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Abstract 
Integration frameworks for building software engineering 
environments provide at  least data, control and 
presentation integration facilities, together with 
integration devices which afford access to these facilities 
by the tools which populate the framework. Typically, 
an integration device is a specially developed language, 
or extension to an existing language, in which the 
integration programmer specifies the desired interactions 
between the tools comprising the software engineering 
environment. Surprisingly little effort has been applied 
to assessing the expressiveness of integration languages, 
even though the power of such a language limits the 
level of integration a tool can achieve within the 
environment. Our work seeks to provide an approach to 
both assessing and comparing the expressiveness of the 
integration devices of a range of commercial and research 
products. This paper presents a layered operational 
model, based on information structures; this model has 
been developed for  describing the semantics of the inter- 
tool communication features of integration devices in a 
precise manner, and in a manner which will facilitate 
such assessment and comparison. 

1 .  Introduction 
Tool integration frameworks offer a reusable facility 

for the integration of software engineering tools, by 
providing at least a communication mechanism, a data 
storage and control facility, and a vehicle for the 
construction of consistent user interfaces. In order to 
afford access to these facilities by the tools which 
populate a tool integration framework, the framework 
incorporates one or more integration devices, usually in 
the form of a specially developed programming language 
or extensions to an existing language. The expressiveness 
of an integration device limits the level of integration a 
tool can achieve within the environment. Nevertheless, 
we find that, although much work has been done defining 
and characterising both integration and these integration 
devices (e.g. [l-4,17]), there is little work which seeks to 

assess the power of the integration devices provided by 
tool integration frameworks. This is surprising, as the 
amount of support that an integrated environment can 
offer to software developers is determined by both the tool 
set provided and the manner in which the tools can 
cooperate to achieve a software development goal (i.e. the 
extent to which they are integrated). 

Our work seeks to provide one approach to assessing 
and comparing the expressiveness of integration devices. 
The motivation for this work is described in more detail 
in [11]. This paper presents a model developed for 
describing the semantics of the inter-tool communication 
features of integration devices in a precise manner which 
will allow such assessment and comparison. It is a formal 
approach, yielding significantly more precise comparisons 
of the functionality provided by various frameworks than 
has been obtained with the less formal comparative 
techniques employed in the past (e.g., the ECMA/NIST 
Reference Model for Tool Integration Frameworks [6] and 
others surveyed in [ll]). The rnodel is a layered 
information structure model, based on the work of 
Wegner [24] and Plotkin [22], and in the style of Marlin 
[13-161, Oudshoorn [18-211 and others (e.g. 
[7,15,16,18]). It defines a collection of objects, or 
information structures, which characterise those aspects of 
interest in an integration framework (for example, 
messages, tools and inter-tool relationships); the 
semantics of the integration device features are described 
in terms of manipulations on the contents of the objects 
using primitive and other, "higher-order'' operations 
defined by the model. 

By developing a model that consiists of several layers, 
it is possible to have a single description that caters for 
the differing information requirements of various groups, 
providing clarity while presenting the detail when 
required; this notion of a layered rnodel has also been 
explored by Oudshoorn [18] in the context of the 
description of programming languages. For example, tool 
integration framework designers aind tool integration 
language designers can obtain the precise definitions that 
they require, whilst integration programmers and other 
interested groups can read to the level most convenient to 
them. 
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The paper is organised as follows. Section 2 presents 
the model. Section 3 illustrates its use by describing and 
comparing corresponding features of the integration 
langauges of Field [23] and Hewlett-Packard's SoftBench 
[5] frameworks. Finally, some conclusions are drawn and 
future work is discussed in Section 4. 
2 .  The information structure model 

for inter-tool communication 
The various components of the model (information 

structures, primitive operations, higher-order operations, 
as well as a communication substrate) fuse into a layered 
model as illustrated in Figure 1. The horizontal lines 
indicate that each layer is defined in terms of the layer 
below. For example, the Communication Substrate layer 
is defined only in terms of the information structures 
defined in the lowest layer, whereas the Primitive 
Operations layer is defined in terms of both the 
Communication Substrate layer and the Information 
Structures layer. 

senderID 

I Information Structures I 

recipientID messageID messageMode messageData 

Figure 1. The five layers of the model. 

The Information Structure layer describes the objects 
which represent the abstract domain in terms of state. The 
Communication Substrate layer defines the underlying 
elementary communication structure of the model. This 
layer describes only a tool's delivery and receipt of a 
communication message; the more advanced aspects of 
inter-tool communication are progressively specified in 
the higher layers. 

The next two layers provide the operations that will be 
used in the uppermost layer, the Descriptions of 
Integration Devices layer, to describe the semantics of the 
integration devices of the integration frameworks under 
investigation. The Primitive Operations layer defines 
information structure manipulation operations, such as 
insertion and deletion, together with communication 
primitives, such as send and receive operators. The 
Higher-Order Operations layer utilises these primitives to 
define more complex operations, such as establishing a 
relationship between tools (as a communication binding). 
While the higher-order operations are not strictly 

essential, they provide a convenient method for eliding 
various details of processing which are constant across the 
tool integration frameworks under consideration, thus 
facilitating the comparison of descriptions of integration 
features. 

2.1. The Information Structures layer 

The information structures model the relevant 
characteristics of the system under consideration. In this 
model, there are two information structures which are 
representative of the basic building blocks of an integrated 
environment - messages and tools. The Message 
information structure contains a number of attributes, as 
shown in Figure 2. The first three attributes are self 
explanatory. The attribute messageMode indicates the 
message communication mode - three message 
communication modes are defined by the model: 
Notification, Request and Reply ("Not (I, "Reqii and 
"Repl"). A Notification messsage is sent to inform 
interested tools of some event within the tool. A Request 
message specifies a service that the sending tool requires 
from the environment. A Reply message is sent in 
response to a Request messsage by a tool which has 
serviced that request, and indicates the success or 
otherwise of the requested service. The attribute 
messageData provides the data to be transmitted. 

There is one ToolCommunications information 
structure for each tool in the integrated environment. It 
identifies the tool and designates legal inter-tool 
communication relationships; an example is depicted in 
Figure 3(a). Each Toolcommunications structure is 
identified by a toolm field. Each structure includes a list, 
inputMsgs, in which a tool publicises the notifications 
that it wishes to receive, and its services that it provides 
to the environment, so that those services are visible to 
other tools. This list thus defines the message interface of 
the tool. In addition, each ToolComunications structure 
includes a list, outputMsgs, which contains the set of 
messages that can be emitted by the tool, including the 
notifications it will send and the requests for services 
provided by other tools in the environment. A tool 
publicises its available services, and the notification data 
it wishes to receive, by specifying pattern strings (in its 
inputMsgs list) which are used to match Request or 
Notification messages specified by other tools in their 
outputMsgs list. In this way, inter-tool relationships are 
created. For example, if tooll can emit a message M, and 
tool2 has specified a pattern string P in its inputMsgs, 
which M matches, then a relationship is created between 
the message M and the pattern P, so that when tooll 
emits a message M, it is received by tool2. 

To support the publication of services and notification 
data in the ToolCommunications structures, each entry of 
a tool's inputMsgs list is a structured entity containing 
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the attribute pattern for the published interface to the 
tool, and the attribute patternMode which indicates 
whether the pattern represents a Request ("Req") or a 
Notification (''~ot") message in which the tool is 
interested. Note that Reply messages are special, being 
generated only in response to the receipt of a Request 
message, and therefore do not contribute to a tool's 
interface. 

Likewise, each entry of the outputMsgs list of a 
ToolCommunications structure contains the attribute msg 
which contains the message data, and msgMode to indicate 
the message communication mode (once again, via the 
values "Req" or "~ot"). Thus, Figure 3(b) extends 
Figure 3(a), by including the structure of inputMsgs and 
OutputMsgs. The two attributes at the top of Figure 3(b), 
the binding lists, are discussed below. 

t 001 ID input w s g s  list out putwsgs list 

I 

Figure 3. A TooICommunicat ions  
information structure. 

I t  is apparent from the contents of the 
ToolCommunications structure that valid communication 
relationships between tools can be established by binding 
the entries of the inputMsgs list to matching entries in 
the outputMsgs lists of the tools. Indeed, the contents of 
the two lists can be determined statically, and this 
suggests that communication connections between tools 
can also be determined statically. However, while the 
range of output messages remains constant for the 
execution lifetime of the tool, the range of valid input 
messages for a tool varies during its execution lifetime; 
that is, a tool may wish to accept a certain message for a 
short period of its operation only. For example, an editor 
may initially accept requests to edit source documents for 
projectX and not for projectY. However, later the user 
may restrict editing to source documents of projectY in 
this case, the tool can no longer accept messages related 
to projectX. The set of communication bindings is 
therefore dynamic, as bindings are constructed upon an 
inputMsgs list entry becoming active and removed when 
an entry is no longer active. Figure 3(b) illustrates the 
binding lists for the input patterns and for the messages - 
these are reciprocal, such that where a pattern in tooll is 
bound to an output message in tool2, the same message 
in tool2 will be bound to the pattern in tooll. 

As an example, consider Figure 4. Three tool entries 
are shown, with sample active inputMsgs list entries and 
their outputMsgs list entries - tlhe inputMsgs list of 
each tool is depicted between the first and second bold 
lines, and the outputMsgs list below the second bold 
line. Communication bindings are shown as connecting 
lines between matching inputMsg!; and OutputMsgs list 
entries, such as between outputMsg 1 of tool DEBUG and 
inputMsg 1 of tool EDIT.  This is a snapshot of the 
communication bindings at one instant in time during the 
operation of the software engineering environment. The 
contents of any inputMsgs list can alter during the 
execution lifetime of the tool, and hence a different set of 
communication connections can be established. 
2.2. The Communication Substrate layer 

Tools represent the senders and recipients of 
information, and messages provide the flow of 
information through the environment. The purpose of the 
Communication Substrate layer of the model is to define 
a basic communication mechanism ,which is enacted when 
a message is emitted by one tool and received by one or 
more other tools. This mechanism is utilised in the 
Primitive Operations layer and the Higher-Order 
Operations layer to describe more complex inter-tool 
communication. 

As a tool transmits a message, a sendm operation is 
executed, and the receivem operation is executed when a 
tool requests and waits for delivery of a message. Hence, a 
tool can be described in abstract terms as shown in 
Figure 5. 

The guard in the behaviour section of the description 
specifies that a tool can be sending or receiving a 
message, or idle in terms of inter-tool communication. 

toolID EDIT 

inputMsg 2 

I inputMsg 3 

outputMsg 5 

out.putMsg 6 

Figure 4. A snapshot of the 
communication bind i rigs between 
ToolCommunications structures. 
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oweration Tool is { 

- out oDeration sendm(m : M e s s a d ;  
- in oweration receivem(m : Messacie); 
structure 

msgQ : unbounded buffer; 
bufferstate : [open, closed1 t open; 

behaviour 
[ receivem(m) 
I sendm(m) 
I nil I ;  

1 

insert ion 

de let ion 

update 

jearch 

match 

iterate 

Figure 5. An abstract description of a tool. 

insert item in infostructure returns a pointer to the 
where { infoStructureField t expr, . . . 1 ; inserted item 

remove [all] itemls] from infostructure 
[w { infoStructureField = expr, . . . } 1 ; 

where {infoStructureField = expr, . . . } updated item 
chanae itpm in infostructure returns a pointer to the 

(infoStructureField t expr, . . .1; 

find [all] itemls] infostructure returns a pointer to a list of 
located items, or NULL if the 
search is unsuccessful where { infoStructureField = expr, . . . I  ; 

pat tern-or-s tring matches s tring-or_pa t tern; returns boolean 

-- for all [uniaue] i h str & expr; . . .  
c€ ld iQxa l l ;  

The structure section describes two local variables. An 
unbounded buffer, msgQ, stores incoming messages which 
have yet to be delivered to the tool; the operations 
append, removeHead, empty and length are defined for 
the unbounded buffer type. The second variable, 
buff erstate, determines whether messages can currently 
be removed from the queue and delivered to the tool. It is 
initialised to open, meaning that messages can be 
delivered. 

The message transmission process is represented by the 
descriptions of the sendm and receivem operations 
shown in Figure 6. A sendm operation places the 
message in the recipient tool's message queue, and a 
receivem operation removes a message from the tool's 
message queue. In the descriptions, attributes of the 
information structures are selected with a dot, and 
operations are selected using a double colon, as in 
r .msgQ : : append (m) , which applies the append operator 
of the msgQ field of recipient tool. 

This layer also includes the operations clearm to 
selectively remove messages from a buffer, blockm to 

out oweration sendm(m : Message) Ls ( 

behaviour 
r : Tool  t 1.recipient; 
r .msgQ: : append(m1 ; 

I 

- in oweration receivem(m : Message) is { 

b e h a v i w  
when not msgQ::empty and 

bufferstate = open Lhen 
msgQ: : removeHead (m) ; 

e d  X h a ;  
1 

Figure 6. Descriptions of sendm and 
receivem operators. 

prevent receipt of messages, and unblockm to reopen a 
buffer. The description of these operations is trivial and 
omitted here for brevity. 

The description of the operation  TOO^, and the 
descriptions of sendm, receivem, clearm, blockm and 
unblockm, form the Communication Substrate layer of 
the model. Note that the substrate does not define 
synchronous or asynchronous communication modes - 
while the operations such as sendm and receivem are 
constant across the descriptions of various tool 
integration frameworks, the semantics of the 
communication modes vary between frameworks and so 
are described at the higher levels of the model. 

2.3. Primitive Operations layer 

The model defines a set of primitives for manipulating 
the information structures, providing insertion, deletion, 
update and search operations, as shown in Table 1. The 
syntax of the primitives reflects the syntax style used for 
all primitives and higher-order operations in the model, 

Table 1. Primitives for the manipulation of information structures. 

58 



I - where - ImessageField t expr, 
(un)block incoming 

messages 

send 

receive 

block messacres toolID; 

unblock messaaes toolID; 

receive messacre [from senderID] ; returns message I 
remove outstanding a messacres where ItoolID == T) ; I messages 

Table 2. Message primitives. 

indicating the operation being invoked (e.g. find item), 
the information structure to which the operation is 
applied (e.g. infostructure), and the parameters being 
transmitted (e.g. where {infoStructureField == 

expr, . . }). As an example, a typical primitive 
statement might be: 

A t find iteq in thisTool.inputMsgs 
{pattern = P I ;  

This statement locates an item in the 
ToolCommunications information structure for the tool, 
where the attribute pattern is equal to the value of the 
variable P, and returns the result in the variable A .  A 
backwards arrow, t, indicates an assignment and may be 
used in the primitives' parameters, as in: 

B t insert item in thisToo1.inputMsg.s 

where {pattern t PI; 

In  this case, a new entry is inserted into the 
inputMsgs list of the ToolCommunications information 
structure for the tool, and the pattern attribute of this 
entry is given the value of the variable P. 

A match operator and an iterator are also defined, as 
shown in Table 1. The matches operation determines the 
equivalence of a pattern which may contain wild-card 

entries, and a string, as in 

C t "EDIT * * * ' I  matches 
'EDIT NOTIFICATION SAVE a. c" ; 

(which returns True). The f o r  all iterator is designed to 
iterate over the entries contained in an information 
structure or a subset thereof. The precise semantics are 
not described here; further details can be found in [9]. 

The Primitive Operations layer also defines 
communication primitives corresponding to operations in 
the Communication Substrate layer; these are shown in 
Table 2. 

2.4. Higher-order operations layer 

Associated with the ~ool~ommur~ications structure 
are two higher-order operations, described in Table 3. 
Higher-order operations are defined in terms of the 
primitives and information structures of the model - 
details are omitted here, but may be found in [ll]. 

The operation, create msgInterface, inserts a new 
interface component (a message pattern) into a tool's 
inputMsgs list and creates the associated communication 
bindings. The second operation, remove msgInterface, 
is the inverse of create msgInterface, destroying the 
communication bindings for a specified interface 
component, and then removing that component. 

create msaInterface 
pattern t P. 

remove mscrInterface 
pattern = P ,  

remove- 

where {toolID = T, 

pattermode t If}; 

where {toolID = T ,  

pattermode = If}; 

where {ptrToInterface} ; 

Inserts an item into the inputMsgs list  of the 
ToolCommunications structure for the tool T .  If no such 
structure exists, one is created. Next, communication bindings 
are created in all cases where an entry in an outputMsgs list of a 
tool matches the newly created inputMsgs list entry. 

The first version of the syntax of this operation locates an entry 
within the inputMsgs list of the ToolCommunications structure 
for the tool T, where the pattern field has the value P and the 
patternMode field has the value R .  The second version provides 
a pointer to such an entry. Both versions then remove all 
communication bindings to that inputMsgs list entry 
(effectively closing those communication paths) and, finally, 
remove the entry from the inputMsgs list. 

~~~ 

Table 3. Higher-order operations for the ToolCommunications structure. 
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Notification-send 4 

1 A t find item in thisToo1.outputMsgs { / *  phase *I 

2 msg = NotificationData, 
3 msgMode = "Not"}; 
4 far & I in A.msgBindings & / *  phase 2 * /  
5 messaae 1.recipient Hhere { 

6 senderID t thisTool.toolID, 
7 messageMode t 'Not", 
8 messageData t NotificationData); 
9 end for all. 

Figure 7. Description of the Notification-send communication event in SoftBench's 
EDL integration language. 

2.5. Descriptions of Integration Devices layer 

In order to complete the uppermost layer of Figure 1 
(covering the descriptions of integration devices), it is 
necessary to provide adequate descriptions of the 
transformations of the information structures caused by 
the various relevant language features. This is done by 
giving an algorithmic description of an inter-tool 
communication event corresponding to inter-tool 
communication language features in the integration 
devices. These descriptions describe the semantics of 
communication between tools by setting up integration 
interfaces and communication bindings, rearranging 
interfaces and bindings and transfemng information to and 
from the integration interfaces. Each of the algorithms is 
regarded as a set of actions executed in place of the 
language feature(s) it describes. The descriptions are 
Pascal-like, using constructs of the language in 
conjunction with the model primitives and higher-order 
operations; a more complete description is provided in 
[ 101. A Pascal-like syntax was chosen as the basis for the 
algorithmic descriptions because the set of programming 
language constructs required is small. 

In addition, two variables are defined by the model. The 
first, thisTool, returns the name of the tool in which the 
language feature being described is executing, as in: 

Seu3messacrewhereI 
senderID C thisTool, . . . . } ; 

Similarly, the variable lastMsgID, returns the ID of 
the last message received by this tool, as in: 
send messaae yhere 1. 

. . . , messageID C lastMsgID, . - . . } ; 

3. Describing integration devices in 
tool integration frameworks 

We present an example of the descriptions in the 
uppermost layer of the model by comparing the 
description of an inter-tool communication event in the 
Event Description Language (EDL) of Hewlett-Packard's 

SoftBench tool integration framework, and of the MSG 
Program Interface (MPI) of Field. Integration devices can 
be regarded as having three groups of inter-tool 
communication events. First, there is a group concerned 
with integration interface specification, and includes 
publication of the Notification interface (information 
messages that will be accepted) and the Request interface 
(services that will be offered to the environment). The 
second group, message sending, incorporates sending of 
Notification, Request and Reply messages. The final 
group is concerned with message reception, and is 
comprised of the receipt of Notification, Request and 
Reply messages. Hence, we determine the following 
communication events: 

(1) Notification-publication, 
(2) Request-publication, 
(3) Notification-send, 
(4) Request-send, 
(5) Reply-send, 
(6) Notification-receive, 
(7) Request-receive, and 
(8) Reply-receive. 
Because of limited space, only one example of these 

features can be presented. For the purposes of illustration, 
the communication event (3) Notification-send is 
selected. 

The SoftBench EDL statement 

send-message (Notify , Not i f i ca ti onDa ta ) : 

is the language feature corresponding to the 
Notification-send communication event. Figure 7 shows 
the algorithmic description of this event. It consists of 
two phases. Phase 1 establishes the set of communication 
bindings that are associated with the Notification message 
by locating the entry in the tool's outputmgs list that 
matches the message mode and the contents of the 
NotificationData field (the matching, therefore, is quite 
specific to this message). This occurs in lines 1 to 3. If 
there are no communication bindings associated with the 
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Notification-send -+ 
1 A t find item in thisTool.outputMsgs where { / *  phase * /  
2 msg = NotificationData}; 
3 if A = / =  NULL then 
4 

5 patternInd = ‘Pri”) ; 
6 
7 far I in A.msgBindings & 
8 send messaqg 1.recipient where { 

9 senderID 4- thisTool, 

10 messageMode t ‘Not“, 
11 messageData t NotificationData}; 

B t find item in A.msgBindings where { 

if B = NULL then / *  phase 3 * /  

/ *  phase 2 * /  

- 

12 d f s r d ;  
13 .eQd if; 
14 end if. 

Figure 8. Description of the Notification-send communication event in Field’s MPI 
integration language extension. 

Notification message, no further action is taken. Phase 2, 
in lines 4 to 9, occurs when a list of communication 
bindings exist. Here, the message is generated and sent to 
each tool bound to this Notification message. 

Field types its message patterns that form the 
integration interfaces as either Normal or Priority; a 
message emitted by a tool will not be delivered 
immediately to a recipient if there is any message pattern 
of type Priority currently bound to the message. To 
accommodate Normal and Priority message patterns in the 
model, a patternInd attribute is introduced into the 
msgBindings list of each tool to indicate whether the 
binding is to a Normal (8iNorii) binding or a Priority 
(11 Pri lo) binding. 

The statement 

MSGsend (NotificationData) ; 

corresponds to the Notification-send event in Field’s 
MPI. Figure 8 shows the algorithmic description of the 
Request-send communication event corresponding to this 
feature. It comprises three phases. Phase 1, in lines 1 to 
2, establishes the set of communication bindings that are 
associated with the Notification message by locating the 
entry in the tool’s outputMsgs list that matches the 
contents of the NotificationData field. If there are no 
communication bindings associated with the Notification 
message, no further action is taken is taken (line 3). 
Phase 2 searches for communication bindings of type 
Priority ( ~ ~ ~ r i ~ ~ ) .  This occurs in lines 4 and 5 .  If such 
bindings exist, no further action is shown in this 
description. Phase 3, lines 6 to 13, proceeds if no Priority 
communication bindings exist. Here, the Notification 
message is generated and sent to each tool bound to this 
Notification message. 

The complete description of this feature also describes 
the semantics of the Notification-send communication 

event where Priority bindings are involved, but has been 
omitted here for simplicity and brevity. 

When comparing the integratilon devices of tool 
integration frameworks, some aspects of the comparison 
are clear from informal descriptions of the integration 
capabilities and the language features, but it is only 
through the detailed examination made possible by an 
approach such as that described in this paper that more 
subtle details and differences are revealed. Field’s Priority 
messages are described by Garlan [8], Ilias [ 121 and Reiss 
[23]. However, their precise semantics and the 
relationship between the Priority messages and message 
transmission is ambiguous. An examination of the 
description of the semantics of the Notification-send 
communication event in Figure 8 clarifies the latter 
ambiguity - a Notification message is transmitted only if 
a Priority binding for that message does not exist. 
Subsequent descriptions of the semantics of Priority 
messages elucidates the remaining ambiguities in the 
descriptions of Garlan, Ilias and Reisis. 

Both integration languages perrnit some degree of 
dynamic determination of their integration interface and 
hence of the set of tools from which they will accept 
messages and to which they will send messages. Both 
languages base this on declared message patterns. In the 
case of EDL, the matching that occiurs between a tool’s 
output message and another tool’s input pattern will 
include the message mode (either Request, Notification or 
Reply). Field has less restrictive matching which ignores 
the message mode and thus allows one pattern to be used 
for both Request and Notification messages. 

Our investigations into the expressiveness of 
integration languages have lead to the identification of 
various integration styles. In particular, Field exhibits a 
“tool-driven” style of integration, where tools are semi or 
fully autonomous, and make assumptions about the fine 
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grained processes employed by a user engaged in software 
development and hence about the support that the user 
requires. This style of inter-tool communication in Field 
is manifested in this example in the existence of Priority 
messages. Although this example does not expand on the 
behaviour of Priority messages, but it does indicate the 
advantages of a feature which allows the integration 
designer or specifier to manipulate any message emitted 
by a tool before it is delivered to its destination. Such a 
feature can be used to examine emitted messages before 
delivery, to take actions depending on the message type 
and/or to replace the emitted message with one or more 
alternative messages; in this way, it can be used to ease 
the tool integration task. Some examples of possible use 
include 

where the priority processing provides a simple 
examination of an emitted message, various data 
gathered from the examination can be forwarded to a 
metrics tool; 
where the priority processing takes some actions 
depending on the message type, this processing can 
be used to invoke the recipient tool if it is not 
currently part of the environment; 
where the priority processing replaces the emitted 
message, it can be used to provide a translation 
facility where the interface of a tool being introduced 
into the environment does not conform with the 
interface of another tool with which it needs to 
communicate. 

* 

4 .  Summary, conclusions and future 
work 

An approach to the precise description of tool 
integration devices in tool integration frameworks has 
been described. This approach employs a five-layer model 
to describe these devices in a way which can cater to the 
different information needs of a range of people with an 
interest in the semantics of the features of tool integration 
languages, and who wish to consider the various styles of 
inter-tool communication which can be supported 
conveniently by a particular framework. The model has 
been illustrated by presenting an aspect of the descriptions 
of inter-tool communication in two frameworks: 
SoftBench and Field. The tool integration devices of the 
two frameworks were then compared insofar as this could 
be illustrated using those aspects presented in the separate 
descriptions. 

The model presented in this paper allows the precise 
description of the tool integration devices provided by 
tool integration frameworks and facilitates a kind of 
comparison of these devices which has not been possible 
to date. The sample communication event descriptions in 
Figures 7 and 8 demonstrate the utility of such semantic 
descriptions, and illustrate the ease with which 
comparisons can be made between the semantics of the 
features of the integration devices of different tool 
integration frameworks. Firstly, the detailed descriptions 
have served to clarify ambiguities in the informal 

descriptions of Priority messages. Although the example 
is brief, it has also shown that Field’s MPI integration 
language assigns types to the communication bindings 
between tools, and that these types influence the delivery 
of messages. This supports a “tool-driven” style of 
integration. The example presented is too brief to indicate 
whether SoftBench adopts the same integration style, but 
our work indicates that it evidences an alternative 
approach. 

The broader research area of this work is the 
investigation of the ways in which increased 
expressiveness of a suitable kind can be incorporated into 
the tool integration devices of tool integration 
frameworks, and the identification of better integration 
styles among sets of tools. Our efforts so far have 
concentrated on the development of the model and the 
descriptions of the integration devices of Field and 
SoftBench. Our immediate plans include the description 
of another commercial product: the ENCASE integration 
language employed by DEC’s COHESIONWorX tool 
integration framework, We suspect that this will provide 
an alternative style of inter-tool communication. 

It appears that the design of integration devices in tool 
integration languages has been informal to a degree, and 
has not been influenced by an analysis of user 
requirements. Our work will proceed by analysing which 
features of existing tool integration devices are used and 
how they are employed. These findings can then be related 
back to the semantic descriptions of existing devices, and 
new devices designed and described in terms of the model. 
We plan to generate the inter-tool communication aspects 
of tool integration frameworks from the semantic 
descriptions of the model, in a manner similar to that 
used for generation programming language 
implementations [ 18-21]. This will enable the generation 
of an implementation of the proposed new set of devices 
designed as a result of the user analysis, which can be 
tested in practice and further refined. 
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