD, ACBD, ACDB, CABD, CADB,
and CDAB. To make this decision, a symbolic plan-
ner (prodigy) consults with the path planner to de-
termine the expected travel time between any two lo-
cations. The task scheduler integrates the new request
into the current schedule, sequencing the order of the
navigation tasks.
The path planningmodule determines how to travel

e�ciently from one location to another. Actuator and
sensor uncertainty complicates path planning since the
robot may not be able to follow a path accurately, and
the shortest distance path is not necessarily the fastest.
Consider, for example, the two paths fromA to B shown
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Figure 5: Two Paths from A to B

in Figure 5. Although Path 1 is shorter than Path 2,
the robot could miss the �rst turn on Path 1 and have
to backtrack. This problem cannot occur on the other
path since the end of the corridor prevents the robot
from missing the turn. The path planner uses a
decision-theoretic approach to choose plans with high
expected utility and uses sensitivity analysis to deter-
mine which alternatives to consider.
The navigation module generally follows the path

suggested by the path planner. It may deviate from the
nominal path since it, too, has to deal with sensor and
actuator uncertainty. For example, if the path plan-
ner chooses Path 1 from A to B, and the robot indeed
overshoots the turn, then it could mistake the dead-end
corridor for the correct corridor. When it reaches the
end of the dead-end and discovers its mistake, it issues
corrective actions that turn the robot around and let it
make progress toward the goal. Our navigation module
uses a Partially Observable Markov Decision Process
(POMDP) model to maintain a probability distribu-
tion of where the robot is at all times, choosing actions
based on that distribution.
The obstacle avoidance module keeps the robot

moving in the desired direction, while avoiding static
and dynamic obstacles (such as tables, trash cans, and
people). It provides high-speed, safe motion by taking
the robot's dynamics into account and by optimizing,
in real time, an objective function that combines safety,
speed and progress along the desired heading.
The robot architecture is implemented as a collection

of asynchronous processes. They are integrated using
the task-level control package, which provides facili-
ties for interprocess communication (message passing),
coordination, and synchronization of the distributed,
concurrent modules. Other modules use these facilities
to indicate when subtasks should be active and how
they should be monitored to determine whether they
succeed or fail.
To a large extent, the architecture achieves reliability

and e�ciency by using reliable and e�cient component
modules. But reliability and e�ciency are also achieved
through the interaction of the layers:

� Higher layers can \guide" the lower layers into regions
of the environment where safe and e�cient navigation
can take place. For instance, the path planning mod-
ule takes the probability of execution failure into ac-
count when planning paths { keeping the robot away
from areas where it may have di�culty navigating.

� Lower layers can take care of details abstracted out
by higher layers. For example, while the navigation
layer speci�es headings for the robot to follow, the
obstacle avoidance layer can steer the robot in a dif-
ferent direction, if needed to avoid local obstacles.

� Lower layers propagate failures up to higher layers
when they �nd that they cannot handle certain ex-
ceptional situations. For example, the obstacle avoid-
ance module can indicate when it thinks it is stuck
in a local minimum. By \failing cognizantly" [Gat
1992], the lower layers can provide information that
enables higher layers to determine how to handle the
situation [Simmons 1994a].

In character, our architecture has many similarities to
behavior-based approaches advocated in the literature
[Brooks 1986; Connell 1989; Mataric 1992]. Lower lay-
ers are always running, even when higher layers are in-
active, or not present. For instance, the obstacle avoid-
ance module can keep the robot wandering safely, even
without any \desired heading" input from the naviga-
tion module. In addition, lower layers are free (within
some bounds) to ignore the input received by higher
layers, essentially treating higher level plans and com-
mands as \advice" [Agre & Chapman 1987]. For exam-
ple, the local obstacle avoidance module can ignore the
current goal heading to steer the robot around obsta-
cles. Similarly, the navigation module has the option of
choosing how to direct the robot towards the goal, if it
�nds that it has strayed from the path speci�ed by the
path planner (Figure 5).
The architecture di�ers from traditional behavior-

based approaches in that it makes heavy use of models
and internal representations. This actually has the ef-
fect of improving e�ciency and reliability, since the rep-
resentations explicitlymodel the capabilities and limita-
tions of the robot, and take uncertainty and incomplete
information into account. By combining prior informa-
tion (models) with current percepts, the robot is able
to maintain representations that best reect its current
belief in the state of the world, given that it receives
noisy, and often incorrect, sensor information.

3 Component Modules
This section describes the modules in more detail. It
also describes the interfaces between the modules and
argues why the representations that the modules use
are adequate for the tasks to be performed.

Obstacle Avoidance

Above all else, the robot must travel safely to protect
itself and the people with which it shares the environ-
ment. In addition, we desire fast (walking speed) travel,
both to make the robot useful as a delivery agent and
to make it a more socially acceptable \inhabitant" of
our building.
The input to the obstacle avoidancemodule is either a

desired heading or a goal point. The obstacle avoidance
module tries to either maintain this heading or head to-
wards the goal point, while avoiding collisions. Without



Figure 6: Local Obstacle Avoidance at 60 cm/sec

an explicit goal, the robot wanders while avoiding ob-
stacles. If it gets stuck (trapped in local minima), the
obstacle avoidance module will signal the other modules
with a description of the problem encountered.

Previous obstacle avoidance schemes [Arkin 1989;
Borenstein & Koren 1991] neglected dynamics by as-
suming the robot could turn instantaneously. While
this assumption is reasonable for low-speed travel, for
higher speeds one must take current velocities and fea-
sible accelerations into account. Our curvature-velocity
method (CVM) [Simmons 1996] poses the obstacle
avoidance problem as one of constrained optimization
in the velocity space of the robot. The velocity space
is the space of all feasible translational and rotational
velocities of the robot. Constraints are added to this
space that limit the allowable velocities that can be
commanded. For example, the minimumand maximum
rotational velocities that can be achieved in the next
time interval are limited by the current rotational veloc-
ity and the maximumrotational acceleration. Similarly,
obstacles detected by the sonar and laser sensors add
constraints on how far the robot can travel along an arc
of a given curvature before hitting an obstacle. By con-
strained optimization we mean that the CVM method
chooses velocity commands by maximizing an objec-
tive function, subject to the various velocity space con-
straints. The linear objective function contains terms
for safety (distance to the nearest obstacle), speed, and
progress (heading in the desired goal direction). By
adjusting the coe�cients of the objective function, we
can easily enable the robot to trade o� e�ciency for
reliability in its travels.

By making use of some reasonable approximations,
the CVM method can e�ciently compute the best ro-
tational and translational velocities. The complete cal-
culation, including sensor processing, takes 12 msecs on
a 486 computer. In part, this is achieved by using the
raw sensor range readings directly, doing a minimum
of processing to suppress noise. The idea is to deal
with sensor noise using a tight feedback loop { having
the robot react quickly to any perceived obstacle and
returning to the nominal (goal) heading as soon as pos-
sible. Figure 6 illustrates how the robot travels in our
corridors (the goal heading is to the right { the robot
travels down until it �nds an opening, and then travels
in the desired heading).

Navigation

The role of the navigation module is to direct the robot
to a given goal location. Its input is a path plan, and it
interfaces to the obstacle avoidance module by provid-
ing a series of goal headings. The navigation module
works by estimating the current location of the robot,
determining the direction the robot should be heading
at that location to follow the path, and then sending
the obstacle avoidance module any change in desired
heading. It must work reliably in spite of noisy sen-
sors and actuators (\dead-reckoning uncertainty") and
incomplete knowledge of the environment (such as un-
certainty about the exact lengths of corridors).
In order to avoid getting completely lost, our naviga-

tion module maintains a probability distribution over
the current pose (position and orientation) of the robot.
Given new sensor information and the current distribu-
tion over all possible poses, the navigation module uses
Bayes' rule to update the pose distribution. The up-
dated probabilities are based on probabilistic models of
the actuators, sensors, and the environment:

actuator model: \If the pose of the robot is X and it
believes that it has moved forward one meter, then
its new pose is Y with probability P."

sensor model: \If the pose of the robot is X, then
sensor Y will report feature Z with probability P."

distance model: \Corridor X is Y meters long with
probability P."

door model: \Door X is open with probability P."

This information, together with a topological map,
is automatically compiled into a Partially Observ-
able Markov Decision Process (POMDP) model. The
POMDP model produced by our system discretizes the
pose of the robot: orientation is discretized into the
four compass directions (relying on the rectilinear na-
ture of most buildings) and location is discretized with
a precision of one meter. There is a trade-o�: a coarse
discretization leads to smaller memory and runtime re-
quirements, but at reduced precision.
Discretizing the pose allows us to abstract the raw

sensor data. The raw, dead-reckoned data is discretized
into virtual movement reports (e.g., \moved forward
one meter" or \turned left ninety degrees"). The vir-
tual movements abstract away low level control aspects,
such as circumnavigating obstacles, by reporting the
straight-line distance in the desired heading. Similarly,
an evidence grid, which integrates raw sonar data over
time [Moravec 1988], is used to derive virtual sensors
that report on the environment. For example, we model
three sensors (a front, left, and right sensor) that re-
port features such as walls and openings of various sizes
(small, medium, and large). These abstract virtual sen-
sor reports are less noisy and more closely approximate
the probabilistic independence assumptions needed by
Bayes' rule.
The navigation module takes a path plan and con-

verts it to a desired heading direction for each discrete
robot location. Locations on the planned path are as-
signed headings along that path; locations o� the nom-



inal path are assigned headings to lead the robot back
onto the path. Whenever the navigation module up-
dates the probability distribution, it determines which
heading is most likely to lead to the goal, and passes
that information to the obstacle avoidance module. We
currently choose the heading that has the highest total
probability mass [Simmons & Koenig 1995], but choos-
ing the heading associated with the most likely location
is also a good strategy [Cassandra, Kaelbling, & Kurien
1996].
The navigationmodule is very reactive to unexpected

sensor reports, since desired headings are maintained
for all possible poses, not just the most likely pose.
Thus, if the robot strays from the nominal path, it will
automatically execute corrective actions once it realizes
its mistake. Consequently, the navigation module can
gracefully recover from sensor noise and misjudgments
about landmarks. For example, assume that the robot
takes Path 1 (Figure 5), but misses the �rst turn and
turns into the dead-end instead. Initially, most of the
probability mass is in the corridor, since the robot be-
lieves that it made the correct turn. However, when
it reaches the end of the dead-end, the sensor readings
will make the probability mass shift to the correct lo-
cation. The desired heading within the dead end is
South, so the robot turns, heads out of the dead end,
and then turns right back onto the desired path. Note
that, unlike landmark-based navigation schemes [Sim-
mons 1994a], no separate mechanism is needed for error
recovery { the robot is always (reactively) choosing the
best direction to head in for reaching the goal.

Path Planning

The task of the path planner is to take a pair of locations
and create a policy that can be used by the navigation
module to guide the robot and by the task scheduler
to estimate the travel time between the locations. By
taking into account that some paths can be followed
more easily than others, the planner can choose paths
that steer the navigation module away from regions of
the building where navigation is likely to fail.
The use of POMDP models for position estima-

tion and action execution suggests using POMDP al-
gorithms on the same models for goal-directed path
planning. At present, however, it is infeasible to de-
termine optimal POMDP solutions given our real-time
constraints and the size of our state spaces (over 3000
states for one oor of our building) [Cassandra, Kael-
bling, & Littman 1994; Lovejoy 1991]. Instead, our
planner generates a nominal path to the goal location.
Paths are generated using a modi�ed A* search algo-
rithm that creates a sequence of paths from shortest
to longest. For e�ciency, the planner operates on the
topological map (augmented with metric information)
rather than using the POMDP model directly. As each
path is generated, it is evaluated using a forward pro-
jection to determine the expected travel time, assuming
that all doors are open and no corridors are blocked.
The projection takes into account that turns can be
missed, such as the �rst turn of Path 1 in Figure 5. In

cases where a path can be blocked by a closed door, a
bound is calculated on the travel time that is needed
to recover from a closed door. The planner then deter-
mines the range of expected travel times for the path by
weighting the time needed to follow the nominal path
by the probability that it is unblocked and adding the
range of travel times needed to recover from each closed
door, weighted by the a priori probabilities that the
door is indeed closed.
The result is a set of partial plans (i.e. nominal paths

augmented by incomplete contingency plans that spec-
ify how to recover from blocked doors and other obstruc-
tions) with their associated ranges of expected travel
times. If none of these partial plans is clearly best,
the planner selects a plan and re�nes it by planning
a recovery route for one of the possibly closed doors,
thus narrowing the range of possible expected travel
times. The process of plan re�nement continues until
one plan is shown to be at least as good as all other
plans. The planner uses methods from sensitivity anal-
ysis for meta level control to determine which plan to
re�ne and which door recovery to plan for. This fo-
cuses its e�ort and allows it to identify the best plan
in a fraction of a second, even for moderately complex
environments.

Task Scheduling

Delivery requests may come from the users at any time.
The task scheduler must consider how each task will
a�ect the others in the queue, and then �nd an inter-
leaving of the requests which maximizes the satisfac-
tion of all users. The simple approach to handle tasks
in a �rst-come, �rst-served manner leads to ine�cien-
cies and lost opportunities for combined execution of
compatible tasks [Goodwin & Simmons 1992]. In addi-
tion, the task scheduler must also know when actions
fail and replan to achieve them since the robot operates
in a dynamic world that is not completely known.
The task scheduler processes incoming navigation re-

quests, prioritizes them, and identi�es when di�erent
navigation requests can be achieved opportunistically.
It is able to temporarily suspend lower priority tasks,
resuming them when the opportunity arises, and to suc-
cessfully interleave compatible requests [Haigh & Veloso
1996]. The task scheduler can also monitor the execu-
tion of the requests and compensate for failures [Haigh
& Veloso 1997]. By abstracting away the details of how
each request is achieved (e.g. which path the robot
takes to a speci�ed goal location), the task scheduler
can more fully address issues arising from multiple in-
teracting tasks, such as e�ciency, resource contention,
and reliability.
The task scheduling module is based on prodigy4.1

[Veloso et al. 1995]. Prodigy is a domain-independent
nonlinear problem solver that uses means-ends analysis
and backward chaining to reason about multiple goals
and multiple alternatives of achieving them. It has been
extended to support real-world execution of its sym-
bolic actions. The planning cycle involves several deci-
sion points, including which goal to select from the set



of pending goals, and which applicable action to exe-
cute. Dynamic goal selection from the set of pending
goals enables the planner to interleave plans, exploit-
ing common subgoals and addressing issues of resource
contention. Each time prodigy selects an action for
execution, the task scheduler maps it into a sequence of
actions supported by the lower layers, most commonly
navigation, but also including vision and speech (which
are not described in this paper).
When problems arise, the task scheduler can incorpo-

rate the new state information into its domain models
and continue planning for the updated world. For ex-
ample, each time a navigation goal is issued, the task
scheduler monitors its outcome. Since the navigation
module operates using probabilistic information, it may
occasionally get confused and report a success even in a
failure situation. Thus, the scheduler always veri�es the
location with a secondary test (vision or human inter-
action). If the scheduler detects that the robot is not at
the correct goal location, it can either replan the task
or re-analyze the set of pending tasks for newly created
opportunities and plan to exploit them when possible.
By interleaving planning and execution, the sched-

uler can acquire additional domain knowledge to make
more informed planning decisions. For example, it can
prune alternative outcomes of a non-deterministic ac-
tion, notice external events (e.g. doors opening or clos-
ing), monitor limited resources (e.g. battery level), and
notice failures. As a result, the information lost by
abstraction can be reconstructed when unexpected (in-
frequent) situations arise.

4 Task-Level Control
The robot architecture is implemented as a number of
asynchronous processes, distributed over the three on-
board computers (except for the user interface, which
is o�-board). The processes are integrated using the
Task Control Architecture (TCA) [Simmons 1994b],
a general-purpose framework for task-level control, by
which we mean the coordination of planning, sensing
and execution to achieve high level goals. TCA pro-
vides message passing facilities and facilities to support
task decomposition, task sequencing, execution moni-
toring, and exception handling.
Other modules make use of TCA's facilities to in-

dicate how to sequence subtasks. Modules pass mes-
sages to a central \control" module that indicate what
subtasks should be executed at what times. Temporal
constraints on task execution can be expressed either
in absolute terms (e.g., \at noon") or relative terms
(e.g., \after subtask1 completes"). This information
is maintained in a dynamically generated, hierarchical
task tree structure, which encodes task/subtask rela-
tionships and the temporal constraints between sub-
tasks. The task tree structure is augmented with ex-
ecution monitors and exception handlers, to detect and
correct anomalous situations. Modules can perform fail-
ure recovery by having the central control module mod-
ify the existing task tree { adding and deleting subgoals
and temporal constraints.

Using TCA has several bene�ts in building au-
tonomous systems. For one, the message passing pro-
tocols enable us to easily try out di�erent implemen-
tations of the same functionality, as long as each im-
plementation adheres to the same well-de�ned message
interfaces. For example, we run the same navigation
software on a second robot (named Amelia), which has a
di�erent hardware con�guration, merely by running dif-
ferent low level software that interfaces with the hard-
ware. All other interfaces remain the same, so the
same code can run on both robots. Another bene�t
is that modules can be developed �rst in relative isola-
tion, and then be integrated with the rest of the sys-
tem by adding the appropriate task control information.
Similarly, new tasks are easily coded up, by combining
sequences of pre-existing behaviors, such as navigating
to a given location, �nding a door using vision, and de-
tecting a person's face. While there is some overhead in
maintaining the dynamic task tree structure, in our ex-
perience it is far outweighed by the exibility provided
in being able to easily create and execute task trees in
a concurrent, distributed fashion.

5 User Interface
If the robot is to gain acceptance as a \delivery worker,"
it is important that it be easy to interact with. To in-
crease the robot's impact on the community, interfaces
were developed which allow both na�ive and untrusted
end users to specify tasks using communication mech-
anisms that are already present in the computing envi-
ronment that the end users are familiar with.
One such interface uses Zephyr, an asynchronous

rapid communication mechanism with secure veri�ca-
tion of sender [Dellafera et al. 1988]. With this inter-
face, a remote user sends a textual task description to
Xavier, such as:

% zwrite xavier -m Come to my office at 3pm.

The Zephyr-based interface receives the message and
collects any additional information necessary to parse it
(such as looking up the sender in the departmental data
base to determine which room the phrase \my o�ce"
refers to). The module then coordinates with the task
scheduler and �nally informs the user of the status and
estimated execution time for the task:

xavier:: [14:45:37]
Job confirmed.
Estimated arrival in about 15 minutes.
(job: 4, building: weh, room: 5302)

Another interface, which uses the World Wide Web,
was constructed to accept tasks from novice and widely
distributed users. It allows arbitrary end users to spec-
ify one of 42 di�erent non-invasive tasks, such as mon-
itoring o�ces and delivering a restricted set of mes-
sages (Figure 7, left window). More importantly, the
World Wide Web interface allows live monitoring of
task execution. A map of the environment is anno-
tated with the currently most likely pose of the robot.
Xavier's view of the world, as seen by its on-board cam-
era (Figure 7, right window) provides a sanity check
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Figure 7: The World Wide Web Interface

for task achievement as well as a monitoring capabil-
ity for users and researchers. The World Wide Web
interface has been re�ned by comments from some of
the 60,000 visitors since its initial announcement in De-
cember 1995. For example, the monitoring capability
of task execution has been improved by specializing re-
ports for di�erent end user network bandwidths and by
compressing the amount of data per report. End users
are e-mailed acknowledgments of task completion, along
with a mime-encoded picture that Xavier takes at its
destination.

Xavier's World Wide Web existence di�ers from that
of other \net robots" such as the USC Robotic Tele-
Excavation, Chicago's Labcam, etc. First, Xavier's in-
terface is to an autonomous agent, not simply a tele-
operated robot. User requests are merely tasks to be
performed; the actual decisions as to when and how to
carry out these tasks are decided by the task scheduler
and the other layers of the architecture. Second, Xavier
operates in an uncontrolled, inhabited, bustling o�ce
building. It must not interfere with, be dissuaded by,
or { worst of all { harm the people it encounters dur-
ing task execution. Third, Xavier operates remotely,
communicating over a wireless link. Thus it may not
be accessible at all times and needs to be capable of
operating without external intervention.

6 Results and Conclusions
The version of our robot architecture described in this
paper has been in almost daily use since December 1995,
mainly controlled by the World Wide Web interface de-
scribed above. In the period from December 1, 1995
through July 1996 (Table 1), Xavier received nearly
8000 job requests. It attempted 1872 separate tasks
(simultaneous requests to the same location were at-
tempted together, and count as only one task), and
reached its intended destination in 1758 cases (94%).
Each job required Xavier to move 40 meters on aver-
age for a total travel distance of over 76 kilometers.
The success rate is slowly climbing (from 90% to about
95%) as we �nd and correct bugs and re�ne the indi-
vidual modules (December 1995 was an anomaly, since

tasks in that �rst month were largely con�ned to a sin-
gle corridor of the building). Many of the remaining
failures are attributable to problems with our hardware
(boards shaking loose) and the wireless communication
{ while the robot system itself runs on-board, the user
interface (which includes the statistics-gathering soft-
ware) operates o�-board, connected by a wireless radio
link.
More important than the raw data, our extensive ex-

perience with this architecture { both in development
and in use { have taught us some valuable lessons about
the construction of autonomous mobile robot systems:

It is important to have solid components
We have spent much of our research e�ort on mak-
ing the individual layers as reliable as possible. Much
of the e�ort has focused on understanding the capa-
bilities and uncertainties inherent in real robot exe-
cution, and creating algorithms that work with the
uncertainties, rather than assuming that the robot is
omniscient and perfectly capable. While algorithms
that explicitly deal with uncertainty tend to be more
complex, they have great advantage in their ability to
produce reliable behavior. (Although not described
in this paper, our architecture also incorporates learn-
ing, both on a low level [Koenig & Simmons 1996;
O'Sullivan, Mitchell, & Thrun 1996] and high level,
to further increase component reliability.)

Layering increases reliability
Layered systems can be more reliable than the sum
of their parts, since lower level components can deal
with problems abstracted away at higher layers, while
higher level components can try to keep the robot
away from error-prone situations in the �rst place.
For example, while the path planner produces routes
that tend to keep the robot away from areas where
it might miss turns, the navigation module can react
correctly if a turn happens to be missed. Similarly,
the obstacle avoidance module deals with features
(such as trash cans and people) that are not mod-
eled at the navigation layer or higher. This lesson is
extremely important: Since it is (probably) impos-
sible to produce individual modules that always act
correctly in any situation, the modules need to do
the best they can, realize when they are outside their
capabilities, and signal their failure to other modules.

Design the architecture to be re�ned
The original Xavier system used a potential �eld ap-
proach for local obstacle avoidance. The CVM ap-
proach, which was developed following daily trials
with our complete architecture, was easily added due
to the layered approach. This methodology was com-
mon throughout the development of the architecture.
Simple approaches were �rst implemented in a mod-
ular fashion, and each was supplanted only as experi-
ence dictated necessary, with the interfaces and data
ow between layers remaining �xed.

End users want feedback...
The initial Zephyr-based interface was intended to be
simple for na�ive end users. However, practically no



Month Days in Use Jobs Attempted Jobs Completed Completion Rate Distance Traveled (approx.)
December 1995 13 262 250 95 % 7.65 km
January 1996 16 344 310 90 % 11.37 km
February 1996 15 245 229 93 % 11.55 km
March 1996 13 209 194 93 % 10.06 km
April 1996 18 319 304 95 % 14.11 km
May 1996 12 192 180 94 % 7.90 km
June 1996 7 179 170 95 % 8.24 km
July 1996 7 122 121 99 % 5.42 km
Total 101 1872 1758 94 % 76.30 km

Table 1: Performance Data for World Wide Web Tasks

one used it, since potential users were uncertain as to
what types of tasks could be undertaken by Xavier.
Also, users had little incentive to use the interface {
without feedback as to what Xavier was doing, it was
simpler for them to just perform the task themselves.
The World Wide Web interface is more natural, pro-
viding a list of available tasks and real-time feedback,
which makes people feel more in control, even though
the robot remains actually autonomous.

...and people encountered want feedback
Xavier encounters people during the execution of its
tasks. We found that treating people as mobile ob-
jects provokes unpleasant responses. Some people in-
terfere with the task execution by blocking the robot,
to excite a reaction, thus slowing down the task.
Other people cower by walls, uncertain how to re-
act. Current work involves examining the robust and
fast detection of inhabitants in the environment, and
interacting with people in a socially acceptable man-
ner.
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