
COGNITIVE SCIENCE 9, 147-169 (1985)

A Learning Algorithm for

Boltzmann Machines*

DAVID H. ACKLEY

GEOFFREY E. HINTON

Computer Science Department
Carnegie-Mellon University

TERRENCE J. SEJNOWSKI

Biophysics Department
The Johns Hopkins University

The computotionol power of massively parallel networks of simple processing

elements resides in the communication bandwidth provided by the hardware

connections between elements. These connections con allow a significant

fraction of the knowledge of the system to be applied to an instance of a prob-

lem in o very short time. One kind of computation for which massively porollel

networks appear to be well suited is large constraint satisfaction searches,

but to use the connections efficiently two conditions must be met: First, a

search technique that is suitable for parallel networks must be found. Second,

there must be some way of choosing internal representations which allow the

preexisting hardware connections to be used efficiently for encoding the con-

straints in the domain being searched. We describe a generol parallel search

method, based on statistical mechanics, and we show how it leads to a gen-

eral learning rule for modifying the connection strengths so as to incorporate

knowledge obout o task domain in on efficient way. We describe some simple

examples in which the learning algorithm creates internal representations

thot ore demonstrobly the most efficient way of using the preexisting connec-

tivity structure.

1. INTRODUCTION

Evidence about the architecture of the brain and the potential of the new
VLSI technology have led to a resurgence of interest in “connectionist” sys-

l The research reported here was supported by grants from the System Development

Foundation. We thank Peter Brown, Francis Crick, Mark Derthick, Scott Fahlman, Jerry

Feldman, Stuart Geman, Gail Gong, John Hopfield, Jay McClelland, Barak Pearlmutter,

Harry Printz, Dave Rumelhart, Tim Shallice, Paul Smolensky, Rick Szeliski, and Venkatara-

man Venkatasubramanian for helpful discussions.

Reprint requests should be addressed to David Ackley, Computer Science Department,

Carnegie-Mellon University, Pittsburgh, PA 15213.

147

148 ACKLEY. HINTON. AND SEJNOWSKI

terns (Feldman & Ballard, 1982; Hinton & Anderson, 1981) that store their
long-term knowledge as the strengths of the connections between simple

neuron-like processing elements. These networks are clearly suited to tasks
like vision that can be performed efficiently in parallel networks which have
physical connections in just the places where processes need to communicate.
For problems like surface interpolation from sparse depth data (Crimson,
1981; Terzopoulos, 1984) where the necessary decision units and communi-
cation paths can be determined in advance, it is relatively easy to see how to
make good use of massive parallelism. The more difficult problem is to dis-
cover parallel organizations that do not require so much problem-dependent
information to be built into the architecture of the network. Ideally, such a
system would adapt a given structure of processors and communication
paths to whatever problem it was faced with.

This paper presents a type of parallel constraint satisfaction network
which we call a “Boltzmann Machine” that is capable of learning the under-
lying constraints that characterize a domain simply by being shown exam-
ples from the domain. The network modifies the strengths of its connections
so as to construct an internal generarive model that produces examples with
the same probability distribution as the examples it is shown. Then, when
shown any particular example, the network can “interpret” it by finding
values of the variables in the internal model that would generate the exam-

ple. When shown a partial example, the network can complete it by finding
internal variable values that generate the partial example and using them to
generate the remainder. At present, we have an interesting mathematical
result that guarantees that a certain learning procedure will build internal
representations which allow the connection strengths to capture the under-

lying constraints that are implicit in a large ensemble of examples taken
from a domain. We also have simulations which show that the theory works
for some simple cases, but the current version of the learning algorithm is
very slow.

The search for general principles that allow parallel networks to learn
the structure of their environment has often begun with the assumption that
networks are randomly wired. This seems to us to be just as wrong as the
view that all knowledge is innate. If there are connectivity structures that
are good for particular tasks that the network will have to perform, it is
much more efficient to build these in at the start. However, not all tasks can
be foreseen, and even for ones that can, fine-tuning may still be helpful.

Another common belief is that a general connectionist learning rule
would make sequential “rule-based” models unnecessary. We believe that
this view stems from a misunderstanding of the need for multiple levels of
description of large systems, which can be usefully viewed as either parallel

or serial depending on the grain of the analysis. ,Most of the key issues and
questions that have been studied in the context of sequential models do not
magically disappear in connectionist models. It is still necessary to perform

BOLTZMANN MACHINE LEARNING 149

searches for good solutions to problems or good interpretations of percep-
tual input, and to create complex internal representations. Ultimately it will
be necessary to bridge the gap between hardware-oriented connectionist
descriptions and the more abstract symbol manipulation models that have
proved to be an extremely powerful and pervasive way of describing human
information processing (Newell & Simon, 1972).

2. THE BOLTZMANN MACHINE

The Boltzmann Machine is a parallel computational organization that is
well suited to constraint satisfaction tasks involving large numbers of
“weak” constraints. Constraint-satisfaction searches (e.g., Waltz, 1975;
Winston, 1984) normally use “strong” constraints that tnusl be satisfied by

any solution. In problem domains such as games and puzzles, for example,
the goal criteria often have this character, so strong constraints are the rule.’
In some problem domains, such as finding the most plausible interpretation
of an image, many of the criteria are not all-or-none, and frequently even
the best possible solution violates some constraints (Hinton, 1977). A varia-
tion that is more appropriate for such domains uses weak constraints that
incur a cost when violated. The quality of a solution is then determined by
the total cost of all the constraints that it violates. In a perceptual interpre-
tation task, for example, this total cost should reflect the implausibility of
the interpretation.

The machine is composed of primitive computing elements called unifs
that are connected to each other by bidirectional links. A unit is always in

one of two states, on or off, and it adopts these states as a probabilistic
function of the states of its neighboring units and the weighfs on its links to
them. The weights can take on real values of either sign. A unit being on or
off is taken to mean that the system currently accepts or rejects some ele-
mental hypothesis about the domain. The weight on a link represents a weak

pairwise constraint between two hypotheses. A positive weight indicates
that the two hypotheses tend to support one another; if one is currently ac-
cepted, accepting the other should be more likely. Conversely, a negative
weight suggests, other things being equal, that the two hypotheses should
not both be accepted. Link weights are symmetric, having the same strength
in both directions (Hinton & Sejnowski, 1983).’

’ But, see (Berliner & Ackley, 1982) for argument that, even in such domains, strong

constraints must be used only where absolutely necessary for legal play, and in particular must

not propagate into the determination of good play.

2 Requiring the weights to be symmetric may seem IO restrict the constraints that can be

represented. Although a constraint on boolean variables A and B such as “A = B with a penalty

of 2 points for violation” is obviously symmetric in A and B, “A =>f3 with a penalty of 2

points for violation” appears to be fundamentally asymmetric. Nevertheless, this constraint

can be represented by the combination of a constraint on A alone and a symmetric pairwise

constraint as follows: “Lose 2 points if A is true” and “Win 2 points if both A and E are true.”

150 ACKLEY. HINTON. AND SEJNOWSKI

The resulting structure is related to a system described by Hopfield
(1982), and as in his system, each global state of the network can be assigned
a single number called the “energy” of that state. With the right assump-
tions, the individual units can be made to act so as to minimize fhe global

energy. If some of the units are externally forced or “clamped” into partic-
ular states to represent a particular input, the system will then find the mini-
mum energy configuration that is compatible with that input. The energy of
a configuration can be interpreted as the extent to which that combination
of hypotheses violates the constraints implicit in the problem domain, so in
minimizing energy the system evolves towards “interpretations” of that in-

put that increasingly satisfy the constraints of the problem domain.
The energy of a global configuration is defined as

E= -,Z,w,s,s,+CB,s, (1)

where w,, is the strength of connection between units i andj, S, is 1 if unit i is
on and 0 otherwise, and Bi is a threshold.

2.1 Minimizing Energy

A simple algorithm for finding a combination of truth values that is a local
minimum is to switch each hypothesis into whichever of its two states yields
the lower total energy given the current states of the other hypotheses. If
hardware units make their decisions asynchronously, and if transmission
times are negligible, then the system always settles into a local energy mini-
mum (Hopfield, 1982). Because the connections are symmetric, the differ-
ence between the energy of the whole system with the krh hypothesis rejected
and its energy with the kfh hypothesis accepted can be determined locally by
the k’h unit, and this “energy gap” is just

Therefore, the rule for minimizing the energy contributed by a unit is
to adopt the on state if its total input from the other units and from outside
the system exceeds its threshold. This is the familiar rule for binary thresh-
old units.

The threshold terms can be eliminated from Eqs. (1) and (2) by making
the following observation: the effect of Bi on the global energy or on the
energy gap of an individual unit is identical to the effect of a link with strength
- Bi between unit i and a special unit that is by definition always held in the
on state. This “true unit” need have no physical reality, but it simplifies the
computations by allowing the threshold of a unit to be treated in the same
manner as the links. The value - 0, is called the bias of unit i. If a perma-

BOLTZMANN MACHINE LEARNING 151

nently active “true unit” is assumed to be part of every network, then Eqs.
(1) and (2) can be written as:

E = - i$j w;, si s,

AE~=cw~i.si

2.2 Using Noise to Escape from Local Minima

The simple, deterministic algorithm suffers from the standard weakness of
gradient descent methods: It gets stuck in local minima that are not globally
optimal. This is not a problem in Hopfield’s system because the local energy
minima of his network are used to store “items”: If the system is started
near some local minimum, the desired behavior is to fall into that minimum,
not to find the global minimum. For constraint satisfaction tasks, however,
the system must try to escape from local minima in order to find the con-
figuration that is the global minimum given the current input.

A simple way to get out of local minima is to occasionally allow jumps
to configurations of higher energy. An algorithm with this property was in-
troduced by Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1953) to
study average properties of thermodynamic systems (Binder, 1978) and has
recently been applied to problems of constraint satisfaction (Kirkpatrick,
Gelatt, & Vecchi, 1983). We adopt a form of the Metroplis algorithm that is
suitable for parallel computation: If the energy gap between the on and off
states of the klh unit is AE, then regardless of the previous state sets* = 1 with
probability

1
p*=

(1 + PQ’r)
(5)

where T is a parameter that acts like temperature (see Figure 1).

Figure 1. Eq. (5) at T= 1 .O (solid), T=4.0 (dashed), and T=0.25 (dotfed).

152 ACKLEY. HINTON. AND SEJNOWSKI

The decision rule in Eq. (5) is the same as that for a particle which has
two energy states. A system of such particles in contact with a heat bath at a
given temperature will eventually reach thermal equilibrium and the proba-
bility of finding the system in any global state will then obey a Boltzmann
distribution. Similarly, a network of units obeying this decision rule will
eventually reach “thermal equilibrium” and the relative probability of two

global states will follow the Boltzman distribution:

(6)

where P, is the probability of being in the CI’~ global state, and E, is the
energy of that state.

The Boltzmann distribution has some beautiful mathematical proper-
ties and it is intimately related to information theory. In particular, the dif-
ference in the log probabilities of two global states is just their energy differ-
ence (at a temperature of I). The simplicity of this relationship and the fact
that the equilibrium distribution is independent of the path followed in
reaching equilibrium are what make Boltzmann machines interesting.

At low temperatures there is a strong bias in favor of states with low
energy, but the time required to reach equilibrium may be long. At higher
temperatures the bias is not so favorable but equilibrium is reached faster.
A good way to beat this trade-off is to start at a high temperature and grad-
ually reduce it. This corresponds to annealing a physical system (Kirkpatrick,
Gelatt, & Vecchi, 1983). At high temperatures, the network will ignore small
energy differences and will rapidly approach equilibrium. In doing so, it will
perform a search of the coarse overall structure of the space of global states,
and will find a good minimum at that coarse level. As the temperature is

lowered, it will begin to respond to smaller energy differences and will find
one of the better minima within the coarse-scale minimum it discovered at
high temperature. Kirkpatrick et al. have shown that this way of searching
the coarse structure before the fine is very effective for combinatorial prob-
lems like graph partitioning, and we believe it will also prove useful when
trying to satisfy multiple weak constraints, even though it will clearly fail in
cases where the best solution corresponds to a minimum that is deep, nar-
row, and isolated.

3. A LEARNING ALGORITHM

Perhaps the most interesting aspect of the Boltzmann Machine formulation
is that it leads to a domain-independent learning algorithm that modifies the

BOLTZMANN MACHINE LEARNING 153

connection strengths between units in such a way that the whole network
develops an internal model which captures the underlying structure of its
environment. There has been a long history of failure in the search for such
algorithms (Newell, 1982), and many people (particularly in Artificial In-
telligence) now believe that no such algorithms exist. The major technical
stumbling block which prevented the generalization of simple learning
algorithms to more complex networks was this: To be capable of interesting
computations, a network must contain nonlinear elements that are not
directly constrained by the input, and when such a network does the wrong
thing it appears to be impossible to decide which of the many connection
strengths is at fault. This “credit-assignment” problem was what led to the
demise of perceptrons (Minsky & Papert, 1968; Rosenblatt, 1961). The
perceptron convergence theorem guarantees that the weights of a single
layer of decision units can be trained, but it could not be generalized to net-
works of such units when the task did not directly specify how to use all the
units in the network.

This version of the credit-assignment problem can be solved within the
Boltzmann Machine formulation. By using the right stochastic decision
rule, and by running the network until it reaches “thermal equilibrium” at

some finite temperature, we achieve a mathematically simple relationship
between the probability of a global state and its energy. For a network that
is running freely without any input from the environment, this relationship
is given by Eq. (6). Because the energy is a liueur function of the weights
(Eq. 1) this leads to a remarkably simple relationship between the log proba-
bilities of global states and the individual connection strengths:

a In P,,

a M’,,
= +.m - PiI

where s: is the state of the ifh unit in the & global state (so .c’:s;’ is 1 only if
units i andj are both on in state CY), and p,; is just the probability of finding
the two units i andj on at the same time when the system is at equilibrium.

Given Eq. (7). it is possible to manipulate the log probabilities of global
states. If the environment directly specifies the required probabilities P, for
each global state (Y, there is a straightforward way of converging on a set of
weights that achieve those probabilities, provided any such set exists (for
details, see Hinton & Sejnowski, 1983a). However, this is not a particularly
interesting kind of learning because the system has to be given the required

probabilities of co/up/e/e global states. This means that the central question
of what internal representation should be used has already been decided by
the environment. The interesting problem arises when the environment im-
plicitly contains high-order constraints and the network must choose inter-
nal representations that allow these constraints to be expressed efficiently.

154 ACKLEY. HINTON, AND SEJNOWSKI

3.1 Modeling the Underlying Structure of an Environment

The units of a Boltzmann Machine partition into two functional groups, a
nonempty set of visible units and a possibly empty set of hidden units. The
visible units are the interface between the network and the environment;
during training all the visible units are clamped into specific states by the
environment; when testing for completion ability, any subset of the visible
units may be clamped. The hidden units, if any, are never clamped by the
environment and can be used to “explain” underlying constraints in the en-
semble of input vectors that cannot be represented by pairwise constraints
among the visible units. A hidden unit would be needed, for example, if the
environment demanded that the states of three visible units should have
even parity-a regularity that cannot be enforced by pairwise interactions
alone. Using hidden units to represent more complex hypotheses about the
states of the visible units, such higher-order constraints among the visible
units can be reduced to first and second-order constraints among the whole
set of units.

We assume that each of the environmental input vectors persists for
long enough to allow the network to approach thermal equilibrium, and we
ignore any structure that may exist in the sequence of environmental vec-
tors. The structure of an environment can then be specified by giving the
probability distribution over all 2” states of the v visible units. The network
will be said to have a perfect model of the environment if it achieves exactly
the same probability distribution over these 2” states when it is running freely
at thermal equilibrium with all units unclamped so there is no environmental
input.

Unless the number of hidden units is exponentially large compared to
the number of visible units, it will be impossible to achieve a perfecf model
because even if the network is totally connected the (v+ h - l)(v+h)/2
weights and (v + h) biases among the v visible and h hidden units will be
insufficient to model the 2” probabilities of the states of the visible units spe-
cified by the environment. However, if there are regularities in the environ-
ment, and if the network uses its hidden units to capture these regularities, it
may achieve a good match to the environmental probabilities.

An information-theoretic measure of the discrepancy between the net-
work’s internal model and the environment is

G=CP(V,) In 35L
OI P’(K)

where P(V,) is the probability of the efh state of the visible units when their
states are determined by the environment, andP’(V,) is the corresponding
probability when the network is running freely with no environmental in-
put. The G metric, sometimes called the asymmetric divergence or informa-

BOLTZMANN MACHINE LEARNING 155

tion gain (Kullback, 1959; Renyi, 1962), is a measure of the distance from
the distribution given by the P’(V,) to the distribution given by the P(VJ.
G is zero if and only if the distributions are identical; otherwise it is positive.

The term P’(VJ depends on the weights, and so G can be altered by
changing them. To perform gradient descent in G, it is necessary to know
the partial derivative of G with respect to each individual weight. In most
cross-coupled nonlinear networks it is very hard to derive this quantity, but
because of the simple relationships that hold at thermal equilibrium, the
partial derivative of G is straightforward to derive for our networks. The
probabilities of global states are determined by their energies (Eq. 6) and the
energies are determined by the weights (Eq. 1). Using these equations the
partial derivative of G (see the appendix) is:

ac -=
a wij

- f@G, - PJ

where pij is the average probability of two units both being in the on state
when the environment is clamping the states of the visible units, and pi:, as
in Eq. (7), is the corresponding probability when the environmental input is
not present and the network is running freely. (Both these probabilities must
be measured at equilibrium.) Note the similarity between this equation and
Eq. (7), which shows how changing a weight affects the log probability of a
single state.

To minimize G, it is therefore sufficient to observe pi, and pi; when the
network is at thermal equilibrium, and to change each weight by an amount
proportional to the difference between these two probabilities:

A W<j = c@<, - pi;) (10)

where e scales the size of each weight change.
A surprising feature of this rule is that it uses only local/y available

information. The change in a weight depends only on the behavior of the
two units it connects, even though the change optimizes a global measure,
and the best value for each weight depends on the values of all the other
weights. If there are no hidden units, it can be shown that G-space is con-
cave (when viewed from above) so that simple gradient descent will not get
trapped at poor local minima. With hidden units, however, there can be
local minima that correspond to different ways of using the hidden units to
represent the higher-order constraints that are implicit in the probability
distribution of environmental vectors. Some techniques for handling these
more complex G-spaces are discussed in the next section.

Once G has been minimized the network will have captured as well as
possible the regularities in the environment, and these regularities will be en-
forced when performing completion. An alternative view is that the net-

156 ACKLEY, HINTON. AND SEJNOWSKI

work, in minimizing G, is finding the set of weights that is most likely to
have generated the set of environmental vectors. It can be shown that maxi-
mizing this likelihood is mathematically equivalent to minimizing G (Peter
Brown, personal communication, 1983).

3.2 Controlling the Learning

There are a number of free parameters and possible variations in the learn-
ing algorithm presented above. As well as the size of e, which determines the
size of each step taken for gradient descent, the lengths of time over which
p,, and ,n,J are estimated have a significant impact on the learning process.

The values employed for the simulations presented here were selected pri-
marily on the basis of empirical observations.

A practical system which estimates p,, and p,; will necessarily have
some noise in the estimates, leading to occasional “uphill steps” in the value
of G. Since hidden units in a network can create local minima in G, this is
not necessarily a liability. The effect of the noise in the estimates can be
reduced, if desired, by using a small value for E or by collecting statistics for
a longer time, and so it is relatively easy to implement an annealing search
for the minimum of G.

The objective function G is a metric that specifies how well two proba-
bility distributions match. Problems arise if an environment specifies that
only a small subset of the possible patterns over the visible units ever occur.
By default, the unmentioned patterns must occur with probability zero, and
the only way a Boltzmann Machine running at a non-zero temperature can
guarantee that certain configurations never occur is to give those configura-
tions infinitely high energy, which requires infinitely large weights.

One way to avoid this implicit demand for infinite weights is to occa-
sionally provide “noisy ” input vectors. This can be done by filtering the
“correct” input vectors through a process that has a small probability of
reversing each of the bits. These noisy vectors are then clamped on the visi-
ble units. If the noise is small, the correct vectors will dominate the
statistics, but every vector will have some chance of occurring and so in-
finite energies will not be needed. This “noisy clamping” technique was
used for all the examples presented here. It works quite well, but we are not
entirely satisfied with it and have been investigating other methods of pre-
venting the weights from growing too large when only a few of the possible
input vectors ever occur.

The simulations presented in the next section employed a modification
of the obvious steepest descent method implied by Eq. (10). Instead of chang-

ing w,, by an amount proportional to pij -pi;, it is simply incremented by a
fixed “weight-step” if pv>pi; and decremented by the same amount if pijc
PJ. The advantage of this method over steepest descent is that it can cope

BOLTZMANN MACHINE LEARNING 157

with wide variations in the first and second derivatives of G. It can make
significant progress on dimensions where G changes gently without taking
very large divergent steps on dimensions where G falls rapidly and then rises
rapidly again. There is no suitable value for the E in Eq. (10) in such cases.
Any value large enough to allow progress along the gently sloping floor of a
ravine will cause divergent oscillations up and down the steep sides of the
ravine.’

4. THE ENCODER PROBLEM

The “encoder problem” (suggested to us by Sanjaya Addanki) is a simple
abstraction of the recurring task of communicating information among var-
ious components of a parallel network. We have used this problem to test

out the learning algorithm because it is clear what the optimal solution is
like and it is nontrivial to discover it. Two groups of visible units, desig-
nated V, and V-,, represent two systems that wish to communicate their
states. Each group has v units. In the simple formulation we consider here,
each group has only one unit on at a time, so there are only v different states
of each group. I’, and VJ are not connected directly but both are connected
to a group of h hidden units H, with h < v so H may act as a limited capacity
bottleneck through which information about the states of V, and Vz must be
squeezed. Since all simulations began with all weights set to zero, finding a
solution to such a problem requires that the two visible groups come to
agree upon the meanings of a set of codes without any a priori conventions

for communication through H.
To permit perfect communication between the visible groups, it must

be the case that h 1 /og,v. We investigated minimal cases in which h = log,v,

and cases when h was somewhat larger than log,v. In all cases, the environ-
ment for the network consisted of v equiprobable vectors of length 2v which
specified that one unit in V, and the corresponding unit in V, should be on
together with all other units off. Each visible group is completely connected

internally and each is completely connected to H, but the units in Hare not
connected to each other.

Because of the severe speed limitation of simulation on a sequential
machine, and because the learning requires many annealings, we have

primarily experimented with small versions of the encoder problem. For ex-
ample, Figure 2 shows a good solution to a “4-2-4” encoder problem in

’ The problem of finding a suitable value for t disappears if one performs a line search

for the lowest value of G along the current direction of steepest descent, but line searches are

inapplicable in this case. Only the local gradient is available. There are bounds on the second

derivative that can be used to pick conservative values of e (Mark Derthick. personal communi-

cation, 1984), and methods of this kind are currently under investigation.

158 ACKLEY, HINTON. AND SEJNOWSKI

Figure 2. A solution to an encoder problem. The link weights are displayed using a recur-

sive notation. Each unit is represented by a shaded l-shaped box; from top to bottom the

rows of boxes represent groups V,, H. and V,. Each shaded box is o mop of the entire net-

work, showing the strengths of that unit’s connections to other units. At each position in o

box, the size of the white (positive) or block (negative) rectangle indicates the magnitude of

the weight. In the position that would correspond to o unit connecting to itself (the second

position in the top row of the second unit in the top row, for example). the bias is displayed.

All connections between units appear twice in the diagram, once in the box for each of the

two units being connected. For example, the black square in the top right corner of the left-

most unit of V, represents the same connection OS the block square in the top left corner of

the rightmost unit of V,. This connection has a weight of -30.

which v = 4 and h = 2. The interconnections between the visible groups and
H have developed a binary coding-each visible unit causes a different pat-
tern of on and off states in the units of If, and corresponding units in V,
and V, support identical patterns in H. Note how the bias of the second unit
of V, and VJ is positive to compensate for the fact that the code which repre-
sents that unit has all the H units turned off.

4.1. The 4-2-4 Encoder

The experiments on networks with v = 4 and h = 2 were performed using the
following learning cycle:

1. Esfimation of p,j: Each environmental vector in turn was clamped
over the visible units. For each environmental vector, the network
was allowed to reach equilibrium twice. Statistics about how often
pairs of units were both on together were gathered at equilibrium.
To prevent the weights from growing too large we used the “noisy”
clamping technique described in Section 3.2. Each on bit of a
clamped vector was set to off with a probability of 0.15 and each
off bit was set to on with a probability of 0.05.

2. Estimation of p,;: The network was completely unclamped and
allowed to reach equilibrium at a temperature of 10. Statistics about

BOLTZMANN MACHINE LEARNING 159

co-occurrences were then gathered for as many annealings as were
used to estimate p,j.

3. Updaring the weigh&: All weights in the network were incremented
or decremented by a fixed weight-step of 2, with the sign of the in-
crement being determined by the sign of p,, -p,,J.

When a settling to equilibrium was required, all the unclamped units were
randomized with equal probability on or off (corresponding to raising the
temperature to infinity), and then the network was allowed to run for the
following times at the following temperatures: [2@20, 2@ 15,2@ 12,4@ lo].,’
After this annealing schedule it was assumed that the network had reached
equilibrium, and statistics were collected at a temperature of 10 for 10 units

of time.
We observed three main phases in the search for the global minimum of

G, and found that the occurrence of these phases was relatively insensitive to
the precise parameters used. The first phase begins with all the weights set to
zero, and is characterized by the development of negative weights throughout
most of the network, implementing two winner-take-all networks that model
the simplest aspect of the environmental structure-only one unit in each visi-
ble group is normally active at a time. In a 4-2-4 encoder, for example, the
number of possible patterns over the visible units is 28. By implementing a
winner-take-all network among each group of four this can be reduced to 4 x 4
low energy patterns. Only the final reduction from 2’ to 2’ low energy pat-

terns requires the hidden units to be used for communicating between the two
visible groups. Figure 3a shows a 4-2-4 encoder network after four learning
cycles.

Although the hidden units are exploited for inhibition in the first phase,
the lateral inhibition task can be handled by the connections within the visible
groups alone. In the second phase, the hidden units begin to develop positive
weights to some of the units in the visible groups, and they tend to maintain
symmetry between the sign and approximate magnitude of a connection to a
unit in V, and the corresponding unit in V2. The second phase finishes when
every hidden unit has significant connection weights to each unit in V, and
analogous weights to each unit in V,, and most of the different codes are
being used, but there are some codes that are used more than once and some
not at all. Figure 3b shows the same network after 60 learning cycles.

Occasionally, all the codes are being used at the end of the second
phase in which case the problem is solved. Usually, however, there is a third
and longest phase during which the learning algorithm sorts out the remain-

ing conflicts and finds a global minimum. There are two basic mechanisms

’ One unit of time is defined as the time required for each unit to be given, on average, one

chance to change its state. This means that if there are n unclamped units, a time period of I in-

volves n random probes in which some unit is given a chance 10 change its stale.

160 ACKLEY. HINTON. AND SEJNOWSKI

involved in the sorting out process. Consider the conflict between the first
and fourth units in Figure 3b, which are both employing the code < -, + >.
When the system is running without environmental input, the two units will
be on together quite frequently. Consequently, ,D,‘~ will be higher than P,,~
because the environmental input tends to prevent the two units from being

on together. Hence, the learning algorithm keeps decreasing the weight of
the connection between the first and fourth units in each group, and they
come to inhibit each other strongly. (This effect explains the variations in
inhibitory weights in Figure 2. Visible units with similar codes are the ones

that inhibit each other strongly.) Visible units thus compete for “territory”
in the space of possible codes, and this repulsion effect causes codes to
migrate away from similar neighbors. In addition to the repulsion effect, we
observed another process that tends to eventually bring the unused codes
adjacent (in terms of hamming distance) to codes that are involved in a con-
flict. The mechanics of this process are somewhat subtle and we do not take
the time to expand on them here.

The third phase finishes when all the codes are being used, and the
weights then tend to increase so that the solution locks in and remains stable
against the fluctuations caused by random variations in the co-occurrence
statistics. (Figure 2 is the same network shown in Figure 3, after 120 learn-
ing cycles.)

In 250 different tests of the 4-2-4 encoder, it always found one of the
global minima, and once there it remained there. The median time required
to discover four different codes was I10 learning cycles. The longest time
was 18 10 learning cycles.

4.2. The 4-3-4 Encoder

A variation on the binary encoder problem is to give H more units than are
absolutely necessary for encoding the patterns in V, and V.. A simple exam-
ple is the 4-3-4 encoder which was run with the same parameters as the 4-2-4
encoder. In this case the learning algorithm quickly finds four different
codes. Then it always goes on to modify the codes so that they are optimally
spaced out and no pair differ by only a single bit, as shown in Figure 4. The
median time to find four well-spaced codes was 270 learning cycles and the
maximum time in 200 trials was 1090.

4.3. The 8-3-8 Encoder

With I’= 8 and /r = 3 it took many more learning cycles to find all 8 three-bit
codes. We did 20 simulations, running each for 4000 learning cycles using
the same parameters as for the 4-2-4 case (but with a probability of 0.02 of
reversing each ojy unit during noisy clamping). The algorithm found all 8

BOLTZMANN MACHINE LEARNING 161

Figure 3. Two phoses in the development of the perfect binory encoding shown in Figure 2.

The weights ore shown (A) after 4 learning trials and (6) after 60 learning trials.

Figure 4. A 4-3.4 encoder thot has developed optimally spaced codes

codes in 16 out of 20 simulations and found 7 codes in the rest. The median
time to find 7 codes was 210 learning cycles and the median time to find all 8
was 1570 cycles.

The di fficulty of finding all 8 codes is not surprising since the fraction
of the weight space that counts as a solution is much smaller than in the
4-2-4 case. Sets of weights that use 7 of the 8 different codes are found fairly

162 ACKLEY, HINTON. AND SEJNOWSKI

rapidly and they constitute local minima which are far more numerous than
the global minima and have almost as good a value of G. In this type of
G-space, the learning algorithm must be carefully tuned to achieve a global
minimum, and even then it is very slow. We believe that the G-spaces for
which the algorithm is well-suited are ones where there are a great many
possible solutions and it is not essential to get the very best one. For large
networks to learn in a reasonable time, it may be necessary to have enough
units and weights and a liberal enough specification of the task so that no
single unit or weight is essential. The next example illustrates the advantages
of having some spare capacity.

4.4. The 40-10-40 Encoder

A somewhat larger example is the 40-10-40 encoder. The 10 units in Hare
almost twice the theoretical minimum, but Hstill acts as a limited bandwidth
bottleneck. The learning algorithm works well on this problem. Figure 5
shows its performance when given a pattern in V, and required to settle to
the corresponding pattern in Vz. Each learning cycle involved annealing once
with each of the 40 environmental vectors clamped, and the same number of
times without clamping. The final performance asymptotes at 98.6% cor-
rect.

Figure 5. Completion accuracy of o 40-10-40 encoder during learning. The network was

tested by clomping the states of !he units in V, ond letting the remainder of the network

reach equilibrium. If iust the correct unit was on in V,, the test was successful. This was

repeated 10 times for each of the 40 units in VI. For the first 300 learning cycles the network

was run without connecting up the hidden units. This ensured that each group of 40 visible

units developed enough loterol inhibition to implement on effective winner-take-all net-

work. The hidden units were then connected up and for the next 500 learning cycles we used

“noisy” clomping, switching on bits to off with o probobility of 0.1 and off bits to on with o

probability of 0.0025. After this we removed the noise and this explains the sharp rise in

performance after 800 cycles. The final performance asymptotes at 98.6% correct.

BOLTZMANN MACHINE LEARNING 163

The codes that the network selected to represent the patterns in V, and
V, were all separated by a hamming distance of at least 2, which is very un-
likely to happen by chance. As a test, we compared the weights of the con-
nections between visible and hidden units. Each visible unit has 10 weights
connecting it to the hidden units, and to avoid errors, the 10 dimensional
weight vectors for two different visible units should not be too similar. The
cosine of the angle between two vectors was used as a measure of similarity,
and no two codes had a similarity greater than 0.73, whereas many pairs had
similarities of 0.8 or higher when the same weights were randomly rearranged
to provide a control group for comparison.

To achieve good performance on the completion tests, it was neces-
sary to use a very gentle annealing schedule during testing. The schedule
spent twice as long at each temperature and went down to half the final tem-
perature of the schedule used during learning. As the annealing was made
faster, the error rate increased, thus giving a very natural speed/accuracy
trade-off. We have not pursued this issue any further, but it may prove
fruitful because some of the better current models of the speed/accuracy
trade-off in human reaction time experiments involve the idea of a biased
random walk (Ratcliff, 1978), and the annealing search gives rise to similar
underlying mathematics.

5. REPRESENTATION IN PARALLEL NETWORKS

So far, we have avoided the issue of how complex concepts would be repre-
sented in a Boltzmann machine. The individual units stand for “hypothe-
ses,” but what is the relationship between these hypotheses and the kinds of
concepts for which we have words? Some workers suggest that a concept
should be represented in an essentially “local” fashion: The activation of
one or a few computing units is the representation for a concept (Feldman &
Ballard, 1982); while others view concepts as “distributed” entities: A par-
ticular pattern of activity over a large group of units represents a concept,
and different concepts corresponds to alternative patterns of activity over
the same group of units (Hinton, 1981).

One of the better arguments in favor of local representations is their
inherent modularity. Knowledge about relationships between concepts is
localized in specific connections and is therefore easy to add, remove, and
modify, if some reasonable scheme for forming hardware connections can
be found (Fahlman, 1980; Feldman, 1982). With distributed representa-
tions, however, the knowledge is diffuse. This is good for tolerance to local
hardware damage, but it appears to make the design of modules to perform
specific functions much harder. It is particularly difficult to see how new
distributed representations of concepts could originate spontaneously.

164 ACKLEY, HINTON, AND SEJNOWSKI

In a Boltzmann machine, a distributed representation corresponds to
an energy minimum, and so the problem of creating a good collection of
distributed representations is equivalent to the problem of creating a good
“energy landscape.” The learning algorithm we have presented is capable
of solving this problem, and it therefore makes distributed representations
considerably more plausible. The diffuseness of any one piece of knowledge
is no longer a serious objection, because the mathematical simplicity of the
Boltzmann distribution makes it possible to manipulate all the diffuse local
weights in a coherent way on the basis of purely local information. The for-
mation of a simple set of distributed representations is illustrated by the en-
coder problems.

5.1. Communicating Information between Modules

The encoder problem examples also suggest a method for communicating
symbols between various components of a parallel computational network.
Feldman and Ballard (1982) present sketches of two implementations for this
task; using the example of the transmission of the concept “wormy apple”
from where it is recognized in the perceptual system to where the phrase
“wormy apple” can be generated by the speech system. They argue that
there appears to be only two ways that this could be accomplished. In the
first method, the perceptual information is encoded into a set of symbols
that are then transmitted as messages to the speech system, where they are
decoded into a form suitable for utterance. In this case, there would be a set
of general-purpose communciation lines, analogous to a bus in a conven-
tional computer, that would be used as the medium for all such messages
from the visual system to the speech system. Feldman and Ballard describe
the problems with such a system as:

l Complex messages would presumably have to be transmitted se-
quentially over the communication lines.

l Both sender and receiver would have to learn the common code for
each new concept.

l The method seems biologically implausible as a mechanism for the
brain.

The alternative implementation they suggest requires an individual,
dedicated hardware pathway for each concept that is communicated from
the perceptual system to the speech system. The idea is that the simulta-
neous activation of “apple” and “worm” in the perceptual system can be
transmitted over private links to their counterparts in the speech system.
The critical issues for such an implementation are having the necessary con-
nections available between concepts, and being able to establish new con-

BOLTZMANN MACHINE LEARNING 165

nection pathways as new concepts are learned in the two systems. The main
point of this approach is that the links between the computing units carry
simple, nonsymbolic information such as a single activation level.

The behavior of the Boltzmann machine when presented with an en-
coder problem demonstrates a way of communicating concepts that largely
combines the best of the two implementations mentioned. Like the second
approach, the computing units are small, the links carry a simple numeric
value, and the computational and connection requirements are within the
range of biological plausibility. Like the first approach, the architecture is
such that many different concepts can be transmitted over the same commu-
nication lines, allowing for effective use of limited connections. The learning
of new codes to represent new concepts emerges automatically as a coopera-
tive process from the G-minimization learning algorithm.

6. CONCLUSION

The application of statistical mechanics to constraint satisfaction searches
in parallel networks is a promising new area that has been discovered inde-
pendently by several other groups (Geman & Geman, 1983; Smolensky,
1983). There are many interesting issues that we have only mentioned in
passing. Some of these issues are discussed in greater detail elsewhere: Hin-
ton and Sejnowski (1983b) and Geman and Geman (1983) describe the rela-
tion to Bayesian inference and to more conventional relaxation techniques;
Fahlman, Hinton, and Sejnowski (1983) compare Boltzmann machines with
some alternative parallel schemes, and discuss some knowledge representa-
tion issues. An expanded version of this paper (Hinton, Sejnowski, & Ack-
ley, 1984) presents this material in greater depth and discusses a number of
related issues such as the relationship to the brain and the problem of se-
quential behavior. It also shows how the probabilistic decision function
could be realized using gaussian noise, how the assumptions of symmetry in
the physical connections and of no time delay in transmission can be relaxed,
and describes results of simulations on some other tasks.

Systems with symmetric weights form an interesting class of computa-
tional device because their dynamics is governed by an energy function.’
This is what makes it possible to analyze their behavior and to use them for
iterative constraint satisfaction. In their influential exploration of percep-
trons, Minsky and Papert (1968, p. 231) concluded that: “Multilayer ma-
chines with loops clearly open up all the questions of the general theory of
automata.” Although this statement is very plausible, recent developments

’ One can easily write down a similar energy function for asymmetric networks, but this

energy function does not govern the behavior of the network when the links are given their nor-

mal causal interpretation.

166 ACKLEY, HINTON. AND SEJNOWSKI

suggest that it may be misleading because it ignores the symmetric case, and
it seems to have led to the general belief that it would be impossible to find
powerful learning algorithms for networks of perceptron-like elements.

We believe that the Boltzmann Machine is a simple example of a class
of interesting stochastic models that exploit the close relationship between
Boltzmann distributions and information theory.

All of this will lead to theories [of computation] which are much less

rigidly of an all-or-none nature than past and present formal logic. They

will be of a much less combinatorial, and much more analytical, charac-

ter. In fact, there are numerous indications to make us believe that this

new system of formal logic will move closer to another discipline which

has been little linked in the past with logic. This is thermodynamics,
primarily in the form it was received from Boitzmann, and is that part
of theoretical physics which comes nearest in some of its aspects to ma-

nipulating and measuring information.

(John Von Neumann, Collected Works Vol. 5, p. 304)

APPENDIX: DERIVATION OF THE LEARNING ALGORITHM

When a network is free-running at equilibrium the probability distribution
over the visible units is given by

P’(V,)=CP’(V,AH,)= I:;: 8 (11)
An

where V, is a vector of states of the visible units, HB is a vector of states of
the hidden units, and E,, is the energy of the system in state V,AH@

Ep6= - C w..~@J+

i<j
1, I , .

Hence,

Differentiating (11) then yields

BOLTZMANN MACHINE LEARNING 167

1
=-

T [
gp ‘(~mr\%Wq~ - P ‘(V,).$lP ‘(V,AH,).5y+ 1 .

This derivative is used to compute the gradient of the G-measure

G=CP(V,) ins
P P

where P(V,) is the clamped probability distribution over the visible units
and is independent of wu. So

aG _ c p(k) apw,) -= ___
aWij c(P’(V,) aw,

Now,

and

(12)

Equation (12) holds because the probability of a hidden state given some
visible state must be the same in equilibrium whether the visible units were
clamped in that state or arrived there by free-running. Hence,

Also,

Therefore,

CP(V*)= 1.
P

aG -=
aw, -+bij-P;]

168

where

ACKLEY. HINTON. AND SEJNOWSKI

and

as given in (9).
The Boltzmann Machine learning algorithm can also be formulated as

an input-output model. The visible units are divided into an input set / and
an output set 0, and an environment specifies a set of conditional probabili-

ties of the form P(O,II,). During the “training” phase the environment
clamps both the input and output units, and p,,s are estimated. During the
“testing” phase the input units are clamped and the output units and hidden
units free-run, and p,$ are estimated. The appropriate G measure in this
case is

Similar mathematics apply in this formulation and aG/aw,, is the same as
before.

REFERENCES

Berliner, H. J.. & Ackley. D. H. (1982, August). The QBKG system: Generating explanations

from a non-discrete knowledge representation. Proc’eedin,qs 0.1 rhe No~ionul Con.ference

~7 .-1r/!/lc/u/ /rr/e//;eence .4,4.4 I-82. Pittsburgh, PA, 213-216.

Binder, K. (Ed.) (1978). The Mm/e-Cur/o /?re//rod /,I .s~o~is/ictr/ phmks. New York: Springer-

Verlag.

Fahlman. S. E. (1980, June). The Hashnet Interconnection Scheme. (Tech. Rep. No. CMU-

CS-80-125). Carnegie-Mellon University, Pittsburgh, PA.

Fahlman, S. E.. Hinton, G. E., & Sejnowski, T. J. (1983. August). Massively parallel architec-

tures for Al: NETL, Thistle, and Boltzmann Machines. Proceedings o./ rhe No~ionul

Coft.lerence (,!I .Ar/(ficiu/ /nre//i,cence AAA 1-83. Washington, DC, 109-I 13.

Feldman. J. A. (1982). Dynamic connections in neural networks. Bio/o~icu/ C)berne/icr. 46.

27-39.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cogni/ive

Science. 6. 205-254.

Geman. S., & Geman, D. (1983). Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. Unpublished manuscript.

Crimson. W. E. L. (1981). Frorrr imuges /o .FII~/UC~S. Cambridge, MA: MIT Press.

Hinton, G. E. (1977). Re/u.uario~t und its role in vision. Unpublished doctoral dissertation,

University of Edinburgh. Described in D. H. Ballard & C. M. Brown (Eds.), Co/vptr/er

t’/.s/on. Englewood Cliffs, NJ: Prentice-Hall, 408-430.

BOLTZMANN MACHINE LEARNING 169

Hinton. G. E. (1981). Implementing semantic networks in parallel hardware. In G. E. Hinton

& .I. A. Anderson (Eds.), furu//e/ Models oj Associative Memory. Hillsdale. NJ: Erl-

baum.

Hinton, G. E.. & Anderson, J. A. (1981). Pam//e/ models oJassociulive rne/nor.v. Hillsdale,

NJ: Erlbaum.

Hinton, G. E., & Sejnowski, T. J. (1983a. May). Analyzing cooperative computation. fro-

ceedings of ihe Fijlh Annuul Conference of /he Cognirive Science Sociefy. Rochester,

NY.

Hinton. G. E., & Sejnowski, T. J. (1983b, June). Optimal perceptual inference. Proceedings

of (he IEEE Cornprrrer Socie(v Con.ference on Compurer Vision und Puftem Recogni-

/ion. Washington, DC, pp. 448-453.

Hinton, G. E., Sejnowski, T. J.. & Ackley, D. H. (1984. May). Eo//munn Machines: Con-

s/ruin/ m/is//c/ion nerworks /ho/ /em?. (Tech. Rep. No. CMU-CS-84-I 19). Pittsburgh,

PA: Carnegie-Mellon University.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective compu-

tational abilities. Proceedings o/‘ the Nurionul Academy of’ Sciencer USA, 79. 2554-

2558.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Sciewe, 220. 61 I-680.

Kullback, S. (1959). Injormu/ion /heor!, und r/a/isrics. New York: Wiley.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.. & Teller, E. (1953). Equation of

state calculations for fast computing machines. Journul oJ ChemiwI P/r~sic.c. 6. 1087.

Minsky, M.. & Papert, S. (1968). Percepplrons. Cambridge, MA: MIT Press.

Newell, A. (1982). /nte//ecruu/ issues in rhe hi.rrory o/ ur/i/cro/ inrelligence. (Tech. Rep. NO.

CMU-CS-82-142). Pittsburgh, PA: Carnegie-Mellon University.

Newell, A.. & Simon, H. A. (1972). H~rnru!t problem so/vr~r~. Englewood Cliffs, NJ: Prentice-

Hall, 1972.

Ratcliff. R. (1978). A theory of memory retrieval. Ps.vcho/ogictr/ Review. X_C. 59-108.

Renyi, A. (1962). Probubi/i/J /hew,‘. Amsterdam: North-Holland.

Rosenblatt , F. (I96 I). Principles o/‘ tlelrrorl.vnu,,licJ: Perceprrom ontl /he fheo~:v o/’ brurn

rtrechuniw~s. Washington, DC: Spartan.

Smolensky, P. (1983. August). Schema selection and stochastic inference in modular environ-

ments. Proceedings of /he Nu/ionu/ Con.ference O/I .A ri!fic,iol Itilelli,~ence .,I A A 1-S).

Washington, DC. 109-I 13.

Terzopoulos, D. (1984). M~t/iireco/r~/ion cwrrpic~u/ion oJ ~,i.rih/e-c1rt:lirc.e re/~r)T(~.\etft~I/iot~.~. Un-

published doctoral dissertation, MIT, Cambridge, MA.

Waltz, D. L. (1975). Understanding line drawings of scenes with shadows. In P. Winston

(Ed.), The Pxycho/og.t q/ Compu/er Vision. New York: McGraw-Hill.

Winston, P. H. (1984). Ar/iji’ciu/ /n/e//igerrce. (2nd ed.) Reading, MA: Addison-Wesley.

