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The computotionol power of massively parallel networks of simple processing 

elements resides in the communication bandwidth provided by the hardware 

connections between elements. These connections con allow a significant 

fraction of the knowledge of the system to be applied to an instance of a prob- 

lem in o very short time. One kind of computation for which massively porollel 

networks appear to be well suited is large constraint satisfaction searches, 

but to use the connections efficiently two conditions must be met: First, a 

search technique that is suitable for parallel networks must be found. Second, 

there must be some way of choosing internal representations which allow the 

preexisting hardware connections to be used efficiently for encoding the con- 

straints in the domain being searched. We describe a generol parallel search 

method, based on statistical mechanics, and we show how it leads to a gen- 

eral learning rule for modifying the connection strengths so as to incorporate 

knowledge obout o task domain in on efficient way. We describe some simple 

examples in which the learning algorithm creates internal representations 

thot ore demonstrobly the most efficient way of using the preexisting connec- 

tivity structure. 

1. INTRODUCTION 

Evidence about the architecture of the brain and the potential of the new 
VLSI technology have led to a resurgence of interest in “connectionist” sys- 
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terns (Feldman & Ballard, 1982; Hinton & Anderson, 1981) that store their 
long-term knowledge as the strengths of the connections between simple 

neuron-like processing elements. These networks are clearly suited to tasks 
like vision that can be performed efficiently in parallel networks which have 
physical connections in just the places where processes need to communicate. 
For problems like surface interpolation from sparse depth data (Crimson, 
1981; Terzopoulos, 1984) where the necessary decision units and communi- 
cation paths can be determined in advance, it is relatively easy to see how to 
make good use of massive parallelism. The more difficult problem is to dis- 
cover parallel organizations that do not require so much problem-dependent 
information to be built into the architecture of the network. Ideally, such a 
system would adapt a given structure of processors and communication 
paths to whatever problem it was faced with. 

This paper presents a type of parallel constraint satisfaction network 
which we call a “Boltzmann Machine” that is capable of learning the under- 
lying constraints that characterize a domain simply by being shown exam- 
ples from the domain. The network modifies the strengths of its connections 
so as to construct an internal generarive model that produces examples with 
the same probability distribution as the examples it is shown. Then, when 
shown any particular example, the network can “interpret” it by finding 
values of the variables in the internal model that would generate the exam- 

ple. When shown a partial example, the network can complete it by finding 
internal variable values that generate the partial example and using them to 
generate the remainder. At present, we have an interesting mathematical 
result that guarantees that a certain learning procedure will build internal 
representations which allow the connection strengths to capture the under- 

lying constraints that are implicit in a large ensemble of examples taken 
from a domain. We also have simulations which show that the theory works 
for some simple cases, but the current version of the learning algorithm is 
very slow. 

The search for general principles that allow parallel networks to learn 
the structure of their environment has often begun with the assumption that 
networks are randomly wired. This seems to us to be just as wrong as the 
view that all knowledge is innate. If there are connectivity structures that 
are good for particular tasks that the network will have to perform, it is 
much more efficient to build these in at the start. However, not all tasks can 
be foreseen, and even for ones that can, fine-tuning may still be helpful. 

Another common belief is that a general connectionist learning rule 
would make sequential “rule-based” models unnecessary. We believe that 
this view stems from a misunderstanding of the need for multiple levels of 
description of large systems, which can be usefully viewed as either parallel 

or serial depending on the grain of the analysis. ,Most of the key issues and 
questions that have been studied in the context of sequential models do not 
magically disappear in connectionist models. It is still necessary to perform 
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searches for good solutions to problems or good interpretations of percep- 
tual input, and to create complex internal representations. Ultimately it will 
be necessary to bridge the gap between hardware-oriented connectionist 
descriptions and the more abstract symbol manipulation models that have 
proved to be an extremely powerful and pervasive way of describing human 
information processing (Newell & Simon, 1972). 

2. THE BOLTZMANN MACHINE 

The Boltzmann Machine is a parallel computational organization that is 
well suited to constraint satisfaction tasks involving large numbers of 
“weak” constraints. Constraint-satisfaction searches (e.g., Waltz, 1975; 
Winston, 1984) normally use “strong” constraints that tnusl be satisfied by 

any solution. In problem domains such as games and puzzles, for example, 
the goal criteria often have this character, so strong constraints are the rule.’ 
In some problem domains, such as finding the most plausible interpretation 
of an image, many of the criteria are not all-or-none, and frequently even 
the best possible solution violates some constraints (Hinton, 1977). A varia- 
tion that is more appropriate for such domains uses weak constraints that 
incur a cost when violated. The quality of a solution is then determined by 
the total cost of all the constraints that it violates. In a perceptual interpre- 
tation task, for example, this total cost should reflect the implausibility of 
the interpretation. 

The machine is composed of primitive computing elements called unifs 
that are connected to each other by bidirectional links. A unit is always in 

one of two states, on or off, and it adopts these states as a probabilistic 
function of the states of its neighboring units and the weighfs on its links to 
them. The weights can take on real values of either sign. A unit being on or 
off is taken to mean that the system currently accepts or rejects some ele- 
mental hypothesis about the domain. The weight on a link represents a weak 

pairwise constraint between two hypotheses. A positive weight indicates 
that the two hypotheses tend to support one another; if one is currently ac- 
cepted, accepting the other should be more likely. Conversely, a negative 
weight suggests, other things being equal, that the two hypotheses should 
not both be accepted. Link weights are symmetric, having the same strength 
in both directions (Hinton & Sejnowski, 1983).’ 

’ But, see (Berliner & Ackley, 1982) for argument that, even in such domains, strong 

constraints must be used only where absolutely necessary for legal play, and in particular must 

not propagate into the determination of good play. 

2 Requiring the weights to be symmetric may seem IO restrict the constraints that can be 

represented. Although a constraint on boolean variables A and B such as “A = B with a penalty 

of 2 points for violation” is obviously symmetric in A and B, “A =>f3 with a penalty of 2 

points for violation” appears to be fundamentally asymmetric. Nevertheless, this constraint 

can be represented by the combination of a constraint on A alone and a symmetric pairwise 

constraint as follows: “Lose 2 points if A is true” and “Win 2 points if both A and E are true.” 
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The resulting structure is related to a system described by Hopfield 
(1982), and as in his system, each global state of the network can be assigned 
a single number called the “energy” of that state. With the right assump- 
tions, the individual units can be made to act so as to minimize fhe global 

energy. If some of the units are externally forced or “clamped” into partic- 
ular states to represent a particular input, the system will then find the mini- 
mum energy configuration that is compatible with that input. The energy of 
a configuration can be interpreted as the extent to which that combination 
of hypotheses violates the constraints implicit in the problem domain, so in 
minimizing energy the system evolves towards “interpretations” of that in- 

put that increasingly satisfy the constraints of the problem domain. 
The energy of a global configuration is defined as 

E= -,Z,w,s,s,+CB,s, (1) 

where w,, is the strength of connection between units i andj, S, is 1 if unit i is 
on and 0 otherwise, and Bi is a threshold. 

2.1 Minimizing Energy 

A simple algorithm for finding a combination of truth values that is a local 
minimum is to switch each hypothesis into whichever of its two states yields 
the lower total energy given the current states of the other hypotheses. If 
hardware units make their decisions asynchronously, and if transmission 
times are negligible, then the system always settles into a local energy mini- 
mum (Hopfield, 1982). Because the connections are symmetric, the differ- 
ence between the energy of the whole system with the krh hypothesis rejected 
and its energy with the kfh hypothesis accepted can be determined locally by 
the k’h unit, and this “energy gap” is just 

Therefore, the rule for minimizing the energy contributed by a unit is 
to adopt the on state if its total input from the other units and from outside 
the system exceeds its threshold. This is the familiar rule for binary thresh- 
old units. 

The threshold terms can be eliminated from Eqs. (1) and (2) by making 
the following observation: the effect of Bi on the global energy or on the 
energy gap of an individual unit is identical to the effect of a link with strength 
- Bi between unit i and a special unit that is by definition always held in the 
on state. This “true unit” need have no physical reality, but it simplifies the 
computations by allowing the threshold of a unit to be treated in the same 
manner as the links. The value - 0, is called the bias of unit i. If a perma- 
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nently active “true unit” is assumed to be part of every network, then Eqs. 
(1) and (2) can be written as: 

E = - i$j w;, si s, 

AE~=cw~i.si 

2.2 Using Noise to Escape from Local Minima 

The simple, deterministic algorithm suffers from the standard weakness of 
gradient descent methods: It gets stuck in local minima that are not globally 
optimal. This is not a problem in Hopfield’s system because the local energy 
minima of his network are used to store “items”: If the system is started 
near some local minimum, the desired behavior is to fall into that minimum, 
not to find the global minimum. For constraint satisfaction tasks, however, 
the system must try to escape from local minima in order to find the con- 
figuration that is the global minimum given the current input. 

A simple way to get out of local minima is to occasionally allow jumps 
to configurations of higher energy. An algorithm with this property was in- 
troduced by Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1953) to 
study average properties of thermodynamic systems (Binder, 1978) and has 
recently been applied to problems of constraint satisfaction (Kirkpatrick, 
Gelatt, & Vecchi, 1983). We adopt a form of the Metroplis algorithm that is 
suitable for parallel computation: If the energy gap between the on and off 
states of the klh unit is AE, then regardless of the previous state sets* = 1 with 
probability 

1 
p*= 

(1 + PQ’r) 
(5) 

where T is a parameter that acts like temperature (see Figure 1). 

Figure 1. Eq. (5) at T= 1 .O (solid), T=4.0 (dashed), and T=0.25 (dotfed). 
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The decision rule in Eq. (5) is the same as that for a particle which has 
two energy states. A system of such particles in contact with a heat bath at a 
given temperature will eventually reach thermal equilibrium and the proba- 
bility of finding the system in any global state will then obey a Boltzmann 
distribution. Similarly, a network of units obeying this decision rule will 
eventually reach “thermal equilibrium” and the relative probability of two 

global states will follow the Boltzman distribution: 

(6) 

where P, is the probability of being in the CI’~ global state, and E, is the 
energy of that state. 

The Boltzmann distribution has some beautiful mathematical proper- 
ties and it is intimately related to information theory. In particular, the dif- 
ference in the log probabilities of two global states is just their energy differ- 
ence (at a temperature of I). The simplicity of this relationship and the fact 
that the equilibrium distribution is independent of the path followed in 
reaching equilibrium are what make Boltzmann machines interesting. 

At low temperatures there is a strong bias in favor of states with low 
energy, but the time required to reach equilibrium may be long. At higher 
temperatures the bias is not so favorable but equilibrium is reached faster. 
A good way to beat this trade-off is to start at a high temperature and grad- 
ually reduce it. This corresponds to annealing a physical system (Kirkpatrick, 
Gelatt, & Vecchi, 1983). At high temperatures, the network will ignore small 
energy differences and will rapidly approach equilibrium. In doing so, it will 
perform a search of the coarse overall structure of the space of global states, 
and will find a good minimum at that coarse level. As the temperature is 

lowered, it will begin to respond to smaller energy differences and will find 
one of the better minima within the coarse-scale minimum it discovered at 
high temperature. Kirkpatrick et al. have shown that this way of searching 
the coarse structure before the fine is very effective for combinatorial prob- 
lems like graph partitioning, and we believe it will also prove useful when 
trying to satisfy multiple weak constraints, even though it will clearly fail in 
cases where the best solution corresponds to a minimum that is deep, nar- 
row, and isolated. 

3. A LEARNING ALGORITHM 

Perhaps the most interesting aspect of the Boltzmann Machine formulation 
is that it leads to a domain-independent learning algorithm that modifies the 
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connection strengths between units in such a way that the whole network 
develops an internal model which captures the underlying structure of its 
environment. There has been a long history of failure in the search for such 
algorithms (Newell, 1982), and many people (particularly in Artificial In- 
telligence) now believe that no such algorithms exist. The major technical 
stumbling block which prevented the generalization of simple learning 
algorithms to more complex networks was this: To be capable of interesting 
computations, a network must contain nonlinear elements that are not 
directly constrained by the input, and when such a network does the wrong 
thing it appears to be impossible to decide which of the many connection 
strengths is at fault. This “credit-assignment” problem was what led to the 
demise of perceptrons (Minsky & Papert, 1968; Rosenblatt, 1961). The 
perceptron convergence theorem guarantees that the weights of a single 
layer of decision units can be trained, but it could not be generalized to net- 
works of such units when the task did not directly specify how to use all the 
units in the network. 

This version of the credit-assignment problem can be solved within the 
Boltzmann Machine formulation. By using the right stochastic decision 
rule, and by running the network until it reaches “thermal equilibrium” at 

some finite temperature, we achieve a mathematically simple relationship 
between the probability of a global state and its energy. For a network that 
is running freely without any input from the environment, this relationship 
is given by Eq. (6). Because the energy is a liueur function of the weights 
(Eq. 1) this leads to a remarkably simple relationship between the log proba- 
bilities of global states and the individual connection strengths: 

a In P,, 

a M’,, 
= +.m - PiI 

where s: is the state of the ifh unit in the & global state (so .c’:s;’ is 1 only if 
units i andj are both on in state CY), and p,; is just the probability of finding 
the two units i andj on at the same time when the system is at equilibrium. 

Given Eq. (7). it is possible to manipulate the log probabilities of global 
states. If the environment directly specifies the required probabilities P, for 
each global state (Y, there is a straightforward way of converging on a set of 
weights that achieve those probabilities, provided any such set exists (for 
details, see Hinton & Sejnowski, 1983a). However, this is not a particularly 
interesting kind of learning because the system has to be given the required 

probabilities of co/up/e/e global states. This means that the central question 
of what internal representation should be used has already been decided by 
the environment. The interesting problem arises when the environment im- 
plicitly contains high-order constraints and the network must choose inter- 
nal representations that allow these constraints to be expressed efficiently. 
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3.1 Modeling the Underlying Structure of an Environment 

The units of a Boltzmann Machine partition into two functional groups, a 
nonempty set of visible units and a possibly empty set of hidden units. The 
visible units are the interface between the network and the environment; 
during training all the visible units are clamped into specific states by the 
environment; when testing for completion ability, any subset of the visible 
units may be clamped. The hidden units, if any, are never clamped by the 
environment and can be used to “explain” underlying constraints in the en- 
semble of input vectors that cannot be represented by pairwise constraints 
among the visible units. A hidden unit would be needed, for example, if the 
environment demanded that the states of three visible units should have 
even parity-a regularity that cannot be enforced by pairwise interactions 
alone. Using hidden units to represent more complex hypotheses about the 
states of the visible units, such higher-order constraints among the visible 
units can be reduced to first and second-order constraints among the whole 
set of units. 

We assume that each of the environmental input vectors persists for 
long enough to allow the network to approach thermal equilibrium, and we 
ignore any structure that may exist in the sequence of environmental vec- 
tors. The structure of an environment can then be specified by giving the 
probability distribution over all 2” states of the v visible units. The network 
will be said to have a perfect model of the environment if it achieves exactly 
the same probability distribution over these 2” states when it is running freely 
at thermal equilibrium with all units unclamped so there is no environmental 
input. 

Unless the number of hidden units is exponentially large compared to 
the number of visible units, it will be impossible to achieve a perfecf model 
because even if the network is totally connected the (v+ h - l)(v+h)/2 
weights and (v + h) biases among the v visible and h hidden units will be 
insufficient to model the 2” probabilities of the states of the visible units spe- 
cified by the environment. However, if there are regularities in the environ- 
ment, and if the network uses its hidden units to capture these regularities, it 
may achieve a good match to the environmental probabilities. 

An information-theoretic measure of the discrepancy between the net- 
work’s internal model and the environment is 

G=CP(V,) In 35L 
OI P’(K) 

where P(V,) is the probability of the efh state of the visible units when their 
states are determined by the environment, andP’(V,) is the corresponding 
probability when the network is running freely with no environmental in- 
put. The G metric, sometimes called the asymmetric divergence or informa- 
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tion gain (Kullback, 1959; Renyi, 1962), is a measure of the distance from 
the distribution given by the P’(V,) to the distribution given by the P(VJ. 
G is zero if and only if the distributions are identical; otherwise it is positive. 

The term P’(VJ depends on the weights, and so G can be altered by 
changing them. To perform gradient descent in G, it is necessary to know 
the partial derivative of G with respect to each individual weight. In most 
cross-coupled nonlinear networks it is very hard to derive this quantity, but 
because of the simple relationships that hold at thermal equilibrium, the 
partial derivative of G is straightforward to derive for our networks. The 
probabilities of global states are determined by their energies (Eq. 6) and the 
energies are determined by the weights (Eq. 1). Using these equations the 
partial derivative of G (see the appendix) is: 

ac -= 
a wij 

- f@G, - PJ 

where pij is the average probability of two units both being in the on state 
when the environment is clamping the states of the visible units, and pi:, as 
in Eq. (7), is the corresponding probability when the environmental input is 
not present and the network is running freely. (Both these probabilities must 
be measured at equilibrium.) Note the similarity between this equation and 
Eq. (7), which shows how changing a weight affects the log probability of a 
single state. 

To minimize G, it is therefore sufficient to observe pi, and pi; when the 
network is at thermal equilibrium, and to change each weight by an amount 
proportional to the difference between these two probabilities: 

A W<j = c@<, - pi;) (10) 

where e scales the size of each weight change. 
A surprising feature of this rule is that it uses only local/y available 

information. The change in a weight depends only on the behavior of the 
two units it connects, even though the change optimizes a global measure, 
and the best value for each weight depends on the values of all the other 
weights. If there are no hidden units, it can be shown that G-space is con- 
cave (when viewed from above) so that simple gradient descent will not get 
trapped at poor local minima. With hidden units, however, there can be 
local minima that correspond to different ways of using the hidden units to 
represent the higher-order constraints that are implicit in the probability 
distribution of environmental vectors. Some techniques for handling these 
more complex G-spaces are discussed in the next section. 

Once G has been minimized the network will have captured as well as 
possible the regularities in the environment, and these regularities will be en- 
forced when performing completion. An alternative view is that the net- 
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work, in minimizing G, is finding the set of weights that is most likely to 
have generated the set of environmental vectors. It can be shown that maxi- 
mizing this likelihood is mathematically equivalent to minimizing G (Peter 
Brown, personal communication, 1983). 

3.2 Controlling the Learning 

There are a number of free parameters and possible variations in the learn- 
ing algorithm presented above. As well as the size of e, which determines the 
size of each step taken for gradient descent, the lengths of time over which 
p,, and ,n,J are estimated have a significant impact on the learning process. 

The values employed for the simulations presented here were selected pri- 
marily on the basis of empirical observations. 

A practical system which estimates p,, and p,; will necessarily have 
some noise in the estimates, leading to occasional “uphill steps” in the value 
of G. Since hidden units in a network can create local minima in G, this is 
not necessarily a liability. The effect of the noise in the estimates can be 
reduced, if desired, by using a small value for E or by collecting statistics for 
a longer time, and so it is relatively easy to implement an annealing search 
for the minimum of G. 

The objective function G is a metric that specifies how well two proba- 
bility distributions match. Problems arise if an environment specifies that 
only a small subset of the possible patterns over the visible units ever occur. 
By default, the unmentioned patterns must occur with probability zero, and 
the only way a Boltzmann Machine running at a non-zero temperature can 
guarantee that certain configurations never occur is to give those configura- 
tions infinitely high energy, which requires infinitely large weights. 

One way to avoid this implicit demand for infinite weights is to occa- 
sionally provide “noisy ” input vectors. This can be done by filtering the 
“correct” input vectors through a process that has a small probability of 
reversing each of the bits. These noisy vectors are then clamped on the visi- 
ble units. If the noise is small, the correct vectors will dominate the 
statistics, but every vector will have some chance of occurring and so in- 
finite energies will not be needed. This “noisy clamping” technique was 
used for all the examples presented here. It works quite well, but we are not 
entirely satisfied with it and have been investigating other methods of pre- 
venting the weights from growing too large when only a few of the possible 
input vectors ever occur. 

The simulations presented in the next section employed a modification 
of the obvious steepest descent method implied by Eq. (10). Instead of chang- 

ing w,, by an amount proportional to pij -pi;, it is simply incremented by a 
fixed “weight-step” if pv>pi; and decremented by the same amount if pijc 
PJ. The advantage of this method over steepest descent is that it can cope 
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with wide variations in the first and second derivatives of G. It can make 
significant progress on dimensions where G changes gently without taking 
very large divergent steps on dimensions where G falls rapidly and then rises 
rapidly again. There is no suitable value for the E in Eq. (10) in such cases. 
Any value large enough to allow progress along the gently sloping floor of a 
ravine will cause divergent oscillations up and down the steep sides of the 
ravine.’ 

4. THE ENCODER PROBLEM 

The “encoder problem” (suggested to us by Sanjaya Addanki) is a simple 
abstraction of the recurring task of communicating information among var- 
ious components of a parallel network. We have used this problem to test 

out the learning algorithm because it is clear what the optimal solution is 
like and it is nontrivial to discover it. Two groups of visible units, desig- 
nated V, and V-,, represent two systems that wish to communicate their 
states. Each group has v units. In the simple formulation we consider here, 
each group has only one unit on at a time, so there are only v different states 
of each group. I’, and VJ are not connected directly but both are connected 
to a group of h hidden units H, with h < v so H may act as a limited capacity 
bottleneck through which information about the states of V, and Vz must be 
squeezed. Since all simulations began with all weights set to zero, finding a 
solution to such a problem requires that the two visible groups come to 
agree upon the meanings of a set of codes without any a priori conventions 

for communication through H. 
To permit perfect communication between the visible groups, it must 

be the case that h 1 /og,v. We investigated minimal cases in which h = log,v, 

and cases when h was somewhat larger than log,v. In all cases, the environ- 
ment for the network consisted of v equiprobable vectors of length 2v which 
specified that one unit in V, and the corresponding unit in V, should be on 
together with all other units off. Each visible group is completely connected 

internally and each is completely connected to H, but the units in Hare not 
connected to each other. 

Because of the severe speed limitation of simulation on a sequential 
machine, and because the learning requires many annealings, we have 

primarily experimented with small versions of the encoder problem. For ex- 
ample, Figure 2 shows a good solution to a “4-2-4” encoder problem in 

’ The problem of finding a suitable value for t disappears if one performs a line search 

for the lowest value of G along the current direction of steepest descent, but line searches are 

inapplicable in this case. Only the local gradient is available. There are bounds on the second 

derivative that can be used to pick conservative values of e (Mark Derthick. personal communi- 

cation, 1984), and methods of this kind are currently under investigation. 
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Figure 2. A solution to an encoder problem. The link weights are displayed using a recur- 

sive notation. Each unit is represented by a shaded l-shaped box; from top to bottom the 

rows of boxes represent groups V,, H. and V,. Each shaded box is o mop of the entire net- 

work, showing the strengths of that unit’s connections to other units. At each position in o 

box, the size of the white (positive) or block (negative) rectangle indicates the magnitude of 

the weight. In the position that would correspond to o unit connecting to itself (the second 

position in the top row of the second unit in the top row, for example). the bias is displayed. 

All connections between units appear twice in the diagram, once in the box for each of the 

two units being connected. For example, the black square in the top right corner of the left- 

most unit of V, represents the same connection OS the block square in the top left corner of 

the rightmost unit of V,. This connection has a weight of -30. 

which v = 4 and h = 2. The interconnections between the visible groups and 
H have developed a binary coding-each visible unit causes a different pat- 
tern of on and off states in the units of If, and corresponding units in V, 
and V, support identical patterns in H. Note how the bias of the second unit 
of V, and VJ is positive to compensate for the fact that the code which repre- 
sents that unit has all the H units turned off. 

4.1. The 4-2-4 Encoder 

The experiments on networks with v = 4 and h = 2 were performed using the 
following learning cycle: 

1. Esfimation of p,j: Each environmental vector in turn was clamped 
over the visible units. For each environmental vector, the network 
was allowed to reach equilibrium twice. Statistics about how often 
pairs of units were both on together were gathered at equilibrium. 
To prevent the weights from growing too large we used the “noisy” 
clamping technique described in Section 3.2. Each on bit of a 
clamped vector was set to off with a probability of 0.15 and each 
off bit was set to on with a probability of 0.05. 

2. Estimation of p,;: The network was completely unclamped and 
allowed to reach equilibrium at a temperature of 10. Statistics about 
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co-occurrences were then gathered for as many annealings as were 
used to estimate p,j. 

3. Updaring the weigh&: All weights in the network were incremented 
or decremented by a fixed weight-step of 2, with the sign of the in- 
crement being determined by the sign of p,, -p,,J. 

When a settling to equilibrium was required, all the unclamped units were 
randomized with equal probability on or off (corresponding to raising the 
temperature to infinity), and then the network was allowed to run for the 
following times at the following temperatures: [2@20, 2@ 15,2@ 12,4@ lo].,’ 
After this annealing schedule it was assumed that the network had reached 
equilibrium, and statistics were collected at a temperature of 10 for 10 units 

of time. 
We observed three main phases in the search for the global minimum of 

G, and found that the occurrence of these phases was relatively insensitive to 
the precise parameters used. The first phase begins with all the weights set to 
zero, and is characterized by the development of negative weights throughout 
most of the network, implementing two winner-take-all networks that model 
the simplest aspect of the environmental structure-only one unit in each visi- 
ble group is normally active at a time. In a 4-2-4 encoder, for example, the 
number of possible patterns over the visible units is 28. By implementing a 
winner-take-all network among each group of four this can be reduced to 4 x 4 
low energy patterns. Only the final reduction from 2’ to 2’ low energy pat- 

terns requires the hidden units to be used for communicating between the two 
visible groups. Figure 3a shows a 4-2-4 encoder network after four learning 
cycles. 

Although the hidden units are exploited for inhibition in the first phase, 
the lateral inhibition task can be handled by the connections within the visible 
groups alone. In the second phase, the hidden units begin to develop positive 
weights to some of the units in the visible groups, and they tend to maintain 
symmetry between the sign and approximate magnitude of a connection to a 
unit in V, and the corresponding unit in V2. The second phase finishes when 
every hidden unit has significant connection weights to each unit in V, and 
analogous weights to each unit in V,, and most of the different codes are 
being used, but there are some codes that are used more than once and some 
not at all. Figure 3b shows the same network after 60 learning cycles. 

Occasionally, all the codes are being used at the end of the second 
phase in which case the problem is solved. Usually, however, there is a third 
and longest phase during which the learning algorithm sorts out the remain- 

ing conflicts and finds a global minimum. There are two basic mechanisms 

’ One unit of time is defined as the time required for each unit to be given, on average, one 

chance to change its state. This means that if there are n unclamped units, a time period of I in- 

volves n random probes in which some unit is given a chance 10 change its stale. 
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involved in the sorting out process. Consider the conflict between the first 
and fourth units in Figure 3b, which are both employing the code < -, + >. 
When the system is running without environmental input, the two units will 
be on together quite frequently. Consequently, ,D,‘~ will be higher than P,,~ 
because the environmental input tends to prevent the two units from being 

on together. Hence, the learning algorithm keeps decreasing the weight of 
the connection between the first and fourth units in each group, and they 
come to inhibit each other strongly. (This effect explains the variations in 
inhibitory weights in Figure 2. Visible units with similar codes are the ones 

that inhibit each other strongly.) Visible units thus compete for “territory” 
in the space of possible codes, and this repulsion effect causes codes to 
migrate away from similar neighbors. In addition to the repulsion effect, we 
observed another process that tends to eventually bring the unused codes 
adjacent (in terms of hamming distance) to codes that are involved in a con- 
flict. The mechanics of this process are somewhat subtle and we do not take 
the time to expand on them here. 

The third phase finishes when all the codes are being used, and the 
weights then tend to increase so that the solution locks in and remains stable 
against the fluctuations caused by random variations in the co-occurrence 
statistics. (Figure 2 is the same network shown in Figure 3, after 120 learn- 
ing cycles.) 

In 250 different tests of the 4-2-4 encoder, it always found one of the 
global minima, and once there it remained there. The median time required 
to discover four different codes was I10 learning cycles. The longest time 
was 18 10 learning cycles. 

4.2. The 4-3-4 Encoder 

A variation on the binary encoder problem is to give H more units than are 
absolutely necessary for encoding the patterns in V, and V.. A simple exam- 
ple is the 4-3-4 encoder which was run with the same parameters as the 4-2-4 
encoder. In this case the learning algorithm quickly finds four different 
codes. Then it always goes on to modify the codes so that they are optimally 
spaced out and no pair differ by only a single bit, as shown in Figure 4. The 
median time to find four well-spaced codes was 270 learning cycles and the 
maximum time in 200 trials was 1090. 

4.3. The 8-3-8 Encoder 

With I’= 8 and /r = 3 it took many more learning cycles to find all 8 three-bit 
codes. We did 20 simulations, running each for 4000 learning cycles using 
the same parameters as for the 4-2-4 case (but with a probability of 0.02 of 
reversing each ojy unit during noisy clamping). The algorithm found all 8 
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Figure 3. Two phoses in the development of the perfect binory encoding shown in Figure 2. 

The weights ore shown (A) after 4 learning trials and (6) after 60 learning trials. 

Figure 4. A 4-3.4 encoder thot has developed optimally spaced codes 

codes in 16 out of 20 simulations and found 7 codes in the rest. The median 
time to find 7 codes was 210 learning cycles and the median time to find all 8 
was 1570 cycles. 

The di fficulty of finding all 8 codes is not surprising since the fraction 
of the weight space that counts as a solution is much smaller than in the 
4-2-4 case. Sets of weights that use 7 of the 8 different codes are found fairly 
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rapidly and they constitute local minima which are far more numerous than 
the global minima and have almost as good a value of G. In this type of 
G-space, the learning algorithm must be carefully tuned to achieve a global 
minimum, and even then it is very slow. We believe that the G-spaces for 
which the algorithm is well-suited are ones where there are a great many 
possible solutions and it is not essential to get the very best one. For large 
networks to learn in a reasonable time, it may be necessary to have enough 
units and weights and a liberal enough specification of the task so that no 
single unit or weight is essential. The next example illustrates the advantages 
of having some spare capacity. 

4.4. The 40-10-40 Encoder 

A somewhat larger example is the 40-10-40 encoder. The 10 units in Hare 
almost twice the theoretical minimum, but Hstill acts as a limited bandwidth 
bottleneck. The learning algorithm works well on this problem. Figure 5 
shows its performance when given a pattern in V, and required to settle to 
the corresponding pattern in Vz. Each learning cycle involved annealing once 
with each of the 40 environmental vectors clamped, and the same number of 
times without clamping. The final performance asymptotes at 98.6% cor- 
rect. 

Figure 5. Completion accuracy of o 40-10-40 encoder during learning. The network was 

tested by clomping the states of !he units in V, ond letting the remainder of the network 

reach equilibrium. If iust the correct unit was on in V,, the test was successful. This was 

repeated 10 times for each of the 40 units in VI. For the first 300 learning cycles the network 

was run without connecting up the hidden units. This ensured that each group of 40 visible 

units developed enough loterol inhibition to implement on effective winner-take-all net- 

work. The hidden units were then connected up and for the next 500 learning cycles we used 

“noisy” clomping, switching on bits to off with o probobility of 0.1 and off bits to on with o 

probability of 0.0025. After this we removed the noise and this explains the sharp rise in 

performance after 800 cycles. The final performance asymptotes at 98.6% correct. 
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The codes that the network selected to represent the patterns in V, and 
V, were all separated by a hamming distance of at least 2, which is very un- 
likely to happen by chance. As a test, we compared the weights of the con- 
nections between visible and hidden units. Each visible unit has 10 weights 
connecting it to the hidden units, and to avoid errors, the 10 dimensional 
weight vectors for two different visible units should not be too similar. The 
cosine of the angle between two vectors was used as a measure of similarity, 
and no two codes had a similarity greater than 0.73, whereas many pairs had 
similarities of 0.8 or higher when the same weights were randomly rearranged 
to provide a control group for comparison. 

To achieve good performance on the completion tests, it was neces- 
sary to use a very gentle annealing schedule during testing. The schedule 
spent twice as long at each temperature and went down to half the final tem- 
perature of the schedule used during learning. As the annealing was made 
faster, the error rate increased, thus giving a very natural speed/accuracy 
trade-off. We have not pursued this issue any further, but it may prove 
fruitful because some of the better current models of the speed/accuracy 
trade-off in human reaction time experiments involve the idea of a biased 
random walk (Ratcliff, 1978), and the annealing search gives rise to similar 
underlying mathematics. 

5. REPRESENTATION IN PARALLEL NETWORKS 

So far, we have avoided the issue of how complex concepts would be repre- 
sented in a Boltzmann machine. The individual units stand for “hypothe- 
ses,” but what is the relationship between these hypotheses and the kinds of 
concepts for which we have words? Some workers suggest that a concept 
should be represented in an essentially “local” fashion: The activation of 
one or a few computing units is the representation for a concept (Feldman & 
Ballard, 1982); while others view concepts as “distributed” entities: A par- 
ticular pattern of activity over a large group of units represents a concept, 
and different concepts corresponds to alternative patterns of activity over 
the same group of units (Hinton, 1981). 

One of the better arguments in favor of local representations is their 
inherent modularity. Knowledge about relationships between concepts is 
localized in specific connections and is therefore easy to add, remove, and 
modify, if some reasonable scheme for forming hardware connections can 
be found (Fahlman, 1980; Feldman, 1982). With distributed representa- 
tions, however, the knowledge is diffuse. This is good for tolerance to local 
hardware damage, but it appears to make the design of modules to perform 
specific functions much harder. It is particularly difficult to see how new 
distributed representations of concepts could originate spontaneously. 
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In a Boltzmann machine, a distributed representation corresponds to 
an energy minimum, and so the problem of creating a good collection of 
distributed representations is equivalent to the problem of creating a good 
“energy landscape.” The learning algorithm we have presented is capable 
of solving this problem, and it therefore makes distributed representations 
considerably more plausible. The diffuseness of any one piece of knowledge 
is no longer a serious objection, because the mathematical simplicity of the 
Boltzmann distribution makes it possible to manipulate all the diffuse local 
weights in a coherent way on the basis of purely local information. The for- 
mation of a simple set of distributed representations is illustrated by the en- 
coder problems. 

5.1. Communicating Information between Modules 

The encoder problem examples also suggest a method for communicating 
symbols between various components of a parallel computational network. 
Feldman and Ballard (1982) present sketches of two implementations for this 
task; using the example of the transmission of the concept “wormy apple” 
from where it is recognized in the perceptual system to where the phrase 
“wormy apple” can be generated by the speech system. They argue that 
there appears to be only two ways that this could be accomplished. In the 
first method, the perceptual information is encoded into a set of symbols 
that are then transmitted as messages to the speech system, where they are 
decoded into a form suitable for utterance. In this case, there would be a set 
of general-purpose communciation lines, analogous to a bus in a conven- 
tional computer, that would be used as the medium for all such messages 
from the visual system to the speech system. Feldman and Ballard describe 
the problems with such a system as: 

l Complex messages would presumably have to be transmitted se- 
quentially over the communication lines. 

l Both sender and receiver would have to learn the common code for 
each new concept. 

l The method seems biologically implausible as a mechanism for the 
brain. 

The alternative implementation they suggest requires an individual, 
dedicated hardware pathway for each concept that is communicated from 
the perceptual system to the speech system. The idea is that the simulta- 
neous activation of “apple” and “worm” in the perceptual system can be 
transmitted over private links to their counterparts in the speech system. 
The critical issues for such an implementation are having the necessary con- 
nections available between concepts, and being able to establish new con- 
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nection pathways as new concepts are learned in the two systems. The main 
point of this approach is that the links between the computing units carry 
simple, nonsymbolic information such as a single activation level. 

The behavior of the Boltzmann machine when presented with an en- 
coder problem demonstrates a way of communicating concepts that largely 
combines the best of the two implementations mentioned. Like the second 
approach, the computing units are small, the links carry a simple numeric 
value, and the computational and connection requirements are within the 
range of biological plausibility. Like the first approach, the architecture is 
such that many different concepts can be transmitted over the same commu- 
nication lines, allowing for effective use of limited connections. The learning 
of new codes to represent new concepts emerges automatically as a coopera- 
tive process from the G-minimization learning algorithm. 

6. CONCLUSION 

The application of statistical mechanics to constraint satisfaction searches 
in parallel networks is a promising new area that has been discovered inde- 
pendently by several other groups (Geman & Geman, 1983; Smolensky, 
1983). There are many interesting issues that we have only mentioned in 
passing. Some of these issues are discussed in greater detail elsewhere: Hin- 
ton and Sejnowski (1983b) and Geman and Geman (1983) describe the rela- 
tion to Bayesian inference and to more conventional relaxation techniques; 
Fahlman, Hinton, and Sejnowski (1983) compare Boltzmann machines with 
some alternative parallel schemes, and discuss some knowledge representa- 
tion issues. An expanded version of this paper (Hinton, Sejnowski, & Ack- 
ley, 1984) presents this material in greater depth and discusses a number of 
related issues such as the relationship to the brain and the problem of se- 
quential behavior. It also shows how the probabilistic decision function 
could be realized using gaussian noise, how the assumptions of symmetry in 
the physical connections and of no time delay in transmission can be relaxed, 
and describes results of simulations on some other tasks. 

Systems with symmetric weights form an interesting class of computa- 
tional device because their dynamics is governed by an energy function.’ 
This is what makes it possible to analyze their behavior and to use them for 
iterative constraint satisfaction. In their influential exploration of percep- 
trons, Minsky and Papert (1968, p. 231) concluded that: “Multilayer ma- 
chines with loops clearly open up all the questions of the general theory of 
automata.” Although this statement is very plausible, recent developments 

’ One can easily write down a similar energy function for asymmetric networks, but this 

energy function does not govern the behavior of the network when the links are given their nor- 

mal causal interpretation. 
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suggest that it may be misleading because it ignores the symmetric case, and 
it seems to have led to the general belief that it would be impossible to find 
powerful learning algorithms for networks of perceptron-like elements. 

We believe that the Boltzmann Machine is a simple example of a class 
of interesting stochastic models that exploit the close relationship between 
Boltzmann distributions and information theory. 

All of this will lead to theories [of computation] which are much less 

rigidly of an all-or-none nature than past and present formal logic. They 

will be of a much less combinatorial, and much more analytical, charac- 

ter. In fact, there are numerous indications to make us believe that this 

new system of formal logic will move closer to another discipline which 

has been little linked in the past with logic. This is thermodynamics, 
primarily in the form it was received from Boitzmann, and is that part 
of theoretical physics which comes nearest in some of its aspects to ma- 

nipulating and measuring information. 

(John Von Neumann, Collected Works Vol. 5, p. 304) 

APPENDIX: DERIVATION OF THE LEARNING ALGORITHM 

When a network is free-running at equilibrium the probability distribution 
over the visible units is given by 

P’(V,)=CP’(V,AH,)= I:;: 8 (11) 
An 

where V, is a vector of states of the visible units, HB is a vector of states of 
the hidden units, and E,, is the energy of the system in state V,AH@ 

Ep6= - C w..~@J+ 

i<j 
1, I , . 

Hence, 

Differentiating (11) then yields 
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1 
=- 

T [ 
gp ‘( ~mr\%Wq~ - P ‘( V,).$lP ‘( V,AH,).5y+ 1 . 

This derivative is used to compute the gradient of the G-measure 

G=CP(V,) ins 
P P 

where P( V,) is the clamped probability distribution over the visible units 
and is independent of wu. So 

aG _ c p(k) apw,) -= ___ 
aWij c( P’(V,) aw, 

Now, 

and 

(12) 

Equation (12) holds because the probability of a hidden state given some 
visible state must be the same in equilibrium whether the visible units were 
clamped in that state or arrived there by free-running. Hence, 

Also, 

Therefore, 

CP(V*)= 1. 
P 

aG -= 
aw, -+bij-P;] 
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and 

as given in (9). 
The Boltzmann Machine learning algorithm can also be formulated as 

an input-output model. The visible units are divided into an input set / and 
an output set 0, and an environment specifies a set of conditional probabili- 

ties of the form P(O,II,). During the “training” phase the environment 
clamps both the input and output units, and p,,s are estimated. During the 
“testing” phase the input units are clamped and the output units and hidden 
units free-run, and p,$ are estimated. The appropriate G measure in this 
case is 

Similar mathematics apply in this formulation and aG/aw,, is the same as 
before. 
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