A Lazy Snapshot Algorithm with Eager
Validation

Torvald Riegel' and Pascal Felber? and Christof Fetzer!

! Dresden University of Technology, Dresden, Germany,
torvald.riegel@inf.tu-dresden.de, christof.fetzer@tu-dresden.de
2 University of Neuchéatel, Neuchatel, Switzerland,
pascal.felber@unine.ch

Abstract. Most high-performance software transactional memories
(STM) use optimistic invisible reads. Consequently, a transaction might
have an inconsistent view of the objects it accesses unless the consistency
of the view is validated whenever the view changes. Although all STMs
usually detect inconsistencies at commit time, a transaction might never
reach this point because an inconsistent view can provoke arbitrary be-
havior in the application (e.g., enter an infinite loop). In this paper, we
formally introduce a lazy snapshot algorithm that verifies at each object
access that the view observed by a transaction is consistent. Validating
previously accessed objects is not necessary for that, however, it can be
used on-demand to prolong the view’s validity. We demonstrate both
formally and by measurements that the performance of our approach is
quite competitive by comparing other STMs with an STM that uses our
algorithm.

1 Introduction

The recent move to multi-core processors has resulted in an increased research
interest in software transactional memory (STM) [1]. STMs have been intro-
duced as a mean to support lightweight transactions in concurrent applications.
Transactions execute concurrently and those that fail to commit automatically
roll back and restart their execution.

In STMs there is currently a tradeoff between consistency and performance.
Several high-performance STM implementations [2—4] use optimistic reads in
the sense that the set of objects read by a transaction might not be consistent.
Consistency is only checked at commit time, i.e., commit validates the trans-
action. However, having an inconsistent view of the state of the objects during
the transactions might, for example, result in infinite loops or the throwing of
exceptions. These failures must then be detected and masked by the STM or
the program’s runtime environment, which is often both difficult and costly. Ex-
plicit, programmer-controlled validation is usually considered too difficult for
programmers.

Ezample 1. Consider a linked list and two operations: (1) search iterates through
the list until it finds a specific element while (2) sort re-orders the elements.

Consider that the list contains elements o5 and o7 in that order. Transaction T}
sorts the list, which leads to re-ordering o; before 0s. If transaction 7% iterates
through the list but reads o2 before the execution of 77 (02 was the first object
of the list) and oy after the sort operation has completed, it will experience a
cycle and will loop forever.

Validation, on the other hand, can be costly (see Section 4) if it is performed
in the obvious way, i.e., checking every object previously read. Typically, the
validation overhead grows linearly with the number of objects a transaction has
accessed so far. When one is forced to validate after each step, this could result
in a validation overhead that grows quadratically with the number of objects
accessed by a transaction.

In this paper, we introduce a lazy snapshot algorithm (LSA) that efficiently
constructs an always consistent snapshot for transactions. Reads of a transac-
tion are invisible to other transactions; the consistency of a transaction is verified
by maintaining a validity interval for snapshots. In this way, an STM can effi-
ciently verify during each object access that the snapshot of the objects that a
transaction has seen so far is consistent.

We have built an object-based STM using LSA, to which we will refer as
LSA-STM in what follows. It ensures linearizability [5] for read-only and update
transactions. OQur performance measurements demonstrate that the performance
of LSA is very competitive with other STM implementations even when ensuring
linearizability and always providing transactions with a consistent view.

In earlier work [6], we showed how to use LSA to build STMs that provide
snapshot isolation [7]. The key idea of snapshot isolation (SI) is to provide each
transaction 7' with a consistent snapshot of all objects at a given time. Writes
of T occur atomically but possibly at a later time than that of the snapshot.
This decoupling of the reads and the writes has the potential of increasing the
transaction throughput but also gives application developers less ideal semantics
than, say, STMs that guarantee linearizability [5]. However, SI always provides
a transaction with a consistent view which avoids the programming anomalies
that we described above.

In what follows, we first give a brief overview of the related work (Section 2).
We then introduce LSA and demonstrate some of its properties (Section 3).
Finally, we describe the results of our performance evaluation (Section 4) and
conclude the paper (Section 5).

2 Related Work

Software Transaction Memory is not a new concept [1] but it recently attracted
much attention because of the rise of multi-processor and multi-core systems.
There are word-based [8] and object-based [9] STM implementations. The design
of the latter, Herlihy’s DSTM, is used by several current STM implementations.
Most STM implementations are obstruction-free [10] and use contention man-
agers [9] to deal with conflicts and ensure progress. Our LSA-STM is object-based

and obstruction-free [10] and thus, uses some of DSTM’s concepts. However,
LSA-STM is a multi-version STM, whereas DSTM keeps at most two versions
of an object but only uses the most recent version. We previously presented
SI-STM [6], which uses LSA but provides, in addition to strict transactional
consistency, support for snapshot isolation, which can increase the performance
of suitable applications.

In DSTM and most of the high-performance STMs in general, reads by a
transaction are invisible to other transactions: to ensure that consistent data is
read, one must validate that all previously read objects have not been updated
in the meantime. If reads are to be visible, transactions must add themselves to
a list of readers at every transactional object they read from. Reader lists enable
update transactions to detect conflicts with read transactions. However, the re-
spective checks can be costly because readers on other CPUs update the list,
which in turn increases the contention of the memory interconnect. Scherer and
Scott [11,12] investigated the trade-off between invisible and visible reads. They
showed that visible reads perform much better in several benchmarks but, ulti-
mately, the decision remains application-specific. Marathe et al. [13] present an
STM implementation that adapts between eager and lazy acquisition of objects
(i.e., at access or commit time) based on the execution of previous transactions.
However, they do not explore the trade-off between visible and invisible reads
but suggest that adaptation in this dimension could increase performance. Cole
and Herlihy propose a snapshot access mode [14] that can be roughly described
as application-controlled invisible reads for selected transactional objects with
explicit validation by the application. Dice et al. show in [15], a recent im-
provement of earlier work [4], how to use a global version clock to improve the
performance of low-overhead STMs. However, the validity of snapshots is fixed
to the start time of a transaction and is not extended on demand. The only
other multi-version STM that we are aware of is [16], although snapshots are
not computed dynamically and conflict detection of update transactions only
occurs at commit time. Furthermore, in that STM design, every commit oper-
ation, including the upgrade of transaction-private data to data accessible by
other threads, synchronizes on a single global lock. No performance benchmark
results were provided.

Read accesses in our LSA-STM are invisible to other transactions but do
not require revalidation of previously read objects on every new read access. We
show that our LSA facilitates inexpensive validation by maintaining a validity
range in which a transaction is valid. In this way we get most of the benefits of
visible and invisible reads but at a much lower cost.

3 Lazy Snapshot Algorithm

Before we can describe our lazy snapshot algorithm in Section 3.2, we first need
to introduce some notations in Section 3.1. We show the correctness of LSA in
Section 3.4.

3.1 Notations

A transactional memory consists of a set of shared objects o1, ...,0, € O. Trans-
actions are either read-only, i.e., they do not write to any object, or are update
transactions, i.e., write to one or more objects.

Our transactional memory has a global counter, CT', that counts the number
of update transactions that have committed so far. When an update transaction
commits, it acquires a unique C'T timestamp and creates a new version of the
state of the transactional memory with this timestamp. Unlike in many other
systems, this counter is not incremented when a read-only transaction commits.
The goal is to improve the caching hit rate for this counter. We use CT as our
time base, that is, all times given in the following are given with respect to this
CT counter. For example, we denote the content of object o; at (commit) time
t, by of. Note that C'T is a simple integer counter.

A transaction T accesses a finite set of objects Or C O. We assume that ob-
jects are only accessed and modified within transactions. Hence, we can describe
a history of an object with respect to the global commit time CT'. The sequence
H;, = (vi1,... , Vi j,--.) denotes all the times at which updates to object o; are
committed by some update transactions. v;; is the time the object is created.
Sequence H; is strictly monotonically increasing, i.e., Vj < |H;| : v;; < vjj41.
To simplify our equations, we assume that the first element of H;, i.e., v is 0
(all objects are created at time zero) and the last element is oo if |H;| is finite.

We say that the version j of object o; (j < |H;|) is valid from v; ; to v; j11—1.
We call this the validity range and denote this by

RiJ' = [’Ui,j, Vi, 541 — 1].

A transaction T' might not use the most recent version of of an object o;
when accessing the object the first time at ¢. Instead an older version might be
used. Hence, for each object o; in transaction Or we denote the version of o; by
of, its version number by v; ., and its validity range by R; . (0}, v; «, and R; .
are specific to transaction T but, for simplicity, we do not make this explicit in
our terminology).

By |of] we denote the time of the most recent update of object o; performed
no later than time t, i.e., this update is still valid at global time ¢t. We define
|ot] as follows:

I_OH = V45 ‘ Vi, j <tAE< Vi, j4+1-

By [0!] we denote the time until which the version of object o; that is valid
at time ¢ remains valid:

(Oﬂ =V 541 — 1 | Vi j <tA Vi j+1 > t.

We define the walidity range Ry of a transaction T to be the time range
during which each of the objects accessed by T is valid. This is the intersection
of the validity ranges of the individual versions accessed by a transaction:

RT = moq‘,EOT Ri7*.

We say that the object versions accessed by transaction T', i.e., {0} |Vo; € Or}
are a consistent snapshot if the validity range Rp of T' is non-empty. Note that
because of the intersection, the object versions contained in a consistent snapshot
are always the most recent versions at any time ¢t € Ryp.

An update transaction T writes to a subset of the objects in Or. In our
implementation, writing to an object always includes reading the object. We
denote by Ur C Or the set of objects written to by 7'

3.2 Snapshot Construction

The main idea of LSA (see Algorithm 1) is to construct consistent snapshots on
the fly during the execution of a transaction and to—lazily—extend the validity
range on demand. By this, we can reach two goals. First, transactions working on
a consistent snapshot always read consistent data. Second, verifying that there
is an overlap between the snapshot’s validity range and the commit time of a
transaction can ensure linearizability (if that is desired). Note that LSA-STM
uses a lock-free implementation of LSA, whereas we assume sequential execution
for the pseudocode in Algorithm 1 for simplicity. We will first describe the basic
algorithm and then show that it is correct in Section 3.4.

Which objects are accessed by a transaction is determined during the exe-
cution of a transaction. The final R7 might not even be known at the commit
time of the transaction. We therefore maintain a preliminary validity range R'p..
When a transaction T is started, we set R/ to [CT, oo] (lines 2-3, min(R’) and
max(R’) denote the lower and upper bound of R’.). Note that R/, will never
assume a value smaller than the start time of 7.

When accessing the most recent version of o;, it is not yet known when this
version will be replaced by a new version. We therefore approximate R; . at
time ¢t by a preliminary range R, = R;. N [0,t] and we set the new range
to R N R}, (lines 18-19). During the execution of a transaction, time will
advance and thus the preliminary validity ranges might get longer. We can try
to extend R/, by recomputing max(R/.) (lines 14 and 29-37). Note that this is
not required for correctness—it only increases the chance that a suitable object
version is available.

Read accesses are optimistic and invisible to other transactions. LSA assumes
that a system always keeps the most recent version of an object. In addition, LSA
might also have access to some old versions (e.g., which have not yet been garbage
collected) that can be used to increase the probability to create a consistent
snapshot. When a transaction reads object o; at time t, LSA tries to select
the newest object version from H; that still exists and that keeps the snapshot
consistent, i.e., R’ non-empty.

If the most recent version of o; cannot be used because it was created after
R/, we might still read some older version whose validity range overlaps R/.. In
that case, we simply set the new range to R-N R;)* and we mark the transaction
as “closed” to indicate that it cannot be extended anymore (lines 21-23). If no
such version exists anymore, the transaction needs to be aborted. We omitted
this in the simplified pseudocode of LSA.

By construction of Ry, LSA guarantees that a transaction started at time ¢
has a snapshot that is valid at or after the transaction started, i.e., min(R/}.) > t.
Hence, a read-only transaction can commit iff it has used a consistent snapshot

(i.e., R/ is non-empty). The commit time CT is not increased when committing
a read-only transaction because nothing has been modified.

3.3 Update transactions

Informally, an update transaction 7" performs the following steps when commit-
ting: (1) acquire a unique commit time CTp from the CT time base (line 40),
(2) validate T' (lines 41-46), and (3) set T7s state to committed if the validation
was successful and to aborted otherwise (not shown). Update transactions can
only commit if their validity range and their unique commit time (i.e., the global
version that they are going to produce) overlap; in this case, the transaction is
atomic. This is checked during the validation step (i.e., (CTp—1) € R/.). There-
fore, accessed object versions must always be the most recent versions during
the transaction and the validity range must be “open”. If this is not possible,
the transaction is marked as aborted (lines 25 and 35) because it would not be
able to commit anyhow.

If it is possible to update a most recent version (i.e., R/, remains non-empty),
LSA atomically marks the object that it is writing (visible write, not shown in
Algorithm 1). When another transaction 7} tries to write o;, 71 will see the mark
and detect a conflict. In that case, one of the transactions might need to wait
or be aborted. This task is typically delegated to a contention manager [9], a
configurable module whose role is to determine which transaction is allowed to
progress upon conflict.

Setting the transaction’s state atomically commits—or discards in case of
an abort—all object versions written by the transaction and removes the write
markers on all written objects (as in DSTM [9]).

If a transaction reads from the most recent version of an object that is write-
marked by another transaction that has not yet committed, then the validity of
the most recent version of this object ends at CT (the current time); the updating
transaction cannot commit at a time earlier than C'T + 1. This allows the STM
to defer read-write conflicts to the commit time of the updating transaction,
which minimizes the duration of such conflicts and lets reading transactions run
unobstructed for a longer time.

For STMs that provide snapshot isolation [6], validation requires checking
that only all object versions written by T are still valid at C'T — 1. Since we use
visible writes, this check is performed implicitly because write/write conflicts
will result in one of the two conflicting transactions being aborted (or delayed)
by the contention manager.

3.4 Linearizability

We sketch that transactions executed by an STM in the way outlined previously
are linearizable.® To show this, we need to show that T takes effect atomically
in between the start of T" at time ¢ and its commit time CT7. We show that for

3 We do not consider snapshot isolation (SI) here.

Algorithm 1 Lazy Snapshot Algorithm (LSA)

1: procedure START(T)
T.min «— CT
T.max < o0
T.O — @

T.open < true
T.update < false
end procedure

8: procedure OPEN(T, 0;, m)
: if m = write then

10: T.update < true

11: end if

12: if [0ST] > T.max then

13: if T.update A T.open then

14: ExTEND(T)

15: end if

16: end if

17: if [0ST] < T.max then

18: T.min «— max(T.min, |07 |)
19: T.maz «— min(T.mazx, CT)

20: else if ~T.update A VersionAvailable(o? ™%®) then
21: T.open «— false

22: T.min «— max(T.min, [o] ™"])
23: T.maz + min(T.maz, [0l ™**7)
24: else

25: ABorr(T)

26: end if

27: T.0 —T.O0U{o;}

28: end procedure

29: procedure ExTeND(T)

30: T.max «— CT

31: for all 0; € T.O do

32: T.maz «— min(T.maz, max(R; ,))
33: end for

34: if T.max < CT A T.update then
35: ABORT(T)

36: end if

37: end procedure

38: procedure Commir(T)

39: if T.update then

40: CTr «— (CT «— CT + 1)

41: if T.max < CTr — 1 then

42: EXTEND(T)

43: if T.max < CTr — 1 then
44: ABORT(T)

45: end if

46: end if

47: end if

48: end procedure

> Initialize transaction attributes
> = min(R})

> = maxz(R7T)

> Set of objects accessed by T

> Can T still be extended?

> Is T an update transaction?

> T opens o; in mode m (read or write)

> Is most recent version too recent?
> Try to extend?

> Can we use the latest version?

> Yes, T remains open if it is still open

> No, T.maxz has reached its maximum

> Cannot maintain snapshot

> Access object

> Try to extend the validity range of T°

> Recompute the whole validity range

> Update transaction must access most recent versions

> Try to commit transaction

> Acquire T”’s unique commit time CTrp

> For update transactions, CTr and R'T must overlap

> T can now be safely committed

read-only transactions and then for update transactions. However, we introduce
some lemmas first.

By the construction of LSA, it is guaranteed that the lower bound of R/, is
always greater than or equal to the start time of transaction 7.

Lemma 1. For any transaction T with a non-empty R/, it is guaranteed that
min(R%.) is greater or equal to the start time of T

Since the preliminary validity range of an object is always bounded by the
current commit time, we know the following:

Lemma 2. The preliminary time interval of transaction T at time t (after T
has opened the first object) is at most t, i.e., max(R}.) < t.

Theorem 1. LSA guarantees that each read-only transaction T that started at
time ts and that commits between t. and before t. + 1 is linearizable.

Proof. T can only commit if its preliminary validity range R’ is non-empty when
T commits. We know from lemma 1 and 2 that R/ is a subset of [ts,¢t.]. This
means that T is executed atomically between its start and before 1" terminates.

Theorem 2. FEach update transaction T that started at time t, that commits at
time CTr, and that satisfy max(RY.) > CTr — 1, is linearizable.

Proof. On commit, LSA checks that (CTr—1) € R, (lines 41-46 in Algorithm 1)
and hence that all object versions that T accessed are still valid up to the time
CTr at which T' commits its changes. Since each transaction has a unique commit
time, no other transaction can commit at CTp. This means that, logically, T
reads all objects and commits all its updates atomically.

3.5 Extensions and global time

Validation is the bottleneck of STMs that use invisible reads. Whereas LSA
can verify validity for any commit time by trying to extend the validity range
to this time, other STMs usually verify the state at the time of validation.
One might expect that LSA needs to perform extension frequently when there
are concurrent updates that increase commit time fast. However, LSA is quite
independent of the speed in which concurrent transactions increase time: if there
are no concurrent updates to the objects that a transaction T accesses, the most
recent object versions are accessible and do not change. Thus, no extension is
required for obtaining a consistent read snapshot. If C'T" has been increased
concurrently and 7" is an update transaction, one extension from Ry to CTp —1
is needed. If concurrent updates are not disjoint, LSA will require at most one
extension per accessed object. However, this worst case should be very rare
in practice because it requires certain update patterns; for example, once an
already accessed object gets updated, Ry will be closed and there will be no
further extensions.

Furthermore, the number of required accesses to the commit time is small.
All transactions must read the current time when they are started. Update trans-
actions must additionally acquire a unique commit time. Further accesses are
not required for correctness. For example, if an update transactions needs to
access a most recent version, then it can extend to a time at which this version
was valid, but this time does not need to be the current time. Time information
gathered from the accessed objects can be used instead of the current time.

Although we evaluate LSA only on smaller systems (see Section 4), we believe
that the properties previously described as well as other mechanisms, such as
using multiple commit times to partition data, make it suitable even for larger
systems with higher communication costs.

4 Performance Evaluation

To evaluate the performance of our LSA-STM, we compared it with two other
implementations. The first one follows the design of SXM by Herlihy et al. [18],
an object-based STM with visible reads, with a few minor extensions. The sec-
ond follows the design of Eager ASTM by Marathe et al. as described in [13].
Henceforth, we shall call these STM implementations SXM and ASTM. All three
STMs are implemented using Java. Read operations in SXM are visible to other
threads, whereas they are invisible in ASTM and LSA-STM. All STM imple-
mentations guarantee that all objects read in a transaction always represent a
consistent view.

We executed all benchmarks on a system with four Xeon CPUs, hyperthread-
ing enabled (resulting in eight logical CPUs).* Results were obtained by execut-
ing eight runs of 10 seconds for every tested configuration and computing the
12.5%-trimmed mean, i.e., the mean of the six median values. All STMs use the
Karma [11] contention manager.

Overheads of validation and of a global commit time To highlight the
differences between STM designs that use visible and invisible reads, Figure 1
shows the mean CPU time required for reading a single object in read-only
transactions of different sizes. In this micro-benchmark, 8 threads read a given
number of objects. All transactions read the same objects (with the exception
of the SXM benchmark run with disjoint accesses) and there are no concurrent
updates to these objects. The fixed overhead of a transaction gets negligible
when the number of objects read during the transaction is high. SXM’s visible
reads have a higher overhead than LSA-STM’s invisible reads. This overhead
consists of the costs of the compare-and-swap (CAS) operation and possible

4 8GB of RAM, Sun’s Java Virtual Machine version 1.5.0 with default configuration
(server-mode, Parallel garbage collector), start and maximum heap size of 1GB. The
machine has a light background load that we cannot control. Executing with more
than 8 threads can give us a larger percentage of the CPUs and potentially a slight
speedup when increasing beyond 8 threads.

0.012 T T T T T T T
! LSA-STM —e—
Eager ASTM —-%—
i L SXM --—+--
E 001 SXM, disjoint accesses ---X--
% ‘ *
= > -
5 0008 i -
) N .
Q.
o
® 0.006
<
= |
o
o 0004 R
£
a2
% 0.002
0

Number of objects read by a transaction

Fig. 1. LSA-STM read overhead in comparison to (Eager) ASTM and SXM.

0.018 ¢ ' ' ' 'LSASTM ——
0.017 ST
0.016

0.015
0.014
0.013
0.012 |-
0.011 F

0.01
0.009
0.008 L L L

CPU time per write operation in ms

1 1
5 10 15 20 25 30
Number of objects written by a transaction

Fig. 2. LSA-STM write overhead.

cache misses and CAS failures if transactions on different CPUs add themselves
to the reader list of the same object. ASTM has to guarantee the consistency of
reads by validating all objects previously read in the transaction, which increases
the overhead of read operations when transactions get large. Note that, although
not shown here, ASTM transactions with only a single validate at the end of each
transaction perform very similar to LSA-STM. However, for these transactions,
consistency is not guaranteed during the execution of the transaction.
LSA-STM currently implements the global commit time CT as a shared
integer counter. SXM and ASTM do not need such a counter that could be-
come a source of contention if the rate of commits of update transactions is
high. Figure 2 shows the overhead of write operations in LSA-STM by means
of a micro-benchmark similar to the one used for Figure 1. However, now the
8 threads write to disjoint, thread-local objects. Acquiring timestamps induces
a small overhead, which, however, gets negligible when at least 10 objects are
written by a transaction. Furthermore, the overhead is smaller than the costs

Linked List, 20% writes

Linked List, 100% writes

25 T T T T T T 16 T T T T T T
SXM -—+-
14 RS ASTM -
20 R LSA-STM —&—
12 %
10
15
2
o 8
o
S 10
R 6
+..
e
o+ 4
5
2
— K== —- —X¥
,,.%’* * Koo — K %
0 ¥ 1 1 1 1 1 0 1 1 1]]]
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads
Skip List, 20% writes Skip List, 100% writes
180 T T T T T T 80
160 70
140 60
120
50
g 100
5 40
S 80
-
30
60
SXM -+-
40 20 Eager ASTM —%-
LSA-STM —&—
20 10 -
0 1 1 1 1 1 1 0 1 1 1 1 1 1
1 2 4 8 16 32 1 2 4 8 16 32

Threads Threads

Fig. 3. Throughput results for the linked list (top) and skip list (bottom) bench-
marks.

of a single write operation. Note, of course, that the results in Figure 1 and
Figure 2 are hardware-specific.

Throughput Figure 3 shows throughput results for two micro-benchmarks that
are often used to evaluate STM implementations, namely integer sets imple-
mented via sorted linked lists and skip lists. Each benchmark consists of read
transactions, which determine whether an element is in the set, and update
transactions, which either add or remove an element. The sets consist of ap-
proximately 250 elements during the benchmark runs. We do not release objects
early: although this would decreases the possibility of conflicts, it can mainly be
used in cases in which the access path to an object is known.

We use the linked list to conveniently model transactions in which a mod-
ification depends on a larger amount of data that might be modified by other
transactions.

For the skip list, STMs using invisible reads (ASTM and LSA-STM) show
good scalability and outperform SXM, which suffers from the contention on the

reader lists. However, the transactions in the linked list benchmark are quite large
(the integer sets contain 250 elements) and ASTMs validation is expensive. LSA-
STM, on the contrary, uses version information to compute the validity range
much faster and scales up well to the number of available CPUs.

In all previous benchmarks, we always configured LSA-STM to keep eight old
versions per object besides the most recent committed version. Keeping several
versions can typically increase the commit rate but also adds memory overhead.
In the following, we examine this problem further.

Object versions accessed In LSA-STM, references to object versions are
stored in both a “locator” structure associated with transactional objects and
an extra version array referenced by the locator. Like SXM and ASTM, LSA-
STM is an object-based STM based on the design of DSTM [9] and thus uses
locators to manage two object versions. However, whereas the other STMs use
one of these versions as the working copy modified by updating transactions and
the other version as a backup copy, LSA-STM can—because of LSA and validity
range information—Ilet reading transactions efficiently access the backup copy
when an update is happening (it is the the most recent version) and when the
working copy is committed (then the backup copy is the most recent old version).
Thus, LSA-STM can provide one or two consistent versions of the object with
the same space overhead. In the following, we denote accesses to the two versions
(primary and backup) managed by the locator as accesses to version 0 or version
1, respectively. The extra version array stores references to older versions (the
most recent version in the array has number 2).

Which object versions are accessed by a read-only transaction depends on
how objects are concurrently updated by other transactions. To investigate this,
we use a simple bank micro-benchmark, which consists of two transaction types:
(1) transfers, i.e., a withdrawal from one account followed by a deposit on another
account, and (2) computation of the aggregate balance of all accounts. Whereas
the former transaction is small and contains 2 read/write accesses, the latter is a
long transaction consisting only of read accesses (one per account and always in
account order). There are 1,000 accounts and 8 threads perform either transfers
or, with a 10% probability, balance computations.

Figure 4 shows access histograms of transactions computing the aggregate
balance. There are three benchmark modes: (1) no hotspots, that is, update
probability is equal for all accounts, (2) hotspots are encountered early during
aggregate-balance computation, and (3) late hotspots. Hotspots are modeled by
making the probability of updates to the first or last 50 accounts (accessed early
or late, respectively) as probable as updates to other accounts.

In Figure 4, we can see how different update frequencies affect LSA’s version
selection (note the logarithmic scale). First, we observe that most accesses are
performed to recent versions. When there are no hotspots, eight old versions are
sufficient. When hotspots are encountered early during the runtime of a trans-
action, subsequent accesses will use even more recent object versions, because
the relative update frequency of objects accessed late is smaller. In contrast, if

1e+09 45 .
F Bank, early hotspot C——— 20 - 8 old versions mm—m |
1e+08 Bank, no hotspots —=——= 1 old version ——
o 1le+07 - Bank, late hotspot C=—==1 35 | no old versions — |
@ F nf
2 1e+06 | , 30
Q [=
& 100000 E Z 25
S o
S 10000 S 20
8 [S
= 1000 2 15
2 100 F 10
10 F ¢ H 5
C | [] sl REE] 0
0 1 2 3 4 5 6 7 8 9 early none late early none late

threads 32 threads

Obiject version index (0O=most recent)

Fig. 4. Object versions accessed by bal- Fig. 5. Throughput results: versions

ance computation transactions. kept per object, Bank with early, no,
or late hotspots.

hotspots are encountered late, the transaction has to use older versions if one of
the objects accessed early has been updated, which lets the validity range become
closed. Thus, the probability that an old version will be useful increases with
the size of the transactions and when hotspots happen late in their execution.

Throughput when keeping fewer old versions Figure 5 shows the through-
put of the bank application when LSA-STM is configured to keep an extra version
array with eight or one version, or no extra versions at all besides the versions
0 and 1 in the locator.

We can observe that keeping old versions can be beneficial, especially if
hotspots are encountered late. However, the figure shows as well that through-
put can increase if there are less versions. We will address this problem in future
work.

Linked List Skip List
40 250
8 old versions I 8 old versions I
3B 1 old version N 1 old version
30 L no old versions —— _| 200 - no old versions ——=]|
§ 25 I 1 150 - -
g 20 [~ -
S5 N - 1001 7
10 |- R -
- 50 -
A il il 1]
20% 100% 20% 100% 20% 100% 20% 100%
8 threads 32 threads 8 threads 32 threads

Fig. 6. Throughput results: versions kept per object, Integer Sets with 20% and
100% updates.

Figure 6 shows throughput results for the linked list and skip list benchmarks,
with 20% or 100% update transactions and 8 or 32 threads. The skip list is mostly
unaffected by the number of old versions available, or benefits only slightly from
old versions. On the contrary, fewer versions increase the throughput of the
linked list significantly. Using old versions will close the validity range, which is
disadvantageous for transactions that become update transactions after reading
a lot of objects (we assume that the type of a transaction is not known a priori).
Nevertheless, we have focused our study on eight extra versions because this
solution adapts well to various workloads. Adaptive version selection strategies
might be able to increase the throughput further.

Even without any extra versions, and thus with the same space overhead as
SXM or ASTM, LSA-STM is able to provide high throughput thanks to LSA
and up to two consistent versions being available for reading transactions.

Validity range extensions The number of validity range extensions is very
small in all of our benchmarks (not shown because of space limitations). The vast
majority of transactions uses less than two to four extensions, depending on the
transactions. In general, it can be observed that committed read-only transaction
mostly use no or a single extension, whereas aborted read-only transactions
often use at least one extension but seldom more. This is not surprising because
high numbers of extensions can essentially be caused by scenarios in which (1)
the update frequencies of objects accessed late during the transactions runtime
are higher than those of objects accessed earlier, or (2) updates always happen
immediately prior to accesses. For example, a single transition from non-hotspot
to hotspot access patterns, as takes place in the benchmark, does not cause a lot
of extensions. In the bank benchmark, read-only transactions almost never use
extensions. In the linked list benchmark, however, almost all aborted read-only
transactions use a single extension.

Update transactions behave as expected: the number of extensions for ob-
taining a snapshot is similar to that of read-only transaction, plus at most one
extension per object update and at most one per commit. For example, less than
1% of the transfer transactions require an extension at all.

5 Conclusion

We introduced a lazy snapshot algorithm that creates consistent snapshots on the
fly and can be used by STMs for read-only and update transactions. It is efficient
both theoretically and practically. The idea is to maintain, for each transaction,
a validity range based on global time. This range is sufficient to decide if a
snapshot is consistent and transactions using this snapshot are linearizable. The
snapshots are created in such a way that their freshness is maximized, e.g., a
snapshot might actually become valid at a time after the snapshot is started.
One issue is that the validity range of some of the objects is not known at the
time the snapshot is created. This might require, in some cases, an ezxtension of
the preliminary validity range.

Acknowledgements. We thank the anonymous reviewers for their comments.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of PODC.

(1995)

Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming. (2006)

Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing Memory Transactions.
In: PLDI ’06: ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation. (2006)

Dice, D., Shavit, N.: What really makes transactions fast? In: TRANSACT. (2006)
Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3) (1990) 463-492

Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional
memory. In: TRANSACTO06. (2006)

Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. In: Proceedings of SIGMOD. (1995) 1-10

Harris, T., Fraser, K.: Language support for lightweight transactions. In: Proceed-
ings of OOPSLA. (2003) 388-402

Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.: Software transactional
memory for dynamic-sized data structures. In: Proceedings of PODC. (2003)
Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: Proceedings of the 23rd IEEE International
Conference on Distributed Computing Systems. (2003)

Scherer ITI, W.N., Scott, M.L.: Contention management in dynamic software trans-
actional memory. In: Proceedings of the PODC Workshop on Concurrency and
Synchronization in Java Programs. (2004)

Scherer ITI, W., Scott, M.: Advanced contention management for dynamic software
transactional memory. In: Proceedings of PODC. (2005)

Marathe, V.J., III, W.N.S., Scott, M.L.: Adaptive software transactional memory.
In: Proceedings of DISC. (2005) 354-368

Cole, C., Herlihy, M.: Snapshots and software transactional memory. Science of
Computer Programming (2005)

Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: 20th International
Symposium on Distributed Computing (DISC). (2006)

Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
In: Proceedings of SCOOL. (2005)

Lu, S., Bernstein, A., Lewis, P.: Correct execution of transactions at different
isolation levels. ITEEE Transactions on Knowledge and Data Engineering 16(9)
(2004) 10701081

Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management. In:
Proceedings of DISC. (2005)

