
A Layered Operational Model for Describing Inter-tool Communication
in Tool Integration Frameworks

Jennifer G. Harvey?"
jennifer.harvey @unisa.edu.au

Chris D. Marlin"
marlin @ cs. flinders.edu.au

Department of Computer Science, Flinders University of South Australia, Adelaj de, Australia
t School of Computer and Information Science, University of South Australia, Adelaide, Australia

*

Abstract
Integration frameworks for building software engineering
environments provide at least data, control and
presentation integration facilities, together with
integration devices which afford access to these facilities
by the tools which populate the framework. Typically,
an integration device is a specially developed language,
or extension to an existing language, in which the
integration programmer specifies the desired interactions
between the tools comprising the software engineering
environment. Surprisingly little effort has been applied
to assessing the expressiveness of integration languages,
even though the power of such a language limits the
level of integration a tool can achieve within the
environment. Our work seeks to provide an approach to
both assessing and comparing the expressiveness of the
integration devices of a range of commercial and research
products. This paper presents a layered operational
model, based on information structures; this model has
been developed for describing the semantics of the inter-
tool communication features of integration devices in a
precise manner, and in a manner which will facilitate
such assessment and comparison.

1 . Introduction
Tool integration frameworks offer a reusable facility

for the integration of software engineering tools, by
providing at least a communication mechanism, a data
storage and control facility, and a vehicle for the
construction of consistent user interfaces. In order to
afford access to these facilities by the tools which
populate a tool integration framework, the framework
incorporates one or more integration devices, usually in
the form of a specially developed programming language
or extensions to an existing language. The expressiveness
of an integration device limits the level of integration a
tool can achieve within the environment. Nevertheless,
we find that, although much work has been done defining
and characterising both integration and these integration
devices (e.g. [l-4,17]), there is little work which seeks to

assess the power of the integration devices provided by
tool integration frameworks. This is surprising, as the
amount of support that an integrated environment can
offer to software developers is determined by both the tool
set provided and the manner in which the tools can
cooperate to achieve a software development goal (i.e. the
extent to which they are integrated).

Our work seeks to provide one approach to assessing
and comparing the expressiveness of integration devices.
The motivation for this work is described in more detail
in [11]. This paper presents a model developed for
describing the semantics of the inter-tool communication
features of integration devices in a precise manner which
will allow such assessment and comparison. It is a formal
approach, yielding significantly more precise comparisons
of the functionality provided by various frameworks than
has been obtained with the less formal comparative
techniques employed in the past (e.g., the ECMA/NIST
Reference Model for Tool Integration Frameworks [6] and
others surveyed in [ll]). The rnodel is a layered
information structure model, based on the work of
Wegner [24] and Plotkin [22], and in the style of Marlin
[13-161, Oudshoorn [18-211 and others (e.g.
[7,15,16,18]). It defines a collection of objects, or
information structures, which characterise those aspects of
interest in an integration framework (for example,
messages, tools and inter-tool relationships); the
semantics of the integration device features are described
in terms of manipulations on the contents of the objects
using primitive and other, "higher-order'' operations
defined by the model.

By developing a model that consiists of several layers,
it is possible to have a single description that caters for
the differing information requirements of various groups,
providing clarity while presenting the detail when
required; this notion of a layered rnodel has also been
explored by Oudshoorn [18] in the context of the
description of programming languages. For example, tool
integration framework designers aind tool integration
language designers can obtain the precise definitions that
they require, whilst integration programmers and other
interested groups can read to the level most convenient to
them.

55
n Q ~ Q C ?CQE ?lac Qna nn h laoe TPPP

The paper is organised as follows. Section 2 presents
the model. Section 3 illustrates its use by describing and
comparing corresponding features of the integration
langauges of Field [23] and Hewlett-Packard's SoftBench
[5] frameworks. Finally, some conclusions are drawn and
future work is discussed in Section 4.
2 . The information structure model

for inter-tool communication
The various components of the model (information

structures, primitive operations, higher-order operations,
as well as a communication substrate) fuse into a layered
model as illustrated in Figure 1. The horizontal lines
indicate that each layer is defined in terms of the layer
below. For example, the Communication Substrate layer
is defined only in terms of the information structures
defined in the lowest layer, whereas the Primitive
Operations layer is defined in terms of both the
Communication Substrate layer and the Information
Structures layer.

senderID

I Information Structures I

recipientID messageID messageMode messageData

Figure 1. The five layers of the model.

The Information Structure layer describes the objects
which represent the abstract domain in terms of state. The
Communication Substrate layer defines the underlying
elementary communication structure of the model. This
layer describes only a tool's delivery and receipt of a
communication message; the more advanced aspects of
inter-tool communication are progressively specified in
the higher layers.

The next two layers provide the operations that will be
used in the uppermost layer, the Descriptions of
Integration Devices layer, to describe the semantics of the
integration devices of the integration frameworks under
investigation. The Primitive Operations layer defines
information structure manipulation operations, such as
insertion and deletion, together with communication
primitives, such as send and receive operators. The
Higher-Order Operations layer utilises these primitives to
define more complex operations, such as establishing a
relationship between tools (as a communication binding).
While the higher-order operations are not strictly

essential, they provide a convenient method for eliding
various details of processing which are constant across the
tool integration frameworks under consideration, thus
facilitating the comparison of descriptions of integration
features.

2.1. The Information Structures layer

The information structures model the relevant
characteristics of the system under consideration. In this
model, there are two information structures which are
representative of the basic building blocks of an integrated
environment - messages and tools. The Message
information structure contains a number of attributes, as
shown in Figure 2. The first three attributes are self
explanatory. The attribute messageMode indicates the
message communication mode - three message
communication modes are defined by the model:
Notification, Request and Reply ("Not (I, "Reqii and
"Repl"). A Notification messsage is sent to inform
interested tools of some event within the tool. A Request
message specifies a service that the sending tool requires
from the environment. A Reply message is sent in
response to a Request messsage by a tool which has
serviced that request, and indicates the success or
otherwise of the requested service. The attribute
messageData provides the data to be transmitted.

There is one ToolCommunications information
structure for each tool in the integrated environment. It
identifies the tool and designates legal inter-tool
communication relationships; an example is depicted in
Figure 3(a). Each Toolcommunications structure is
identified by a toolm field. Each structure includes a list,
inputMsgs, in which a tool publicises the notifications
that it wishes to receive, and its services that it provides
to the environment, so that those services are visible to
other tools. This list thus defines the message interface of
the tool. In addition, each ToolComunications structure
includes a list, outputMsgs, which contains the set of
messages that can be emitted by the tool, including the
notifications it will send and the requests for services
provided by other tools in the environment. A tool
publicises its available services, and the notification data
it wishes to receive, by specifying pattern strings (in its
inputMsgs list) which are used to match Request or
Notification messages specified by other tools in their
outputMsgs list. In this way, inter-tool relationships are
created. For example, if tooll can emit a message M, and
tool2 has specified a pattern string P in its inputMsgs,
which M matches, then a relationship is created between
the message M and the pattern P, so that when tooll
emits a message M, it is received by tool2.

To support the publication of services and notification
data in the ToolCommunications structures, each entry of
a tool's inputMsgs list is a structured entity containing

56

the attribute pattern for the published interface to the
tool, and the attribute patternMode which indicates
whether the pattern represents a Request ("Req") or a
Notification (''~ot") message in which the tool is
interested. Note that Reply messages are special, being
generated only in response to the receipt of a Request
message, and therefore do not contribute to a tool's
interface.

Likewise, each entry of the outputMsgs list of a
ToolCommunications structure contains the attribute msg
which contains the message data, and msgMode to indicate
the message communication mode (once again, via the
values "Req" or "~ot"). Thus, Figure 3(b) extends
Figure 3(a), by including the structure of inputMsgs and
OutputMsgs. The two attributes at the top of Figure 3(b),
the binding lists, are discussed below.

t 001 ID input w s g s list out putwsgs list

I

Figure 3. A TooICommunicat ions
information structure.

I t is apparent from the contents of the
ToolCommunications structure that valid communication
relationships between tools can be established by binding
the entries of the inputMsgs list to matching entries in
the outputMsgs lists of the tools. Indeed, the contents of
the two lists can be determined statically, and this
suggests that communication connections between tools
can also be determined statically. However, while the
range of output messages remains constant for the
execution lifetime of the tool, the range of valid input
messages for a tool varies during its execution lifetime;
that is, a tool may wish to accept a certain message for a
short period of its operation only. For example, an editor
may initially accept requests to edit source documents for
projectX and not for projectY. However, later the user
may restrict editing to source documents of projectY in
this case, the tool can no longer accept messages related
to projectX. The set of communication bindings is
therefore dynamic, as bindings are constructed upon an
inputMsgs list entry becoming active and removed when
an entry is no longer active. Figure 3(b) illustrates the
binding lists for the input patterns and for the messages -
these are reciprocal, such that where a pattern in tooll is
bound to an output message in tool2, the same message
in tool2 will be bound to the pattern in tooll.

As an example, consider Figure 4. Three tool entries
are shown, with sample active inputMsgs list entries and
their outputMsgs list entries - tlhe inputMsgs list of
each tool is depicted between the first and second bold
lines, and the outputMsgs list below the second bold
line. Communication bindings are shown as connecting
lines between matching inputMsg!; and OutputMsgs list
entries, such as between outputMsg 1 of tool DEBUG and
inputMsg 1 of tool EDIT. This is a snapshot of the
communication bindings at one instant in time during the
operation of the software engineering environment. The
contents of any inputMsgs list can alter during the
execution lifetime of the tool, and hence a different set of
communication connections can be established.
2.2. The Communication Substrate layer

Tools represent the senders and recipients of
information, and messages provide the flow of
information through the environment. The purpose of the
Communication Substrate layer of the model is to define
a basic communication mechanism ,which is enacted when
a message is emitted by one tool and received by one or
more other tools. This mechanism is utilised in the
Primitive Operations layer and the Higher-Order
Operations layer to describe more complex inter-tool
communication.

As a tool transmits a message, a sendm operation is
executed, and the receivem operation is executed when a
tool requests and waits for delivery of a message. Hence, a
tool can be described in abstract terms as shown in
Figure 5.

The guard in the behaviour section of the description
specifies that a tool can be sending or receiving a
message, or idle in terms of inter-tool communication.

toolID EDIT

inputMsg 2

I inputMsg 3

outputMsg 5

out.putMsg 6

Figure 4. A snapshot of the
communication bind i rigs between
ToolCommunications structures.

57

oweration Tool is {

- out oDeration sendm(m : M e s s a d ;
- in oweration receivem(m : Messacie);
structure

msgQ : unbounded buffer;
bufferstate : [open, closed1 t open;

behaviour
[receivem(m)
I sendm(m)
I nil I ;

1

insert ion

de let ion

update

jearch

match

iterate

Figure 5. An abstract description of a tool.

insert item in infostructure returns a pointer to the
where { infoStructureField t expr, . . . 1 ; inserted item

remove [all] itemls] from infostructure
[w { infoStructureField = expr, . . . } 1 ;

where {infoStructureField = expr, . . . } updated item
chanae itpm in infostructure returns a pointer to the

(infoStructureField t expr, . . .1;

find [all] itemls] infostructure returns a pointer to a list of
located items, or NULL if the
search is unsuccessful where { infoStructureField = expr, . . . I ;

pat tern-or-s tring matches s tring-or_pa t tern; returns boolean

-- for all [uniaue] i h str & expr; . . .
c€ ld iQxa l l ;

The structure section describes two local variables. An
unbounded buffer, msgQ, stores incoming messages which
have yet to be delivered to the tool; the operations
append, removeHead, empty and length are defined for
the unbounded buffer type. The second variable,
buff erstate, determines whether messages can currently
be removed from the queue and delivered to the tool. It is
initialised to open, meaning that messages can be
delivered.

The message transmission process is represented by the
descriptions of the sendm and receivem operations
shown in Figure 6. A sendm operation places the
message in the recipient tool's message queue, and a
receivem operation removes a message from the tool's
message queue. In the descriptions, attributes of the
information structures are selected with a dot, and
operations are selected using a double colon, as in
r .msgQ : : append (m) , which applies the append operator
of the msgQ field of recipient tool.

This layer also includes the operations clearm to
selectively remove messages from a buffer, blockm to

out oweration sendm(m : Message) Ls (

behaviour
r : Tool t 1.recipient;
r .msgQ: : append(m1 ;

I

- in oweration receivem(m : Message) is {

b e h a v i w
when not msgQ::empty and

bufferstate = open Lhen
msgQ: : removeHead (m) ;

e d X h a ;
1

Figure 6. Descriptions of sendm and
receivem operators.

prevent receipt of messages, and unblockm to reopen a
buffer. The description of these operations is trivial and
omitted here for brevity.

The description of the operation TOO^, and the
descriptions of sendm, receivem, clearm, blockm and
unblockm, form the Communication Substrate layer of
the model. Note that the substrate does not define
synchronous or asynchronous communication modes -
while the operations such as sendm and receivem are
constant across the descriptions of various tool
integration frameworks, the semantics of the
communication modes vary between frameworks and so
are described at the higher levels of the model.

2.3. Primitive Operations layer

The model defines a set of primitives for manipulating
the information structures, providing insertion, deletion,
update and search operations, as shown in Table 1. The
syntax of the primitives reflects the syntax style used for
all primitives and higher-order operations in the model,

Table 1. Primitives for the manipulation of information structures.

58

I - where - ImessageField t expr,
(un)block incoming

messages

send

receive

block messacres toolID;

unblock messaaes toolID;

receive messacre [from senderID] ; returns message I
remove outstanding a messacres where ItoolID == T) ; I messages

Table 2. Message primitives.

indicating the operation being invoked (e.g. find item),
the information structure to which the operation is
applied (e.g. infostructure), and the parameters being
transmitted (e.g. where {infoStructureField ==

expr, . . }). As an example, a typical primitive
statement might be:

A t find iteq in thisTool.inputMsgs
{pattern = P I ;

This statement locates an item in the
ToolCommunications information structure for the tool,
where the attribute pattern is equal to the value of the
variable P, and returns the result in the variable A . A
backwards arrow, t, indicates an assignment and may be
used in the primitives' parameters, as in:

B t insert item in thisToo1.inputMsg.s

where {pattern t PI;

In this case, a new entry is inserted into the
inputMsgs list of the ToolCommunications information
structure for the tool, and the pattern attribute of this
entry is given the value of the variable P.

A match operator and an iterator are also defined, as
shown in Table 1. The matches operation determines the
equivalence of a pattern which may contain wild-card

entries, and a string, as in

C t "EDIT * * * ' I matches
'EDIT NOTIFICATION SAVE a. c" ;

(which returns True). The f o r all iterator is designed to
iterate over the entries contained in an information
structure or a subset thereof. The precise semantics are
not described here; further details can be found in [9].

The Primitive Operations layer also defines
communication primitives corresponding to operations in
the Communication Substrate layer; these are shown in
Table 2.

2.4. Higher-order operations layer

Associated with the ~ool~ommur~ications structure
are two higher-order operations, described in Table 3.
Higher-order operations are defined in terms of the
primitives and information structures of the model -
details are omitted here, but may be found in [ll].

The operation, create msgInterface, inserts a new
interface component (a message pattern) into a tool's
inputMsgs list and creates the associated communication
bindings. The second operation, remove msgInterface,
is the inverse of create msgInterface, destroying the
communication bindings for a specified interface
component, and then removing that component.

create msaInterface
pattern t P.

remove mscrInterface
pattern = P ,

remove-

where {toolID = T,

pattermode t If};

where {toolID = T ,

pattermode = If};

where {ptrToInterface} ;

Inserts an item into the inputMsgs list of the
ToolCommunications structure for the tool T . If no such
structure exists, one is created. Next, communication bindings
are created in all cases where an entry in an outputMsgs list of a
tool matches the newly created inputMsgs list entry.

The first version of the syntax of this operation locates an entry
within the inputMsgs list of the ToolCommunications structure
for the tool T, where the pattern field has the value P and the
patternMode field has the value R . The second version provides
a pointer to such an entry. Both versions then remove all
communication bindings to that inputMsgs list entry
(effectively closing those communication paths) and, finally,
remove the entry from the inputMsgs list.

~~~ 

Table 3. Higher-order operations for the ToolCommunications structure. 

59 



Notification-send 4 

1 A t find item in thisToo1.outputMsgs { / *  phase *I 

2 msg = NotificationData, 
3 msgMode = "Not"}; 
4 far & I in A.msgBindings & / *  phase 2 * /  
5 messaae 1.recipient Hhere { 

6 senderID t thisTool.toolID, 
7 messageMode t 'Not", 
8 messageData t NotificationData); 
9 end for all. 

Figure 7. Description of the Notification-send communication event in SoftBench's 
EDL integration language. 

2.5. Descriptions of Integration Devices layer 

In order to complete the uppermost layer of Figure 1 
(covering the descriptions of integration devices), it is 
necessary to provide adequate descriptions of the 
transformations of the information structures caused by 
the various relevant language features. This is done by 
giving an algorithmic description of an inter-tool 
communication event corresponding to inter-tool 
communication language features in the integration 
devices. These descriptions describe the semantics of 
communication between tools by setting up integration 
interfaces and communication bindings, rearranging 
interfaces and bindings and transfemng information to and 
from the integration interfaces. Each of the algorithms is 
regarded as a set of actions executed in place of the 
language feature(s) it describes. The descriptions are 
Pascal-like, using constructs of the language in 
conjunction with the model primitives and higher-order 
operations; a more complete description is provided in 
[ 101. A Pascal-like syntax was chosen as the basis for the 
algorithmic descriptions because the set of programming 
language constructs required is small. 

In addition, two variables are defined by the model. The 
first, thisTool, returns the name of the tool in which the 
language feature being described is executing, as in: 

Seu3messacrewhereI 
senderID C thisTool, . . . . } ; 

Similarly, the variable lastMsgID, returns the ID of 
the last message received by this tool, as in: 
send messaae yhere 1. 

. . . , messageID C lastMsgID, . - . . } ; 

3. Describing integration devices in 
tool integration frameworks 

We present an example of the descriptions in the 
uppermost layer of the model by comparing the 
description of an inter-tool communication event in the 
Event Description Language (EDL) of Hewlett-Packard's 

SoftBench tool integration framework, and of the MSG 
Program Interface (MPI) of Field. Integration devices can 
be regarded as having three groups of inter-tool 
communication events. First, there is a group concerned 
with integration interface specification, and includes 
publication of the Notification interface (information 
messages that will be accepted) and the Request interface 
(services that will be offered to the environment). The 
second group, message sending, incorporates sending of 
Notification, Request and Reply messages. The final 
group is concerned with message reception, and is 
comprised of the receipt of Notification, Request and 
Reply messages. Hence, we determine the following 
communication events: 

(1) Notification-publication, 
(2) Request-publication, 
(3) Notification-send, 
(4) Request-send, 
(5) Reply-send, 
(6) Notification-receive, 
(7) Request-receive, and 
(8) Reply-receive. 
Because of limited space, only one example of these 

features can be presented. For the purposes of illustration, 
the communication event (3) Notification-send is 
selected. 

The SoftBench EDL statement 

send-message (Notify , Not i f i ca ti onDa ta ) : 

is the language feature corresponding to the 
Notification-send communication event. Figure 7 shows 
the algorithmic description of this event. It consists of 
two phases. Phase 1 establishes the set of communication 
bindings that are associated with the Notification message 
by locating the entry in the tool's outputmgs list that 
matches the message mode and the contents of the 
NotificationData field (the matching, therefore, is quite 
specific to this message). This occurs in lines 1 to 3. If 
there are no communication bindings associated with the 

60 



Notification-send -+ 
1 A t find item in thisTool.outputMsgs where { / *  phase * /  
2 msg = NotificationData}; 
3 if A = / =  NULL then 
4 

5 patternInd = ‘Pri”) ; 
6 
7 far I in A.msgBindings & 
8 send messaqg 1.recipient where { 

9 senderID 4- thisTool, 

10 messageMode t ‘Not“, 
11 messageData t NotificationData}; 

B t find item in A.msgBindings where { 

if B = NULL then / *  phase 3 * /  

/ *  phase 2 * /  

- 

12 d f s r d ;  
13 .eQd if; 
14 end if. 

Figure 8. Description of the Notification-send communication event in Field’s MPI 
integration language extension. 

Notification message, no further action is taken. Phase 2, 
in lines 4 to 9, occurs when a list of communication 
bindings exist. Here, the message is generated and sent to 
each tool bound to this Notification message. 

Field types its message patterns that form the 
integration interfaces as either Normal or Priority; a 
message emitted by a tool will not be delivered 
immediately to a recipient if there is any message pattern 
of type Priority currently bound to the message. To 
accommodate Normal and Priority message patterns in the 
model, a patternInd attribute is introduced into the 
msgBindings list of each tool to indicate whether the 
binding is to a Normal (8iNorii) binding or a Priority 
(11 Pri lo) binding. 

The statement 

MSGsend (NotificationData) ; 

corresponds to the Notification-send event in Field’s 
MPI. Figure 8 shows the algorithmic description of the 
Request-send communication event corresponding to this 
feature. It comprises three phases. Phase 1, in lines 1 to 
2, establishes the set of communication bindings that are 
associated with the Notification message by locating the 
entry in the tool’s outputMsgs list that matches the 
contents of the NotificationData field. If there are no 
communication bindings associated with the Notification 
message, no further action is taken is taken (line 3). 
Phase 2 searches for communication bindings of type 
Priority ( ~ ~ ~ r i ~ ~ ) .  This occurs in lines 4 and 5 .  If such 
bindings exist, no further action is shown in this 
description. Phase 3, lines 6 to 13, proceeds if no Priority 
communication bindings exist. Here, the Notification 
message is generated and sent to each tool bound to this 
Notification message. 

The complete description of this feature also describes 
the semantics of the Notification-send communication 

event where Priority bindings are involved, but has been 
omitted here for simplicity and brevity. 

When comparing the integratilon devices of tool 
integration frameworks, some aspects of the comparison 
are clear from informal descriptions of the integration 
capabilities and the language features, but it is only 
through the detailed examination made possible by an 
approach such as that described in this paper that more 
subtle details and differences are revealed. Field’s Priority 
messages are described by Garlan [8], Ilias [ 121 and Reiss 
[23]. However, their precise semantics and the 
relationship between the Priority messages and message 
transmission is ambiguous. An examination of the 
description of the semantics of the Notification-send 
communication event in Figure 8 clarifies the latter 
ambiguity - a Notification message is transmitted only if 
a Priority binding for that message does not exist. 
Subsequent descriptions of the semantics of Priority 
messages elucidates the remaining ambiguities in the 
descriptions of Garlan, Ilias and Reisis. 

Both integration languages perrnit some degree of 
dynamic determination of their integration interface and 
hence of the set of tools from which they will accept 
messages and to which they will send messages. Both 
languages base this on declared message patterns. In the 
case of EDL, the matching that occiurs between a tool’s 
output message and another tool’s input pattern will 
include the message mode (either Request, Notification or 
Reply). Field has less restrictive matching which ignores 
the message mode and thus allows one pattern to be used 
for both Request and Notification messages. 

Our investigations into the expressiveness of 
integration languages have lead to the identification of 
various integration styles. In particular, Field exhibits a 
“tool-driven” style of integration, where tools are semi or 
fully autonomous, and make assumptions about the fine 

61 



grained processes employed by a user engaged in software 
development and hence about the support that the user 
requires. This style of inter-tool communication in Field 
is manifested in this example in the existence of Priority 
messages. Although this example does not expand on the 
behaviour of Priority messages, but it does indicate the 
advantages of a feature which allows the integration 
designer or specifier to manipulate any message emitted 
by a tool before it is delivered to its destination. Such a 
feature can be used to examine emitted messages before 
delivery, to take actions depending on the message type 
and/or to replace the emitted message with one or more 
alternative messages; in this way, it can be used to ease 
the tool integration task. Some examples of possible use 
include 

where the priority processing provides a simple 
examination of an emitted message, various data 
gathered from the examination can be forwarded to a 
metrics tool; 
where the priority processing takes some actions 
depending on the message type, this processing can 
be used to invoke the recipient tool if it is not 
currently part of the environment; 
where the priority processing replaces the emitted 
message, it can be used to provide a translation 
facility where the interface of a tool being introduced 
into the environment does not conform with the 
interface of another tool with which it needs to 
communicate. 

* 

4 .  Summary, conclusions and future 
work 

An approach to the precise description of tool 
integration devices in tool integration frameworks has 
been described. This approach employs a five-layer model 
to describe these devices in a way which can cater to the 
different information needs of a range of people with an 
interest in the semantics of the features of tool integration 
languages, and who wish to consider the various styles of 
inter-tool communication which can be supported 
conveniently by a particular framework. The model has 
been illustrated by presenting an aspect of the descriptions 
of inter-tool communication in two frameworks: 
SoftBench and Field. The tool integration devices of the 
two frameworks were then compared insofar as this could 
be illustrated using those aspects presented in the separate 
descriptions. 

The model presented in this paper allows the precise 
description of the tool integration devices provided by 
tool integration frameworks and facilitates a kind of 
comparison of these devices which has not been possible 
to date. The sample communication event descriptions in 
Figures 7 and 8 demonstrate the utility of such semantic 
descriptions, and illustrate the ease with which 
comparisons can be made between the semantics of the 
features of the integration devices of different tool 
integration frameworks. Firstly, the detailed descriptions 
have served to clarify ambiguities in the informal 

descriptions of Priority messages. Although the example 
is brief, it has also shown that Field’s MPI integration 
language assigns types to the communication bindings 
between tools, and that these types influence the delivery 
of messages. This supports a “tool-driven” style of 
integration. The example presented is too brief to indicate 
whether SoftBench adopts the same integration style, but 
our work indicates that it evidences an alternative 
approach. 

The broader research area of this work is the 
investigation of the ways in which increased 
expressiveness of a suitable kind can be incorporated into 
the tool integration devices of tool integration 
frameworks, and the identification of better integration 
styles among sets of tools. Our efforts so far have 
concentrated on the development of the model and the 
descriptions of the integration devices of Field and 
SoftBench. Our immediate plans include the description 
of another commercial product: the ENCASE integration 
language employed by DEC’s COHESIONWorX tool 
integration framework, We suspect that this will provide 
an alternative style of inter-tool communication. 

It appears that the design of integration devices in tool 
integration languages has been informal to a degree, and 
has not been influenced by an analysis of user 
requirements. Our work will proceed by analysing which 
features of existing tool integration devices are used and 
how they are employed. These findings can then be related 
back to the semantic descriptions of existing devices, and 
new devices designed and described in terms of the model. 
We plan to generate the inter-tool communication aspects 
of tool integration frameworks from the semantic 
descriptions of the model, in a manner similar to that 
used for generation programming language 
implementations [ 18-21]. This will enable the generation 
of an implementation of the proposed new set of devices 
designed as a result of the user analysis, which can be 
tested in practice and further refined. 

Acknowledgements 
The ongoing work described in this report represents 

part of a long-term collaborative software engineering 
research programme involving the Department of 
Computer Science at Flinders University and the CSIRO- 
Macquarie University Joint Research Centre for Advanced 
Systems Engineering. Funding for this work from the 
following sources is gratefully acknowledged: the CSIRO 
Institute of Information Science and Engineering, Flinders 
University’s URB grant scheme, the Centre de RCcherche 
en Informatique de Nancy (Nancy, France), the Institute 
for Computer Systems Engineering and Assurance, and 
the University of South Australia’s Cathie Funds. The 
anonymous reviewers’ comments halped to improve this 
paper. 

62 



References 
Brown, A. & Feiler, P. (1992) An analysis technique for 
examining integration in a project support 
environment. Technical Report No. CMU/SEI-92-TR- 
35, Software Engineering Institute, Carnegie-Mellon 
University, Pittsburgh, Pennsylvania. 
Brown, A., Feiler, P.H. & Wallnau, K.C. (1992) 
Understanding integration in a sofware development 
environment. Technical Report No. CMU/SEI-91-TR- 
3 1, Software Engineering Institute, Carnegie Mellon 
University, Pittsburgh, Pennsylvania. 
Brown, A. & Penedo, M. (1994) "Integration" Working 
Group summary: SETA2. ACM Ada Letters, XIV, (Fall), 

Brown, A.W. (1993) An examination of the current 
state of IPSE technology. Proc. 15th Int. Con$ 
Software Engineering, Baltimore, Maryland (May 17- 

Cagan, M. (1990) HP SoftBench: An architecture for a 
new generation of software tools. Hewlett- Packard 
Journal, 41, 3 (June), pp. 36-47. 
E C M m I S T  (1991) Reference model for frameworks of 
software engineering environments. Special 
Publication Report No. ECMA TR/55, 2nd Ed., 
European Computer Manufacturers Association, 
National Institute of Standards and Technology. 
Freidel, D.H. (1984) Modelling communication and 
synchronisation in parallel programming languages. 
Ph.D. Thesis, Technical Report No. 84-01, Department 
of Computer Science, University of Iowa, Iowa City, 
Iowa. 
Garlan, D. & Ilias, E. (1990) Low-cost adaptable tool 
integration policies for integrated environments. A CM 
SIGSOFT'90: Fourth Symposium on Software 
Development Environments, Irvine, California. (Dec. 
3 - 3 ,  ACM SIGSOFT Software Engineering Notes, 

Harvey, J.G. (1995) A layered model for the description 
of tool interactions in integrated software engineering 
environments. Proc. 2nd Annual JRCASE/Flinders 
University Collaborative Research Workshop on 
Software Engineering, Macquarie University, North 
Rvde, Sydney, Australia. 

pp. 85-92. 

22), pp. 338-347. 

15,6, pp.1-10. 

[ 101 H&vey,-J.G.- & Marlin, C.D. (1995) Describing inter- 
tool communication in tool integration frameworks. 
Technical Report No. CS-95-012, School of Computer 
and Information Science, University of South Australia, 
Adelaide, South Australia and Department of Computer 
Science, Flinders University of South Australia, 
Technical Report No. 96-01. 

[11] Harvey, J.G. & Marlin, C.D. (1995) Towards a formal 
description of tool integration frameworks. Australian 

Computer Science Communications, 17, 1 (Feb.), pp. 

[12] Ilias, E. (1990) Policies for tool integration in 
integrated programming environments. Masters 
Thesis, Technical Report No. CR-90-04, Oregon 
Graduate Institute of Science and Technology, Oregon. 

[13] Marlin, C.D. (1980) Coroutin!es: A Programming 
Methodology, a Language Design and an 
Implementation. Lecture Notes in Computer Science 
95, Springer-Verlag, Berlin. 

[14] Marlin, C.D. (1983) A methodical approach to the 
design of programming languages. Technical Report 
No. 83-05, Department of Computer Science, 
University of Iowa, Iowa City, Iowa. 

[15] Marlin, C.D. & Freidel, D.H. (1983) A model for 
communication in programming languages with 
bufSered message passing. Technical Report No. 83-09, 
University of Iowa, Iowa City, Iowa. 

[16] Marlin, C.D. & Freidel, D.H. (1990) Comparing 
communication in two languages employing buffered 
message-passing. Journal of Systems and Software, 
12, 2 (May), pp. 87-105. 

[ 171 Nejmeh, B. (1989) Characteristics of integrable 
so f tware  too ls .  Techn ica l  Report  No. 
INTEG-S/W-TOOLS-89036-N, Version 1 .O, Software 
Productivity Consortium, Herndlon, Virginia. 

[18] Oudshoorn, M.J. (1992) ATLANTIS: A tool for  
language definition and interpreter synthesis. Ph.D. 
Thesis, Technical Report No.TR 92-04, Department of 
Computer Science, University of Adelaide, Adelaide, 
South Australia. 

[19] Oudshoorn, M.J. & Marlin, C.D. (1989) Language 
definition and implementation. Australian Computer 
Science Communications, 11, 1 , pp. 26-36. 

[20] Oudshoorn, M.J. & Marlin, C.D. (1993) Interpretive 
language implementation from a layered operational 
model. Proc. 5th International Conference on 
Computing and Information, Sudbury, Ontario, Canada. 

[21] Oudshoorn, M.J., Ransom, K.J. & Marlin, C.D. (1992) 
Generating an implementation of a parallel 
programming language from a formal semantic 
d e f i n i t i o n .  Australian Computer Science 
Communications, 14, (No. 1, Part B), pp. 641-654. 

[22] Plotkin, G.D. (1981) A structural approach to 
operational semantics. Technical Report No. 085/09 1, 
Computer Science Department, Aarhus University, 
Aarhus, Denmark. 

[23] Reiss, S.  (1994) FIELD: A Friendly Integrated 
Environment for Learning and Development. Kluwer 
Academic Press. 

[24] Wegner, P. (1971) Data structure models for 
programming languages. Proc. Symposium on Data 
Srructures in Programming Languages, ACM SIGPLAN 
Notices, 6,2, pp. 1-54. 

199-207. 

63 


