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Abstract. SAT-solving is a highly relevant research area with plenty of industrial
applications. SMT-solving over the reals, extending SAT with theories, has its
main focus on linear arithmetic. However, there are only few solvers being capable
of more expressive but still decidable logics like the first-order theory of the reals
with addition and multiplication – real algebra.
One of the main requests on theory solvers that must be fulfilled for their efficient
embedding into a lazy DPLL-based SMT-solver is incrementality, which is not
supported by currently available theory solvers for real algebra. In this paper
we address the extension of an existing theory-solving algorithm, the virtual
substitution method, to support incrementality.

1 Introduction

The satisfiability problem poses the question whether a given logical formula is satisfiable,
i.e., whether we can assign values to the variables contained in the formula such that
the formula becomes true. The development of efficient algorithms and tools (solvers)
for satisfiability checking form an active research area in computer science. A lot of
effort has been put into the development of fast solvers for the propositional satisfiability
problem, called SAT. To increase expressiveness, extensions of the propositional logic
with respect to first-order theories can be considered. The corresponding satisfiability
problems are called SAT-modulo-theories problems, short SMT. SMT-solvers exist, e.g.,
for equality logic, uninterpreted functions, predicate logic, and linear real arithmetic.

In contrast to the above-mentioned theories, less activity can be observed for SMT-
solvers supporting the first-order theory of the real ordered field, what we call real
algebra. Our research goal is to develop an SMT-solver for real algebra, being capable
of solving Boolean combinations of polynomial constraints over the reals efficiently.

Even though decidability of real algebra is known for a long time [Tar48], the first
decision procedures were not yet practicable. Since 1974 it is known that the time
complexity of deciding formulas of real algebra is in worst case doubly exponential in
the number of variables (dimension) contained in the formula [DH88,Wei88], and this
for even linear input formulas.

Today, several methods are available which satisfy these complexity bounds, for ex-
ample the cylindrical algebraic decomposition (CAD) [CJ98] , the Gröbner basis, and the
virtual substitution method [Wei98]. An overview of these methods is given in [DSW97].
There are also tools available which implement these methods. The stand-alone applica-
tion QEPCAD is a C++ implementation of the CAD method [Bro03]. Another example is

http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html


the Redlog package [DS97] of the computer algebra system Reduce based on Lisp,
which offers an optimized combination of the virtual substitution, the CAD method, and
real root counting.

Currently existing solvers are not suited to solve large formulas containing arbitrary
combinations of real constraints. We want to combine the advantages of highly tuned
SAT-solvers and the most efficient techniques currently available for solving conjunctions
of real constraints, by implementing an SMT-solver for real algebra capable of efficiently
solving arbitrary Boolean combinations of real constraints.

Theory solvers should satisfy specific requirements in order to embed them into an
SMT-solver efficiently:

– Incrementality: The theory solver should be able to accept theory constraints one
after the other. After it receives a new theory constraint it should check the conjunc-
tion of the new constraint with the earlier constraints for satisfiability. For efficiency
it is important that the solver does not make unnecessary work and makes use of the
result of earlier checks.

– Minimal infeasible subsets: If the theory solver detects a conflict, it should give a
reason for the unsatisfiability. The usual way is to determine an unsatisfiable subset
of the constraints which is minimal in the sense that if we remove a constraint the
remaining ones become satisfiable.

– Backtracking: If a conflict occurs, either in the Boolean or in the theory domain,
the solver should be able to remove some constraints and continue the check at an
earlier state.

To our knowledge, these functionalities are currently not supported by the available
solvers for real algebra. In this paper we extend the virtual substitution method to support
incrementality and backtracking, and embed it into an SMT-solver. The generation of
minimal infeasible subsets is future work and should further optimize our tool.

We have chosen the virtual substitution method because it is a restricted but very
efficient decision procedure for a subset of real algebra. The restriction concerns the
degree of polynomials. The method uses solution equations to determine the zeros of
(multivariate) polynomials in a given variable. As such solution equations exist for
polynomials of degree at most 4, the method is a priori restricted in the degree of
polynomials. In this paper we restrict ourselves to polynomials of degree 2.

Related work. We are only aware of the SMT-solvers Z3 [dMB08], HySAT [FHT+07]
and ABsolver [BPT07] which are able to handle nonlinear real arithmetic constraints.
The algorithm implemented in HySAT and currently in its successor tool iSAT uses
interval constraint propagation to check real constraints. This technique is only pseudo-
complete, i.e. it sometimes cannot solve the problem with a clear satisfiability result.
Nevertheless it is in practice more efficient compared to solvers based upon exact
methods [FHT+07]. The structures of ABsolver and Z3 are more similar to our SMT-
solver planned. However to our knowledge, Z3 does not support full real-algebraic
constraints. The authors of ABsolver do not address the issues of incrementality and
backtracking. Though ABsolver computes minimal infeasible subsets, we did not find
any information how they are generated.
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The remaining part of the paper is structured as follows: We give an introduction
to DPLL-based SMT-solving and to virtual substitution in Section 2. We introduce our
incremental virtual substitution algorithm in Section 3 and give some first experimental
results in Section 4. We conclude the paper in Section 5.

2 Preliminaries

In this paper we focus on satisfiability checking for a subset of the existential fragment of
real algebra (quadratic and beyond). Terms or polynomials p, constraints c, and formulas
ϕ can be built upon constants 0, 1 and variables x according to the following abstract
grammar:

p ::= 0 | 1 | x | (p + p) | (p · p)
c ::= p = p | p < p
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

Syntactic sugar like True, False, /,−,∧ →,∀, . . . is defined as usual; the equality is
added for convenience but could also be defined as syntactic sugar. We define that ∨
binds stronger than ∧, and ∧ binds stronger than ∃, and skip sometimes the parentheses.
The semantics of real algebra is as expected. We call a variable x occurring in a formula
∃xϕ bound; not bound variables are called free. Formulas with no free variables are
called sentences. With R[x1, . . . , xn] we denote the set of all polynomials containing
variables x1, . . . , xn.

With the real numbers R as domain, the set of all true real-algebraic sentences is
the first-order theory of (R, +, ·, 0, 1, <), called real algebra. In this paper we restrict
to the existential fragment, i.e., to formulas which can be transformed into the form
∃x1 . . . ∃xnϕ with ϕ being quantifier-free.

The satisfiability problem for real-algebraic formulas is decidable as proved around
the 1930s [Tar48]. We use DPLL-based SMT-solving, introduced in Section 2.1, for
the satisfiability check. An SMT-solver combines a SAT-solver, handling the Boolean
structure, and a theory solver to check the theory constraints. We apply the virtual
substitution method, introduced in Section 2.2, as an algorithm for the theory solver,
which is very efficient but restricted in the degree of polynomials that can be handled.

2.1 Lazy SMT-solving

The propositional satisfiability problem (SAT) where the variables range over the values
1 (True) and 0 (False) is NP-complete, but SAT-solvers are quite efficient in practice due
to a vast progress in SAT-solving during the last years. One of the main achievements in
the field of SAT-solving is the DPLL-algorithm, which is capable of solving existential
Boolean formulas and furthermore, capable of performing consistency checks with
other logical theories. Thus, DPLL-based decision procedures can be applied to logics
richer than propositional logic, by abstracting all non-propositional atomic formulas by
propositional variables. This approach is called lazy SAT-modulo-theories (SMT) solving.
More comprehensive information on this topic can be found in [KS08].
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Fig. 1: The basic scheme of DPLL-based full lazy SMT-solving

The basic scheme of lazy DPLL-based SMT-solving is roughly as follows (cf. Fig. 1).
The SMT-solver first creates a Boolean skeleton of the input formula, replacing all theory
constraints contained in the input formula by fresh Boolean variables. The resulting
Boolean formula is passed to the SAT-solver, which searches for a satisfying assignment.
If it does not succeed, the formula is unsatisfiable. Otherwise, the assignment found
corresponds to certain truth values for the theory constraints and has to be verified by
the theory solver. If the constraints are satisfiable, then the original formula is satisfiable.
Otherwise, if the theory solver detects that the conjunction of the corresponding theory
constraints is unsatisfiable, it then hands over a reason for the unsatisfiability, a minimal
infeasible subset of the theory constraints, to the SAT-solver. The SAT-solver uses this
piece of information to exclude the detected conflict from further search. Afterwards,
the SAT-solver computes again an assignment for the refined Boolean problem, which in
turn has to be verified by the theory solver. Continuing this iteration in the end decides
the satisfiability of the input formula.

Above we described a full lazy procedure (also referred to as offline integration
schema), where the theory solver checks constraints corresponding to a complete as-
signments only. In practice this is often disadvantageous, since the SAT-solver may do
a lot of needless work by extending an already (in the theory domain) contradictory
partial assignment. Less lazy variants of the procedure (also referred to as online in-
tegration schema) call the theory solver more often, already handing over constraints
corresponding to partial assignments. To do so efficiently, the theory solver should accept
constraints in an incremental fashion, where computation results of previous steps can
be reused. Furthermore, in case of a conflict the theory solver should also be able to
backtrack to previous computation states.

Note that we strictly separate the satisfiability checks in the Boolean and in the theory
domains, that means, we do not consider theory propagation embedded in the DPLL
search like, e.g., Yices does.

2.2 Virtual Substitution

The virtual substitution method is a restricted but very efficient decision procedure
for a subset of real algebra. In this paper we adapt it to support incrementality and
backtracking (cf. Section 2.1).
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The decision procedure based on virtual substitution produces a quantifier-free
equivalent of a given input formula, by successively eliminating all bound variables
starting with the innermost one. We are interested in checking satisfiability of a pure-
existentially quantified formula (cf. “unquantified” in terms of SMT-LIB). Below we
explain how the innermost existentially bound variable is eliminated by using virtual
substitution.

Let ∃y1 . . . ∃yn∃xϕ be the input formula where ϕ is a quantifier-free Boolean
combination of polynomial constraints. In this paper we handle constraints of de-
gree at most two. Thus we assume that all constraints in ϕ are of the form f ∼ 0,
∼∈ {=, <,>,≤,≥, 6=}, where f is a polynomial that is at most quadratic in x with
polynomial coefficients.

Considering the real domain of a variable x, each constraint containing x splits
it into values which satisfy the constraint and values which do not. More precisely,
the satisfying values can be merged to a finite number of intervals whose endpoints
are elements of {∞,−∞} ∪ Lx, where Lx are the zeros of f in x. Given a constraint
f = ax2 + bx + c ∼ 0, ∼∈ {=, <,>,≤,≥, 6=}, the finite endpoints of its satisfying
intervals are the zeros of f = ax2 + bx + c:

x0 = − c
b if a = 0 ∧ b 6= 0

x1 = −b+
√

b2−4ac
2a if a 6= 0 ∧ b2 − 4ac ≥ 0

x2 = −b−
√

b2−4ac
2a if a 6= 0 ∧ b2 − 4ac ≥ 0

A set of constraints has a common solution iff the intersection of their solution
intervals is not empty. If so, this intersection contains at least one left/right endpoint of a
left-/right-closed solution interval of a constraint, or a point infinitesimal greater/smaller
than the left/right endpoint of a left-/right-open solution interval of a constraint. We call
such points test candidates. Basically, the virtual substitution recursively eliminates x in
ϕ by (i) determining all test candidates for x in all constraints in ϕ that contains x, and
(ii) checking if one of these test candidates satisfies ϕ.

To check whether a test candidate e for x satisfies another constraint g ∼ 0 in
ϕ, we substitute all occurrences of x by e in g, yielding g[e/x] ∼ 0, and check the
resulting constraint under the solution’s side conditions for consistency. Note that neither
g[e/x] ∼ 0 nor the solution conditions refer to x, but they may contain other bound
variables. Thus the consistency check may involve further quantifier eliminations.

Standard substitution could lead to terms not contained in real algebra, namely
∞ or square roots. Furthermore, it would introduce new variables for infinitesimals.
Virtual substitution however, avoids these expressions in the resulting terms: it defines
substitution rules yielding formulas of real algebra that are equivalent to the result of the
standard substitution.

The virtual substitution method defines 30 substitution rules: There are six relation
symbols and five possible types of test candidates corresponding to (1) the left or right
endpoint of a left- or right-closed interval, (2) the right endpoint of a right-open interval,
(3) the left endpoint of a left-open interval, (4)∞, or (5)−∞. To describe all substitution
rules would go beyond the scope of this paper. We refer to [LW93,Wei97] for a complete
description and give here two examples to demonstrate the idea:
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1. We first show the case for a test candidate being an left- respectively right-endpoint
of a left- respectively right-closed interval used for substitution in an equation. So
let e be a test candidate for x of type (1) and assume the constraint g = 0 occurring
in ϕ. If we use standard substitution to replace x by e in g = 0, the result can be
transformed to the general form r+s∗

√
t

q = 0, where q, r, s and t are polynomial
terms of the real algebra.
We distinguish between the cases of s being 0 or not, i.e., if there is a square root in
the term after substitution or not. In case s = 0 the equation r+s∗

√
t

q = 0 simplifies

to r
q = 0 and further to r = 0. In case s 6= 0, the constraint r+s∗

√
t

q = 0 is
satisfied iff r + s ∗

√
t = 0, or equivalently, iff either both r and s equal 0, or they

have different signs and |r| = |s
√

t|. Therefore the virtual substitution replaces the
constraint g = 0 by

(s = 0 ∧ r = 0) ∨ (s 6= 0 ∧ r ∗ s ≤ 0 ∧ r2 − s2t = 0).

2. The second case we describe is the substitution for a test candidate of type (3) in an
inequation g < 0. The test candidate represents in this case the left end point e of a
left open interval plus an infinitesimal value. The substitution of the test candidate
for x in g < 0 is equivalent to the following:

g[e/x] < 0︸ ︷︷ ︸
Case 1

∨ g[e/x] = 0 ∧ g′[e/x] < 0︸ ︷︷ ︸
Case 2

∨ g[e/x] = 0 ∧ g′[e/x] = 0 ∧ g′′[e/x] < 0︸ ︷︷ ︸
Case 3

Either g maps the endpoint to a negative value satisfying Case 1, where it is sur-
rounded by negative values due to the density of R or it is zero and one of its
derivatives in x is negative satisfying Case 2 or 3, which implies that values in the
right neighborhood of e are mapped to negative values.
In the above formula, the substitutions g[e/x] = 0 and g′[e/x] = 0 are computed
according to the first case above. The other substitutions g[e/x] < 0, g′[e/x] < 0,
and g′′[e/x] < 0 are computed using the substitution rule for test candidates of type
(1) and a strict inequation, not listed here.

x

g(x)

(
e

Case 1

x

g(x)

(
e

Case 2

x

g(x)

(
e

Case 3

Assume T is the set of all possible test candidates for x. Given a test candidate e ∈ T
with side conditions Ce, the virtual substitution method applies the substitution rules to
all constraints in the input formula ϕ and conjugates the result with Ce. Considering all
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possible test candidates results in the formula

∃y1 . . . ∃yn

∨
e∈T

(ϕ[e/x] ∧ Ce).

Note that test candidates of types (4) and (5) do not have side conditions. The virtual
substitution method continues with the elimination of the next variable yn.

3 Incremental Virtual Substitution

As discussed in Section 2.1, a theory solver should support incrementality in order to be
suited for an efficient embedding into a less lazy SMT-solver. Note that theory solvers
in the SMT-context have as input conjunctions of theory constraints only, instead of
arbitrary combinations. If the theory solver already checked a set of theory constraints
for consistency, it should be able to accept one more constraint, and to check whether
the conjunction of the already added constraints and the new constraint is still consistent.
Furthermore, it should support backtracking to a previous solver state, thereby undoing
the adding of some constraints.

The original virtual substitution method does not provide these functionalities yet.
Nevertheless, it can be embedded into an SMT-solver. Full lazy SMT-solving does not
require incrementality, but is not very profitable compared to a less lazy approach with
incremental theory solver. We could also embed a non-incremental theory solver into
a less lazy SMT-solver. However, in this case the theory solver has to re-do a lot of
work. In this main section we propose an incremental version of the virtual substitution
method.

Assume that the original virtual substitution method checks the satisfiability of a
formula and eliminates a variable x. The elimination yields a list of test candidates with
corresponding side conditions. After the substitution step the result is a new formula
being the disjunction of the substitution results for each test candidate of each constraint
containing x. Note that this new formula, which does not contain the variable x any
more, gets exponentially large.

If we want to support the belated addition of further constraints, possibly containing
x, we must be able to belatedly substitute x in the new constraint using the previous test
candidates. Furthermore, we have to find the test candidates of the new constraint for x
and belatedly consider them for substitution. For this purpose we must firstly store all
the received constraints and secondly the list of all determined test candidates with their
corresponding side conditions.

A naive approach would be to mimic the original virtual substitution method: we
could store all the abovementioned information, apply all relevant previous substitutions
to new constraints, and extend the formula with new disjunctive components using test
candidates from the new constraint. However, this approach would lead to very large
formulas.

To reduce the data to be stored and to support incrementality, we follow an informed
search instead of a breadth-first search. To understand how this can be achieved, we first
describe the data model underlying our search.
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Algorithm 1 The incremental virtual substitution algorithm (1)

bool add_new_constraint(constraint c)
begin

add_new_constraint(c,root); (1)
return is_consistent(root); (2)

end

void add_new_constraint(constraint c, element (C,S)t)
begin

if t = x then (1)
C := C ∪ {(c : f)}; (2)

else if t =⊥ then (3)
C := C ∪ {c}; (4)

end if (5)
for all children (C′,S′)t′ of (C,S)t do (6)

add_new_constraint(c,(C′,S′)t′ ); (7)
end for (8)

end

bool is_consistent(element (C,S)t)
begin

if (C,S)t is a leaf then (1)
return is_consistent_leaf((C,S)t); (2)

else (3)
return is_consistent_innernode((C,S)t); (4)

end if (5)
end

Remember that the virtual substitution starts with a formula and applies variable
elimination and substitutions to it. Both of these operations lead to branching on possible
solutions: the variable elimination branches on possible test candidates yielding pairs
of substitutions and corresponding substitution conditions, and the substitution itself
branches also on possible substitution cases. As we want to be able to belatedly apply
those operations to later arrived constraints, we must remember not only the current result
but also the history of operations executed. Therefore the current solver state is stored in
a tree. Each leaf corresponds to a possible solution of the constraints handed over to the
theory solver. Inner nodes represent an earlier term to that either variable elimination
or a substitution was applied, yielding the disjunction of the terms represented by its
children.

The nodes are indexed tuples (C,S)t with C a set of polynomial constraints, S a
set of substitutions, and t ∈ {⊥ ,∗} ∪ Var where Var is the set of real-valued variables
appearing in constraints. The substitution set S contains substitutions that were or still
should be applied to the constraints handed over to the solver in the branch leading to
the node. The constraints C result from the original constraints by applying substitutions
from S to them. The index t denotes the next operation applied to C which results in a
branching on the cases represented by the children of the node. An element (C,S)⊥ is
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always a leaf, as the index ⊥ denotes that no operation was applied to the constraints
in C since the node was added. A node (C,S)x has children representing the cases for
the different test candidates for the elimination of the variable x; the substitution sets of
the children extend S with the corresponding substitution and the constraint sets of the
children extend C with the corresponding side conditions. An element (C,S)∗ is a node
in which a substitution was applied to a constraint in C; the result of the substitution
was stored in a number of generated children, which represent the different substitution
cases.

The search tree initially consists of a single node (∅,∅)⊥, storing the information that
the theory solver did not get any constraints yet, no substitution was yet applied, and no
next operation on the constraint set was determined yet.

When the solver gets a new constraint it does a sequence of operations to check if
the previously received constraints together with the new constraint are still satisfiable.
Mimicking the original virtual substitution method would require that we belatedly
apply all substitutions to the new constraint on all paths to leaf nodes and add all
branching results as children to the leaf nodes. Furthermore, inner nodes that branch on
the elimination of variables occurring in the new constraint would get new children due
to new possible test candidates for the elimination, which should be further processed.
When completed the search, the tree would have a leaf with an empty constraint set (or
containing only tautologies) for each satisfying branch.

We do not follow this breadth-first approach, but use a more depth-first search
oriented algorithm, in that we continue the search only until we get a leaf with an empty
constraint set, assuring that there is at least one solution.

When the theory solver gets a new constraint, the new constraint gets added to each
constraint set C of each node (C,S)t in the three with t 6= ∗. Why we do not need to
add new constraints to ∗-indexed nodes will become clear later (though it would not
be critical to add them, it is not necessary). Then we heuristically choose a leaf and
apply substitutions and variable eliminations to the constraint set until we either get a
satisfying leaf, or all children turn out to correspond to unsatisfiable branches. In the first
case we are ready, whereas in the second case we delete the chosen node and continue in
other branches.

The incremental virtual substitution algorithm can be described by the pseudo-code
Algorithms 1 and 2. We explain the functioning of the algorithm on a small example.

Initially the search tree consists of a single node (∅, ∅)⊥. We call add_new_constraint
with the constraint c1 : x2 − y ≥ 0 as parameter to hand over the first constraint to the
theory solver. The method add_new_constraint adds the constraint c1 to the constraint
sets of all nodes that are not indexed by ∗. There is just one such node (∅, ∅)⊥, which
gets extended to ({c1}, ∅)⊥.

After the addition of the constraint a consistency check is performed by the method
is_consistent. Figure 2 shows the resulting tree after the check. At the beginning the
tree consists of the root node ({c1}, ∅)⊥ being leaf marked by ⊥, thus the method
is_consistent_leaf gets invoked. As there are no substitutions to consider yet, the root is
evaluated according to the second case in the method is_consistent_leaf. It markes the
root by the variable x, which gets eliminated based on c1 producing the test candidates:

1. −√y with side conditions 1 6= 0 ∧ 4y ≥ 0,
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„
{c1 : t}
∅

«
x

„
{4y ≥ 0 : t}
{[−√y/x]}

«
y

„
∅

{[−√y/x][0/y]}

«
⊥

„
∅

{[−√y/x][∞/y]}

«
⊥

„
{4y ≥ 0}
{[√y/x]}

«
⊥

„
∅

{[∞/x]}

«
⊥

Fig. 2: Solver state after adding the constraint c1 : x2 − y ≥ 0.

2.
√

y with side conditions 1 6= 0 ∧ 4y ≥ 0,
3. ∞ with no side conditions.

Note, that∞ is the test candidate representing the right endpoint of the right-unbounded
solution interval. The constraint c1 in the conditions of the root gets the marked by t,
which says that it was already involved to create test candidates for the elimination of x.
A leaf is created for each of the generated test candidates. In the side conditions we skip
tautologies. Note that if there were further constraints in the processed node they were
handed over to the children.

In the next step we choose one of the just created new leaves, e.g., the left one. It
still has a non-empty constraint set referring to the variable y that gets eliminated. The
node gets marked by the eliminated variable y and the constraint used to generate the
test candidates gets labeled by t. This step generates a leaf with an empty condition set,
thus the constraint is satisfiable and we can stop the search.

Figure 3 depicts the result of adding a further constraint c2 : x2 − 1 = 0. Again
it is appended to the constraint sets of all nodes in the search tree. Note, that the new
constraint is labeled in elimination nodes by f , denoting that is was not yet used to
generate test candidates. Next we select a leaf, which again is the left-most one. It has
a single constraint c2 in which we substitute −√y for x, leading to a single new child.
We apply the second substitution for [0/y] to the child’s constraint which results in a
contradiction. All three nodes up to the y-indexed node get deleted. We decide to take its
child corresponding to the test candidate∞ for y. Complete evaluation leads again to
inconsistency, and also this path gets deleted up to the y-indexed node. This node now is
a leaf and we create new test candidates for y using the f -labeled constraint c2, which
now gets the label t. There is just one new test candidate for y, namely 1. Its substitution
leads to a satisfying node, and the method terminates.

When the current set of constraints turns out to be unsatisfiable, the theory solver
should be able a backtrack. We have the choice between two possibilities: (1) We can
store all received constraints in a list. In case of backtracking we delete the current
tree and construct a new one for the constraints that were not undone. (2) We can store
before each decision of the SAT-solver the current tree in a stack in order to restore an
earlier solver state. Currently we do (2). We will analyze in the future if it pays off or if
recomputing would be more efficient.
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„
{c1 : t, c2 : f}

∅

«
x

„
{4y ≥ 0 : t, c2 : t}
{[−√y/x]}

«
y

„
{c2}

{[−√y/x][0/y]}

«
∗

„
{y − 1 = 0}
{[−√y/x][0/y]}

«
∗ 

{−1
 
= 0}

{[−√y/x][0/y]}

!
⊥

„
{c2}

{[−√y/x][∞/y]}

«
∗

„
{y − 1 = 0}

{[−√y/x][∞/y]}

«
∗ 

{∞  
= 0}

{[−√y/x][∞/y]}

!
⊥

„
{4y ≥ 0}

{[−√y/x][1/y]}

«
∗

„
{4y ≥ 0}

{[−√y/x][1/y]}

«
∗

„
∅

{[−√y/x][1/y]}

«
⊥

„
{4y ≥ 0, c2}
{[√y/x]}

«
⊥

„
{c2}
{[∞/x]}

«
⊥

Fig. 3: Solver state after adding the constraints c1 : x2 − y ≥ 0 and c2 : x2 − 1 = 0.

4 Experimental results

We are currently building a prototype implementation of the proposed algorithm and its
embedding into an SMT-solver. First results show that the running times for conjunctions
of constraints are comparable for the non-incremental and the incremental version of
the virtual substitution algorithm. This implies that the costs of additional book-keeping
remains relatively small, and that the depth-first setting has comparable running times as
well as the breadth-first setting. This gives us optimal conditions for the embedding of
our theory solver into an SMT-solver for quadratic case (and beyond) of the real algebra.

We created a random set of test formulas of the form

( xaxb = d ) ∧
∧

(j0,j1,j2,j3,j4,c)∈M

4∨
i=0

( xj0 + xj1 + xj2 + xj3 + xj4 = c )

where V = {0, . . . , 19}, Vc = {1, . . . , 50}, M ⊆ V 5 × Vc with |M | = 10, the xl

are variables for all l ∈ V , and a,b,d ∈ V with a 6= b. The position of the clause
( xaxb = d ) in this CNF-formula is determined randomly, i.e., it is not always the first
clause. Table 1 shows results characteristic for this kind of input formula. All listed
example formulas are satisfiable. (We did not make any intensive benchmark testing
yet, but we will give in an extended version of this paper further case studies for other
unsatisfiable and satisfiable benchmarks.)

The running times show that in most of the cases less lazy solving is superior to the
full lazy approach. Note that the example formulas are relatively small, thus less lazy
solving has its main advantage in the facts that (1) in case a partial assignment already
leads to a conflict, the theory solver needs to check smaller sets of constraints only, and
(2) less lazy setting yields smaller conflicts. (As we do not yet support minimal infeasible
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subset generation, we take the disjunction of the negated unsatisfiable constraints as
conflicting clause.)

Since we invoke the theory solver after each decision level handing over new con-
straints, the incremental version has to do less work than the non-incremental one. The
running times show that the book-keeping effort pays off.

Table 1 First experimental results (times depicted in seconds) of the prototype imple-
mentation of the less lazy SMT-solver using an incremental virtual substitution solver.
Less lazy with incremental theory solver: 16.589 11.8851 28.4418 0.5557 9.1395
Less lazy with non-incremental theory solver: 59.2009 73.7511 97.8212 62.4652 83.9639
Full lazy with non-incremental theory solver: 287.51 105.233 86.7371 71.8332 > 150.0
Redlog: >300.0 >300.0 >150.0 >150.0 >150.0

5 Conclusion

In this paper we proposed an incremental adaptation of the virtual substitution method.
First results of our prototype implementation show that the approach is efficient.

There is a lot of future work to do. Firstly, we have to finish the implementation of
the incremental theory solver. We are already working on its efficient embedding into an
SMT solver. The next step will be the development of an incremental adaptation of the
CAD method. This allows us to combine those decision procedures in a style as done in
Redlog, to be able to handle full real algebra. The generation of minimal infeasible
subsets is another important feature we are working on.

The incremental theory solver has to handle case splitting in the theory domain due to
the depth-first search in the tree of solution sets. It would be also interesting to consider
to shift those decisions into the SAT domain in order to speed up the search by conflict
learning.
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Algorithm 2 The incremental virtual substitution algorithm (2)

bool is_consistent_leaf((C,S)t)
begin

if t =⊥ and exists substitution s ∈ S applicable to a c ∈ C then (1)
t := ∗; (2)
substitute s in c yielding

W
i=1,...,n

V
j=1,...,ki

ci,j ; (3)
for all i = 1, . . . ,n do (4)

add child (C\{c} ∪ {ci,j |j = 1, . . . ,ki},S)⊥ to (C,S)∗ (5)
end for (6)

else if (t =⊥ and exists c ∈ C containing a variable x) or (7)
(t = x and exists (c : f) ∈ C containing x) then (7)

if t =⊥ then (8)
t := x; (9)
C := {(c′ : f)|c′ ∈ C, c′ 6= c} ∪ {(c : t)}; (10)

else (11)
C := C\{(c : f)} ∪ {(c : t)}; (12)

end if (13)
solve c for x yielding test candidates ei, i = 1, . . . ,n, with (14)

side conditions
V

j=1,...,ki
ci,j for each i; (15)

for all i = 1, . . . ,n do (16)
C′ := {c′|(c′ : t) ∈ C, c′ 6= c} ∪ {ci,j |j = 1, . . . ,ki}; (17)
S′ := S ∪ {[ei/x]}; (18)
add child (C′,S′)⊥ to (C,S)x (19)

end for (20)
end if (21)
if (C,S)t is still a leaf then (22)

return (C is empty); (23)
else (24)

return is_consistent((C,S)t); (25)
end if (26)

end

bool is_consistent_innernode((C,S)t)
begin

for all children (C′,S′)t′ of (C,S)t do (1)
if is_consistent((C′,S′)t′ ) then (2)

return true; (3)
else (4)

remove child (C′,S′)t′ ; (5)
end if (6)

end for (7)
return is_consistent((C,S)t); (8)

end
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