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ABSTRACT

A generalization from string to trees and from languages to
translations is given of the classical result that any regular
language can be learned from examples: it is shown that for
any deterministic top-down tree transformation there exists
a sample set of polynomial size (with respect to the mini-
mal transducer) which allows to infer the translation. Until
now, only for string transducers and for simple relabeling
tree transducers, similar results had been known. Learning
of deterministic top-down tree transducers (dtops) is far
more involved because a dtop can copy, delete, and per-
mute its input subtrees. Thus, complex dependencies of
labeled input to output paths need to be maintained by the
algorithm. First, a Myhill-Nerode theorem is presented for
dtops, which is interesting on its own. This theorem is then
used to construct a learning algorithm for dtops. Finally, it
is shown how our result can be applied to xml transforma-
tions (e.g. xslt programs). For this, a new dtd-based en-
coding of unranked trees by ranked ones is presented. Over
such encodings, dtops can realize many practically interest-
ing xml transformations which cannot be realized on first-
child/next-sibling encodings.

Categories and Subject Descriptors: I.2.6 [Learning]:
Concept Learning

General Terms: Algorithms

Keywords: Tree transformation, top-down, transducer, learn-
ing algorithm, minimization, Myhill-Nerode equivalence.

1. INTRODUCTION
xml is a popular format for data exchange on the web.

Many communities have defined standard xml dialects to
exchange their data (for instance, xbrl for business data,
or spl for pharmaceutical products). Another common use
of xml is as a storage format for data to be displayed on
web pages. It allows to separate the logical content from
the display content of the data. Different web pages can, dy-
namically, pull out required information from a larger xml
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document, and display it appropriately. Technically speak-
ing, this amounts to transforming xml into html. The most
commonly used programming language for this task is the
W3C standard xslt. More generally, xslt is used to convert
xml into xml. A drawback of xslt programs is that they
are inaccessible to non-experts and are difficult to write and
maintain.
Imagine a system that is able to automatically infer an

xslt program from a given set of examples. It would free
the web programmer from the tedious task of xslt program-
ming. In this paper we present a learning algorithm that al-
lows to build such systems. Our algorithm works in a Gold
style model in polynomial time and with polynomially many
examples [15]: it takes as an input a set of couples of input /
output trees of a target transduction and, if the input is rich
enough, can infer a representation of the target. Besides (1)
decidable equivalence in the class of objects to be learned we
require that the number of examples needed to to learn an
object of size n is (2) bounded polynomially in n (polynomial
data) and that the learning algorithm (3) infers the object
in time polynomial in n. Points (2) and (3) can be proved
through efficient minimization of the desired object. As an
example consider a regular language R and call two strings
x and y “R-equivalent” if there is no z such that exactly one
of xz and yz is in R. The Myhill-Nerode theorem says that
the R-equivalence is of finite index if and only if R is regular.
Moreover, there exist small representations of the different
R-equivalence classes (which, in essence, require the same
space as the minimal dfa for R).

Since xslt programs are Turing complete [18, 26], polyno-
mial exact learning can only be done for subclasses. The tree
translation core of xslt can conveniently be modeled by tree
transducers [2, 17, 19, 21]. A large and well-studied class of
tree transducer for which equivalence is decidable [13] is the
deterministic top-down tree transducer (dtop). Only re-
cently an efficient minimization procedure was proved for
dtops [12]: given a total dtop, one can construct an equiv-
alent “minimal earliest” transducer. In the partial case, in-
spection by a domain automaton is needed to generalize this
result. Our contribution, starting from the earliest normal
form, is to:

1. Present a Myhill-Nerode theorem for deterministic top-
down tree transducers.

2. Provide an algorithm for polynomial exact learning of
deterministic top-down tree transducers.

3. Show how to apply our results to learning of xml trans-
formations.



In terms of previous work, our result provides a break-
through in transducer learning: previous work only con-
sidered non-copying and non-swapping transducers (such as
word transducers, or relabeling tree transducers). In con-
trast, dtops have the power to delete, exchange, and copy
their input subtrees. Note that many practical xslt pro-
grams make use of deletion and copying of subtrees.

Myhill-Nerode Theorem for TOPs

A top has rules of the form q(f(x1, . . . , xk))→ t which say
that if the transducer is in state q and processes an input
node labeled f , then it should output the tree t. The tree t

is over output symbols, and may also contain “state calls” of
the form 〈q′, xi〉 at its leaves. Such a call means to insert the
result of translating in state q′ the i-th subtree of the current
input node. Thus, a top can be seen as a particular left-
linear term rewriting system. Note that a variable xi may
occur many times in t (“copying”), or may not appear at all
(“deletion”). If for every state q and input symbol f there
is at most one rule, then the transducer is deterministic and
realizes a partial function from trees to trees.

How can we define the analog toR-equivalence (mentioned
before), for functions τ realized by deterministic tops (for
short, dtops)? Roughly speaking, we will chop τ into pieces,
by considering functions from certain input subtrees to cer-
tain output subtrees. If there are only finitely many different
such functions for τ , then τ can be realized by a dtop. More
precisely, consider an input tree s and a node π of s. The
states of a dtop that process the node π are uniquely deter-
mined by the edge path from the root of s to π (an edge path
is the concatenation of pairs of node label and child-number
on the path from the root to π). For a pair of edge paths
p = (u, v) we define the residual p−1τ as all pairs (s′, t′) such
that there are s, t with τ(s) = t, u is an edge path in s to
the subtree s′, and v is an edge path in t to the subtree t′.
Two pairs p1, p2 of edge paths are τ -equivalent if and only
if p−1

1 τ = p−1
2 τ . Our Myhill-Nerode theorem says that for

particular pairs of edge paths, called io-paths, τ -equivalence
is of finite index if and only if τ can be realized by a dtop.
Let us consider an example. We want to exchange a list

of a-nodes with a list of b-nodes. The lists are represented
in the first-child-next-sibling encoding, while the empty list
is represented by #. Thus, we want to translate

root(a(#, a(#, . . . a(#,#) . . . ))), b(#, b(#, . . . b(#,#) . . . ))

into the tree obtained by exchanging the root’s two sub-
trees. Since this translation τflip is partial, there are exactly
4 different τflip-equivalence classes; the shortest representa-
tives for these classes are the following pairs of edge paths:

(ǫ, (root, 1)), (ǫ, (root, 2)), ((root, 2), (root, 1)), ((root, 1), (root, 2)),

These io-paths in this order correspond exactly to the states
q1, . . . , q4 of the unique minimal earliest uniform dtop Mflip

below. It starts with the axiom root(〈q1, x0〉, 〈q2, x0〉) and
has the following rules:

q1(root(x1, x2)) → 〈q3, x2〉
q2(root(x1, x2)) → 〈q4, x1〉
q3(#) → #
q3(b(x1, x2)) → b(#, 〈q3, x2〉)
q4(#) → #
q4(a(x1, x2)) → a(#, 〈q4, x2〉)

Note that a minimal earliest uniform dtops as defined
in [12] always comes together with a (minimal) determin-
istic top-down tree automaton recognizing the domain. In

our example, consider the (q4, a)-rule. It deletes the first
subtree; without domain automaton this means that any
tree would be accepted here, but we want only the tree #
there.

Learning Algorithm

Using our Myhill-Nerode theorem for dtops, we show that
for any given top-down tree translation, a characteristic
sample set can be computed in polynomial time (with re-
spect to the size n of the minimal dtop). Given a charac-
teristic sample set (or a superset), the learning algorithm
correctly infers the desired transducer. The characteristic
sample set for the example τflip of before consists of only
four pairs of trees:

root(#,#) → root(#,#)
root(a(#,#),#) → root(#, a(#,#))
root(#, b(#,#)) → root(b(#,#),#)
root(a(a(#,#),#), b(b(#,#),#)) →

root(b(b(#,#),#), a(a(#,#),#))

Note that a dtop can translate a monadic input tree (of
height n) into a full binary tree of height n. This implies that
the trees in a characteristic sample set can have exponential
size with respect to n. This can be avoided by representing
output trees by their minimal DAGs; DAG representation
of the output tree of a dtop can be computed in linear time
with respect to the size of the input tree (see [20]).

Inference of XML Transformations

xml documents are naturally modeled by unranked trees.
There have been several proposal of tree transducers for un-
ranked trees [21, 27]. These models are more expressive
than to use a classical ranked dtop on the “first-child/next-
sibling” (fc/ns) encoding of the unranked trees. For in-
stance, consider the translation xmlflip of a root node with
n children labeled a followed by m children labeled b, into
a root node with first the m b-nodes followed by the n a-
nodes. This example can easily be realized by the unranked
transducers of [21, 27], however, cannot be realized by any
ranked dtop on fc/ns encoded trees. The reason is that a
dtop cannot change the order of nodes on a path.
Unfortunately, the added expressive power of unranked

transducers comes at a price: we do not know whether deter-
ministic unranked top-down tree transducers have decidable
equivalence. In fact, since such transducers can completely
flatten their output, they include the (classical) top-down
tree-to-string translations. It is a long-standing open prob-
lem in tree transducer theory whether deterministic top-
down tree-to-string transducers have decidable equivalence
(already mentioned in [10]).
Are there other ranked tree encodings of unranked trees,

so that a dtop can realize xmlflip? We claim “yes”. In fact,
in the context of xml we believe that one should require
the presence of input and output dtds, before running the
learning algorithm. We can use these dtds to construct en-
codings that overcome restrictions of the fc/ns encoding.
For instance, assume the following dtd for the input docu-
ments of xmlflip:

<!ELEMENT root (a*,b*) >

<!ELEMENT a EMPTY >

<!ELEMENT b EMPTY >

And the same dtd, with a* and b* interchanged in the first
line, for the output documents. Our idea of dtd-based
encoding is to group elements from the same regular sub-
expression, under a new tree node. In our example, we will



have labels “(a*,b*)” (binary) and “a*”, “b*” (unary). With
this encoding, the input tree root(a, a, b) is represented as

root(“(a*,b*)”(“a*”(a,“a*”(a,“a*”(#,#))),“b*”(b,“b*”(#,#))))

As we have seen before, a simple dtop similar to Mflip can
translate this tree into

root(“(b*,a*)”(“b*”(b,“b*”(#,#)),“a*”(a,“a*”(a,“a*”(#,#))))).

Thus, if we supply adequately dtd-encoded trees to our
learning algorithm, then it can infer a ranked transducer
for xmlflip. This transducer has twelve states and sixteen
rules, but can still be inferred by four examples, as for τflip.
The transducer we obtain can, modulo syntax, be seen as
an xslt program for unranked trees, i.e., XML documents:
rules correspond to apply-templates with the mode corre-
sponding to the state. Note that the class of unranked tree
transformations realized by dtops over dtd-encoded trees
is strictly included in the unranked top-down translations
of [21, 27]; to see this, observe that the latter class contains
both the dtd-encoding and the dtd-decoding.

Related Work

In the context of xml, little work deals with learning of
queries and transformations. In fact, there is no prior re-
search work on learning of xslt programs. The “xslt In-
ference Tool” (part of the Word 2003 SDK by Microsoft)
can infer very restricted types of xslt programs; it uses
only a single example of input and output document in or-
der to infer an xslt program. The most related work is
XLearner [23]. XLearner is a practical system that infers
XQuery programs. It uses Angluin’s algorithm [1] in order
to infer path dfa’s, from which it then constructs XPath
expressions. For typical XQueries, the system needs a large
number of user interactions (in the hundreds). It seems
that the classes of XQuery that are learned by XLearner
are incomparable to the class of programs the we infer. As
mentioned in [23], there exists interesting work on inferring
schema mappings, e.g., LSD [7] and Clio [28]. It will be in-
teresting to see if an implementation of our results can be
useful for automatic inference of xml schema mappings, and
if so, how it compares to the such existing systems. There
is a large amount of work on learning of dtds and Schemas,
see, e.g., [3] and the references given there. It is easily possi-
ble to combine any dtd inference algorithm with our work,
by simply first inferring input (and output) dtds, and then
executing our algorithm to infer a transformation.

For finite-state transducers, algorithms exist for learning
of subsequential string transducers [25]. They are based
on minimal earliest transducers, which were formally in-
troduced for strings by Mohri [22], see [6] for a survey. A
learning algorithm and experimental results for determinis-
tic Mealy machines is presented in [24]. Note that our result,
applied to tree translations over monadic trees, also allows
to infer minimal string transducers. For tree transducer,
the only existing work deals with node selecting queries [4],
which, in our context can be seen as simple relabelings (that
is, dtops without copying and permuting of input variables).
Previous work on induction of weighted tree transducers
compute optimal weights for the rules of a fixed given tree
transducer [16].

2. TOP-DOWN TREE TRANSDUCERS
We fix notations and present the standard definition of

top-down tree transducers, together with some basic results.
We then define “residuals”, which allow us to prove a first
version (of one direction) of the Myhill-Nerode theorem.
Trees and Paths. An alphabet is a finite set of symbols.

A ranked alphabet is an alphabet F together with a total
mapping rankF from F to non-negative integers. For k ≥ 0
we denote by F (k) the set {f ∈ F | rankF (f) = k}. We

often write f (k) to indicate that f is of rank k. The set of
(ordered, finite) trees over F is the set of ground terms over
F and denoted by TF . This is the least set such that for all
k ≥ 0 and f ∈ F (k), f(s1, . . . , sk) is in TF if s1, . . . , sk ∈ TF .
For a one-node tree f() we simply write f . For a finite set
A disjoint from F we define TF (A) as TF ′ where F ′ = F ∪A
and rankF ′(a) = 0 for every a ∈ A. Let s ∈ TF . The nodes
of s are denoted by words over N. The root node is denoted
by the empty word ε. For a node π ∈ N

∗, its i-th child is
denoted π · i. For any word w, w · ε = ε · w = w, i.e., ε

behaves as identity element.
In what follows, let s = f(s1, . . . , sk) with f ∈ F (k), k ≥ 0,

and s1, . . . , sk ∈ TF . The set nodes(s) of nodes of s is defined
recursively as nodes(f(s1, . . . , sk)) = {ε} ∪ {i.π | 1 ≤ i ≤
k, π ∈ nodes(si)}. For a node π ∈ nodes(s) we define the
label of π, denoted by s[π], as f if π = ε and as si[π

′] if
π = i.π′, i ∈ N, and π′ ∈ N

∗. Similarly, we define the
subtree (of s) at π, denoted by π−1s, as s if π = ε, and

as π′−1
si if π = i.π′, i ∈ N, and π′ ∈ N

∗. For symbols
f1, . . . , fn of rank zero and trees s1, . . . , sn we denote by
[f1 ← s1, . . . , fn ← sn] the substitution of replacing every
fi-labeled leaf by the new subtree si.

An F -labeled path, or F -path, or path for short, is a (possi-
bly empty) word over the alphabet F# of labeled positions:

F# = {(f, i) | k ≥ 1, f ∈ F (k), 1 ≤ i ≤ k}. Note that

constants in F (0) do not appear in such paths. We say that
u = (f1, i1)· . . . ·(fn, in) belongs to s, denoted u =| s, if for
all 1 ≤ j ≤ n: s[i1.i2. · · · .ij ] = fj . The set of all paths
that belong to s is denoted by paths(s). The label at u is
denoted by s[u] and is defined as s[i1. · · · .in]. Note that
the empty path ε belongs to every tree (and represents the
root node). If u =| s, then u−1(s) denotes the subtree of s
at u. We also need labeled paths that determine the label
of the node that they address. We define F -npaths U to
be words of the form u·f consisting of an F -path u and a
symbol f ∈ F . For U = u·f and s ∈ TF we write U =| s if
u =| s and u−1s[ε] = f . For s ∈ TF we denote by npaths(s)
the set of all npaths U such that U =| s.
Transducers. We fix an infinite set X = {x0, x1, x2, . . . }

of input variables, and, for every k ≥ 0 define the set Xk =
{x1, . . . , xk}, so that X0 = ∅ in particular. For sets A and B,
we write 〈a, b〉 for elements in the Cartesian product A×B.

Definition 1. A deterministic top-down tree transducer
(dtop) is a tuple M = (Q,F,G, ax , rhs) where Q is a finite
set of states, F and G are ranked alphabets of input and
output symbols, respectively, ax ∈ TG(Q× {x0}) is the ax-
iom, and rhs is a (possibly partial) function which associates

to (q, f) a tree in TG(Q × Xk) with q ∈ Q, f ∈ F (k), and
k ≥ 0. For every state q ∈ Q, M induces the function JMKq :

TF → TG which, for every f ∈ F (k), k ≥ 0, and s1, . . . , sk ∈
TF is defined recursively as JMKq(f(s1, . . . , sk)) =

rhs(q, f)[〈q′, xi〉 ← JMKq′(si) | q
′ ∈ Q, 1 ≤ i ≤ k].



The transduction defined by M is the function JMK : TF →
TG defined as JMK(s) = ax [〈q, x0〉 ← JMKq(s) | q ∈ Q] for
every s ∈ TF .

In the rest of the paper, unless specified differently, F and
G always denote (arbitrary) input and output alphabets, re-
spectively. A dtop can be seen as a particular confluent and
terminating term rewrite system, with left-linear rules. In
fact, it is often intuitive to think of the rewrite rules that are
induced by the family of right-hand sides of the transducer.
If t = rhs(q, f) for a dtop M , then q(f(x1, . . . , xk)) → t is
called the (q, f)-rule (of M).

Example 1. The constant transformation that maps all
trees in TF to a constant b ∈ TG can be defined by the dtop

M1 with axiom ax = b, and without states and rules. The
same transduction can be defined by the dtop M2 with a
singleton state set Q = {q0}, axiom ax = 〈q0, x0〉, and the

rule q0(f(x1, . . . , xk))→ b for every f ∈ F (k) and k ≥ 0.
There exist further transducers that define still the same

transduction, but produce the output even later, for instance
at the first-child of the root if it exists, or at the root oth-
erwise. For instance, consider the dtop M3 which has two
states Q = {q0, q1}, axiom ax = 〈q0, x0〉, and, for every

f ∈ F (k), k ≥ 1, f ′ ∈ F (k′), k′ ≥ 0, and a ∈ F (0), has the
rules:

q0(f(x1, . . . , xk)) → 〈q1, x1〉 ,
q0(a) → b ,

q1(f
′(x1, . . . , xk′)) → b .

Note that the domain of any dtop can be accepted by
a deterministic top-down tree automaton (dtta) (see, e.g.,
Proposition 2(1) of [12]). A dtta can be defined as a dtop

which realizes the partial identity, i.e., for which: rhs(q, f)
(if it exists) is of the form f(〈q1, x1〉, . . . , 〈qk, xk〉). Tree lan-
guages accepted by dttas are path-closed, see, e.g., [14]. A
tree language L is path-closed if P-closure(L) ⊆ L where
P-closure(L) = {s | npaths(s) ⊆ npaths(L)} and npaths(L)
= {U | U ∈ npaths(s), s ∈ L}.

Proposition 2. The domain of a dtop is path-closed.

Consider a dtop M = (Q,F,G, ax , rhs). We denote by
Mx the transducer Mx = (Q,F ′, G′, ax , rhs ∪ rhs ′) where

F ′ = F∪{x(0)}, G′ = G∪{〈q, x〉(0) | q ∈ Q}, and rhs′(q, x) =
〈q, x〉 for every q ∈ Q. Consider now an input tree s ∈ TF
of M and an F -path u that belongs to s. Then the tree
ζ = JMK(s[u← x]) shows the computation of the transducer
M , where we have “stopped” the translation at the unique
node “u”. Intuitively, if ζ contains the pair 〈q, x〉 at some
path v, then it means that at v, M is translating the input
subtree s′ = u−1s in state q; in other words, the output tree
JMK(s) has at v the subtree JMKq(s

′).

Definition 3. Let M be a dtop and let u, v be F and
G-paths, respectively. Then (u, v) reaches q if there exists
s ∈ TF such that u =| s and v−1(JMxK(s[u← x])) = 〈q, x〉.

In the literature, the sequence of states that appear in the
tree JMK(s[u ← x]) is often called “the state sequence” of s
at u. It is well known, that we can stop M ’s computation at
any u =| s, and then replace every 〈q, x〉 by the q-translation
of u−1s. The following proposition is given in Lemma 3.6
of [11], but for total macro tree transducers (mtts); dtops

are special mtts without parameters. It is obvious that the
statement also holds for partial dtops: JMK(s) is defined if
and only if (JMxK is defined and JMKq(u

−1s) is defined for
every q such that 〈q, x〉 occurs in JMxK).

Proposition 4. Let M = (Q,F,G, ax , rhs) be a dtop,
u a path, and s ∈ TF such that u =| s. Then

JMK(s) = JMxK(s[u← x])[〈q, x〉 ← JMKq(u
−1

s) | q ∈ Q].

Residuals. We identify the partial function JMKq defined
by a transducer M with state q by pairs p of labeled input-
output paths, by introducing a notion of residuals of a trans-
duction JMK with respect to pair p.

Definition 5. The residual p−1τ of a partial function
τ ⊆ TF × TG at a pair p = (u, v), where u is a F -path
and v a G-path, is the relation p−1τ ⊆ TF × TG with:

p
−1

τ = {(u−1(s), v−1(t)) | (s, t) ∈ τ, u =| s, v =| t} .

For us, only very particular pairs of paths are sensible.
For instance, we not care about p’s such that p−1τ is not
a function. This happens if the node v was generated by
an input subtree that is disjoint (i.e., in a different subtree)
with u. E.g., if u 6= v and τ is the identity function on trees,
then p−1τ is not a function. We also do not care about p’s
such that p−1τ is empty. This happens if u is not a node
of any s ∈ dom(τ), or if v is not a node of τ(s) for any
s ∈ dom(τ). Recall now the definition of “p reaches q” given
below Proposition 2. If, for a given dtop M , p reaches
q, then p−1JMK is a function. This follows from the next
lemma, together with the fact that JMKq is a function for
every state q of M .

Lemma 6. Let M be a dtop and u, v paths. If p = (u, v)
reaches q, then p−1JMK = JMKq.

Proof. Let F be the input ranked alphabet of M and
s ∈ TF . Consider an arbitrary tree s̃ ∈ TF with u−1s̃ = s.
Clearly, such s̃ exists. By Lemma 4,

JMK(s̃) = JMxK(s̃[u← x])[〈q, x〉 ← JMKq(u
−1

s̃) | q ∈ Q].

Since (u, v) reaches q, we know that the tree JMxK(s̃[u ←
x]) is labeled 〈q, x〉 at v. In particular, this means that
v =| JMK(s̃). Thus, we can apply v−1 to the above equation.
In the right-hand side, this yields precisely the argument of
the substitution, i.e., we obtain

v
−1JMK(s̃) = JMKq(u

−1
s̃).

By the definition of residual, v−1JMK(s̃) = (p−1JMK)(u−1s̃)
if and only if u =| s̃ and v =| JMK(s). Thus, the left-hand side
in the equation equals (p−1JMK)(u−1s̃). Since u−1s̃ = s, we
have (p−1JMK)(s) = JMKq(s).

Let M be a dtop with set of states Q. Let p1, p2 be pairs
of labeled paths such that for i ∈ {1, 2} there exists qi ∈ Q

which is reached by pi. On such pairs p1, p2 we define the
congruence relation ≡M of M as

p1 ≡M p2 iff p
−1
1 JMK = p

−1
2 JMK.

The next corollary follows obviously from Lemma 6.

Corollary 7. The congruence ≡M of a dtop M has
finite index.



This corollary of Myhill-Nerode type has the disadvantage
that the congruence is defined on objects that depend on
the transducer M , rather than only on properties of the
transduction JMK. Therefore, it does not immediately lead
to a unique minimal representation of such a transduction.
This problem can be overcome for transducers for which the
output production is normalized.

3. EARLIEST TRANSDUCERS
dtops in general do not have a unique minimal trans-

ducer (with respect to the number of states), and therefore
also no Myhill-Nerode theorem. This is a problem for us
because the learning techniques we want to apply are heav-
ily dependent on such a theorem. However, [12] present the
notion of earliest dtop, in order to overcome this problem.
Intuitively, in those transducers, the output is produced as
soon as possible.

First, we need to introduce the notion of largest common
prefix of a set of trees. For two trees t, t′ ∈ TG we define
their largest common prefix tree t⊔ t′ ∈ TG({⊥}) as follows:

g(t1, . . . , tk) ⊔ g
′(t′1, . . . , t

′
k′) =

{

g(t1 ⊔ t′1, t2 ⊔ t′2, . . . , tk ⊔ t′k) if g = g′

⊥ otherwise.

Note that the ⊔ operator is associative and commutative.
Thus, ⊔ is easily extended to sets L = {t1, . . . , tn} of trees
by setting

⊔

L equal to t1 ⊔ t2 ⊔ · · · ⊔ tn independently of
the ordering of the trees in L.

Let τ ⊆ TF × TG be a partial function and u a path that
belongs to a tree in dom(τ). We define τ ’s maximal output
for u as outτ (u) =

⊔

{τ(s) | u =| s, s ∈ dom(τ)}. and the
same way outτ (U) for node paths U . Note that outτ (u) and
outτ (U) are undefined for all paths that do not belong to
any tree in dom(τ). For a partial function τ 6= ∅, outτ (ε) is
the “global common prefix” of all output trees. For instance,
if outτ (ε) = g(⊥,⊥) then the root node of every tree in the
range of τ has label g (of rank 2).

We do not want useless states in an earliest dtop. A state
q of a dtop M is productive if there exists a pair (u, v) that
reaches q and there is an s ∈ dom(JMK) with u =| s. A dtop

is productive if all of its states are productive.

Definition 8. A dtop M is earliest if it is productive
and for every state q of M , outJMKq (ε) = ⊥.

The notion of earliest dtops was introduced in [12] for
“dtops with inspection” (see Section 7). It was proved there
in Theorem 11 of [12] that any dtop can be transformed
into an earliest dtop, that produces the same output on the
domain of the original dtop. <

Example 2. The transducer M1 of Example 1 is ear-
liest, while M2 and M3 are not (because outJM2Kq0

(ε) =

outJM3Kq0
(ε) = b 6= ⊥).

The axiom and rules of an earliest dtop are in a special
form, as shown in the next lemma.

Lemma 9. For all earliest dtops M = (Q,F,G, ax , rhs):

(1) ax is of the form outJMK(ε)Ψ for some substitution Ψ
mapping ⊥ nodes to Q× {x0} and

(2) for every (q, f)-rule of M and every pair of paths (u, v)
that reaches q, then rhs(q, f) = (v−1outJMK(u·f))Ψ for
some substitution Ψ mapping ⊥ nodes to Q×Xk.

Proof. For the second part, consider a (q, f)-rule and a
pair p = (u, v) that reaches q. We need to prove that the set
of paths of rhs(q, f) is the same that the set of paths v′ such
that v·v′ =| outJMK(u·f). If v

′ =| rhs(q, f), then for all trees
s ∈ dom(JMKq) with f =| s, v′ =| JMKq(s). By Lemma 6
and Proposition 4 this implies that for every s ∈ dom(JMK)
with u·f =| s: v·v′ =| JMK(s), i.e., v′ =| v−1outJMK(u·f).
For the other direction, assume by contradiction that v′ =|
v−1outJMK(u·f) and v′ does not belong to rhs(q, f). By
Proposition 4, there must be an ancestor v′′ of v′ (i.e., v′′ =
v′·ṽ) such that some element 〈q′, xi〉 ∈ Q ×X occurs at v′′

in rhs(q, f). Then ṽ =| JMKq′(s) for every s ∈ dom(JMKq′),
and hence M is not earliest; a contradiction.

We call pairs of paths that reach a state io-paths. They
have many important properties for us and are the essential
notion used to infer a transducer from a translation.

Definition 10. An io-path p = (u, v) for a partial func-
tion τ ⊆ TF × TG is a pair of an F -path and a G-path such
that outτ (u)[v] = ⊥ and p−1τ is functional.

Example 3. Consider the function τ = {(f(0, 0), 0), (f(
0, 1), 0), (f(1, 0), 0), (f(1, 1), 1)}. Clearly (ε, ε) is an io-path
for τ . There is no other io-path for τ , e.g., p = ((f, 1), ε)
is not an io-path because p−1τ = {(0, 0), (1, 0), (1, 1)} is not
functional. Note that τ cannot be realized by any dtop, in
constrast to deterministic bottom-up tree transducers which
can realize all finite tree functions.

Lemma 11. Let M be an earliest dtop. If p = (u, v) is
an io-path for JMK then p reaches a state q of M .

The converse follows from Lemma 6. Thus for earliest
dtops M , reachabilty in M captures io-paths of JMK.

Proof. Consider an io-path p = (u, v) for JMK. Let n

be the length of u and let ui be the prefix of length i of u,
i.e., u0 = ε and un = u. For i ∈ {1, . . . , n}, let vi be such
that outJMK(ui)[vi] = ⊥, and denote pi = (ui, vi). Note that
for each i ∈ {1, . . . , n} there is a v′ (potentially empty) such
that vi = vi−1·v

′. We prove inductively on i that each pi
reaches a state qi of M .
Base case (i = 0) is direct from Lemma 9. For the in-

ductive step (ui → ui+1), consider pi and pi+1 with the last
step of ui+1 being (f, j) and let v′ be such that vi+1 = vi·v

′.
By induction hypothesis pi reaches a state qi. Then, from
Lemma 9, rhs(qi, f)[v

′] must equal 〈q, xl〉 for some state
q ∈ Q and some l ∈ {1, ..., k} where k is the rank of f . If it
did not, then it would equal a symbol g ∈ G, which means
that for every input tree s with u =| s, JMK(s)[vi+1] = g as,
either vi+1 is not equal to v and g is the next label step in v

that follows the position indicated by vi+1, or vi+1 = v and
that comes from from functionality of p−1JMK. As before,
this contradicts that outJMK(ui+1)[vi+1] = ⊥, because there
exists s1, s2 for which g1 = JMK(s1)[vi+1] 6= JMK(s2)[vi+1] =
g2. Since pi reaches qi, and q appears at v′ in rhs(qi, f), we
have by Lemma 4 that pi+1 reaches q.

We can now define the Myhill-Nerode congruence of par-
tial functions τ ⊆ TF × TG between io-paths p1 and p2 of τ
as follows: p1 ≡τ p2 iff p−1

1 τ = p−1
2 τ.



Theorem 12. For an earliest dtop M , the Myhill-Nerode
congruence ≡JMK has finite index.

Proof. Let M be an earliest dtop. By Lemma 11, every
io-path p reaches some state q ofM , and hence, by Lemma 6,
p−1JMK = JMKq. SinceM has only a finite number of states,
the number of classes of io-paths that are equivalent w.r.t.
the Myhill-Nerode congruence must be finite.

This gives us the first part of the Myhill-Nerode theorem.
it remains to prove the second part, i.e. that any partial
function realized by a dtop has a Myhill-Nerode congruence
of finite index.

4. TOP-DOWN PARTIAL FUNCTIONS
In order to have the second part of the Myhill-Nerode

theorem, we want to find a semantic characterization of the
partial function defined by a dtop.

An obvious property that we will often need is that if a
path belongs to outτ (u), then it also belongs to outτ (u·u

′).

Lemma 13. Let U,U ′ be node-paths such that U ′ is a de-
scendant of U , and U and U ′ belong to some trees in dom(τ).
Let V be a G-node-path. If V =| outτ (U), then V =| outτ (U

′).

Proof. For arbitrary A,B ⊆ TG with A ⊆ B it follows
from the definition of

⊔

that every G-labeled node in
⊔

B

also belongs to
⊔

A. Now, let A = {s ∈ dom(τ) | U ′ =| s}
and B = {s ∈ dom(τ) | U =| s}. Since A ⊆ B we obtain
that if V belongs to outτ (U) =

⊔

B then it also belongs to
outτ (U

′) =
⊔

A.

We define the parent of a node-path as parent(u·(f, i)·f ′) =
u·f and parent(ε·f) = ε.

Definition 14. Let τ ⊆ TF×TG be a partial function and
V a G-npath. The set of top-down origins of V with respect
to τ , denoted by td-originτ (V ), consists of all F -npaths U

such that:

1. V =| outτ (U), and

2. V 6=| outτ (parent(U)).

The presence of a td -origin of a npath in an input tree im-
plies the presence of this npath in the corresponding output
tree, as stated by following claim:

Claim 15. If U =| s, s ∈ dom(τ), and U ∈ td-origin(V )
then V =| τ(s).

Proof. The first condition of the definition of td-origins
ensures V =| outτ (U) which is equivalent to V =| τ(s) for
all s ∈ dom(τ) with U =| s.

Example 4. Let F = G = {f (1), a(0), b(0)} and consider
the total function τ4 : TF → TG such that τ4(s) = f(a) if s =
a, and otherwise τ4(s) = f(b). We have td-originτ4(f) =
∅ since f ∈ outτ (ǫ). Furthermore, td-originτ4((f, 1)·a) =
{ǫ · a} and td-originτ4((f, 1)·b) = {ǫ · b, ǫ · f}.

Given a tree s ∈ TF , we define td -originτ
s (V ) as the set

td -originτ (V ) ∩ npaths(s).

Definition 16. A partial function τ ⊆ TF ×TG is called
top-down if dom(τ) is path-closed and for every (s, t) ∈ τ ,
npath V with V =| t, and V 6=| outτ (ǫ): the set td-origin

τ
s (V )

is a singleton.

It should be clear that the total function τ4 of Example 4
is top-down. Let us now look at a translation that is not
top-down.

Example 5. Let F = G = {f (2), a(0), b(0)} and consider
the translation τ5 : TF → TG satisfying τ5(s) = a if s =
f(a, a), and otherwise τ5(s) = b. This translation is not
top-down: outJMK((f, 1)a) = ⊥ and outJMK((f, 2)a) = ⊥,
hence td-origin(a) = ∅.

The following Lemma is proved by induction on the struc-
ture of input trees.

Lemma 17. For any dtop M , JMK is top-down.

Note that the converse of Lemma 17 is wrong, since all
functions defined by infinite state top-down deterministic
transducers are top-down (the above proof continues to work
if the set of states is infinite), but not always definable by a
dtop.

Our next objective (Lemma 19) is to show that td-origins
of top-down partial functions are organized in a top-down
manner. We start with an auxiliary lemma.

Lemma 18. Let u, f, v, g be such that u·f ∈ td-originτ (v·g).

There exist Ũ and g̃ 6= g such that v·g̃ =| outτ (u·Ũ)

Proof. Assume by contradiction that there are no Ũ and
g̃ with g̃ 6= g and v·g̃ =| outτ (u·Ũ). By the definition of out ,
this implies that v·g =| outτ (parent(u·f)); hence, u·f is not
in td -originτ (v·g); a contradiction.

Lemma 19. Let τ ⊆ TF × TG be a top-down partial func-
tion and s ∈ TF . If V ′ is a proper descendant of V , {U} =
td-origins(V ), and {U ′} = td-origins(V

′), then U ′ is a de-
scendant of U .

Proof. From {U} = td -origins(V ) we know that V =|
outτ (U) and V 6=| outτ (parent(U)), and similarly for U ′

w.r.t. V ′. Obviously, U ′ cannot be a proper ancestor of U :
if it was then, by Lemma 15, V ′ =| outτ (parent(U)). Since V
is an ancestor of V ′, this means that V =| outτ (parent(U));
a contradiction.
It remains to show that U ′ is not disjoint from U . Assume

it was. Let v and g such that v·g = V , and u and f such that
u·f = U . By Lemma 18, there exists Ũ and g̃ 6= g such that
v·g̃ =| outτ (u·Ũ). Hence, there exists an s ∈ dom(τ) such

that u·Ũ =| s and v·g̃ =| τ(s). Since V ′ ∈ outτ (U
′), there

exists an s′ ∈ dom(τ) such that U ′ =| s′ and V ′ =| τ(s′). By
path-closedness of dom(τ) there exists an s′′ ∈ dom(τ) such

that u·Ũ =| s′′ and U ′ =| s′′. By the definition of out we

have V ′ =| τ(s′′), and from the fact that v·g̃ =| outτ (u·Ũ) we
know that V 6=| τ(s′′). This contradicts that V ′ is a proper
descendant of V .

5. ALIGNMENTS
To have the Myhill-Nerode Theorem it remains to prove

the converse of Theorem 12: we need to construct an earli-
est transducer for any given top-down partial function whose
Myhill-Nerode equivalence has finite index. Recall that the
Myhill-Nerode equivalence is defined on io-paths. The trick-
iest part of the construction is to align paths of output trees
to paths in input trees. In particular, when we construct
the rules, we need to be able to make the correspondence
between the variables in the right-hand side with the vari-
ables of the left-hand side (the “xi”).



Lemma 20. Let τ be a partial function. If τ is top-down
and u·f ∈ td-originτ (v·g) then (u, v)−1τ is functional.

Consider that v·⊥ =| outτ (u) for some top-down partial
function τ . By the definition of out (and

⊔

) this means
that at least two distinct output symbols can appear at v,
for input trees containing u. This property, called “two-
valuedness”, allows to align input and output paths. We say
that a pair (u, v) is two-valued for τ if there exist F-npaths
U1, U2 and distinct symbols g1, g2 ∈ G such that:

v·g1 =| outτ (u·U1) and v·g2 =| outτ (u·U2).

Lemma 21. If τ is functional and top-down and v·⊥ =|
outτ (u) then (u, v) is two-valued.

The next two lemmas are central. They show that only
one particular alignment between output path and input
path is possible. This is first proved for two-valued pairs
(Lemma 22) and then lifted to io-paths (Lemma 23).

Lemma 22. Let τ ⊆ TF × TG be a top-down partial func-
tion and let (u·(f, i), v) be two-valued for τ . If (u·(f, j), v)−1τ

is functional and nonempty, then i = j.

Proof. Since (u·(f, i), v) is two-valued for τ , there ex-
ist paths u1, u2 such that ⊥ 6= v−1outτ (u·(f, i)·u1)[ε] 6=
v−1outτ (u·(f, i)·u2)[ε] 6= ⊥. Thus for arbitrary trees s1, s2 ∈
dom(τ) that contain u·(f, i)·u1 and u·(f, i)·u2, respectively,

v
−1(τ(s1)) 6= v

−1(τ(s2)) (#)

To show a contradiction, assume that i 6= j. Let ρ =
(u·(f, j), v)−1τ . Since ρ is nonempty, there exists a tree
s̃ with u·(f, j) =| s̃ and v =| τ(s̃). Obviously, s̃ contains
u·(f, i).

We construct the tree s̃1 from s̃ by replacing the subtree at
u·(f, i) by an arbitrary input tree that contains u1. Since τ is
path-closed s̃1 ∈ dom(τ), and v−1(τ(s̃1)) exists. Since i 6= j,
u·(f, j)−1

s̃1 = u·(f, j)−1
s̃. The definition and functionality

of ρ imply:

v
−1(τ(s̃1)) = ρ((u·(f, j))−1

s̃1) = ρ((u·(f, j))−1
s̃).

Similarly, we construct a tree s̃2 which contains u·(f, i)·u2

such that v−1(τ(s̃2)) = ρ(u·(f, j)−1
s̃). Hence:

v
−1(τ(s̃1)) = ρ(u·(f, j)−1

s̃) = v
−1(τ(s̃2))

in contradiction to (#).

Lemma 23. Let τ ⊆ TF ×TG be a partial function that is
top-down. For every io-path (u, v) of τ , f ∈ F (k), k ≥ 1, and
v′ with v·v′·⊥ =| outτ (u·f), there is a unique i ∈ {1, . . . , k}
such that (u·(f, i), v·v′) is an io-path. We denote the number
i by origτ

u·f,v(v
′).

6. CANONICAL TRANSDUCERS
We say that a partial top-down function τ has finite in-

dex, if its Myhill-Nerode equivalence (on io-paths) is of fi-
nite index. We now show how to construct an earliest dtop
M = min(τ) such that for every s ∈ dom(τ), JMK(s) = τ(s).
Note that there exist top-down partial functions with fi-

nite index, that cannot be defined by any dtop, because the
dtop cannot delete an input subtree and check its domain
at the same time. This property of dtops was already noted
in [8]. For instance, consider the top-down partial function

τ = {(f(c, a), a), (f(c, b), b)}. In order to realize τ , every
dtop would have to delete first subtrees below f -roots, since
the output does not depend on them. As a consequence, no
such dtop can check whether the first subtree is a c.

Definition 24. Let τ be a top-down partial function with
Myhill-Nerode equivalence of finite index. We define the
dtop min(τ) = (Q,F,G, ax , rul) as follows:

Q = {[p] | p is an io-path of τ}

The axiom ax is the term outτ (ε)Ψ0 where the substitution
Ψ0 replaces subtrees at ⊥-nodes as follows:

Ψ0 = [v′ ← 〈[(ε, v′)], x0〉 | v
′·⊥ =| outτ (ε)]

For all io-paths p = (u, v) of τ and f ∈ F (k) where k ∈ N0

such that u·f ∈ npaths(dom(τ)), the following rule is an
element of rul:

[p](f(x1, . . . , xk))→ v−1(outτ (u·f))Ψ

where Ψ is the substitution on trees, that replaces all ⊥-
subtrees as follows:

Ψ = [v′ ← 〈[pv′ ], xiv′ 〉 | v
′·⊥ =| outτ (u·f)]

Here, iv′ is the unique index such that pv′ = (u·(f, iv′), v·v′)
is an io-path of τ , i.e., iv′ = origτ

u·f,v(v
′).

Note that min(τ) is well-defined. The set Q is finite, since
there JMK has finite index by assumption. Pairs (ǫ, v′) in the
axiom are io-paths of τ , since v′·⊥ is assumed. Furthermore,
by Proposition 23, the existence and uniqueness of iv′ are
ensured, such that pv′ is an io-path of τ .

Lemma 25. If τ ⊆ TF × TG is a top-down partial func-
tion whose Myhill-Nerode equivalence has finite index, then
Jmin(τ)K|dom(τ) = τ .

Lemma 26. The transducer min(τ) is earliest.

7. MINIMALITY
We show that min(τ) is indeed a unique earliest dtop for

τ with a minimal number of states that is compatible with
dom(τ) in a particular sense defined below.
In [12] they minimize “dtops with inspection”, that is, a

dtop together with a deterministic top-down tree automa-
ton that defines the domain. In this way, the problem of
deletion and checking mentioned in the beginning of Sec-
tion 6 is overcome. It turns out that a minimal earliest
dtop with inspection is not unique. In [12] this is solved by
imposing uniformity on transducers. Here, we take a similar
approach, but express it independently of the representation
of the domain by a top-down tree automaton.

Definition 27. We call an earliest dtop M compatible
with a domain D if it satisfies the following three conditions:

(C0) io-paths p1 = (u1, v1) and p2 = (u2, v2) of JMK with
different D-restricted domains, i.e., u−1

1 (D) 6= u−1
2 (D),

reach different states of M .

(C1) for all F -paths u either both outJMK(u) and outJMK|D
(u)

are undefined, or satisfy outJMK(u) = outJMK|D
(u).

(C2) no superfluous rules, i.e., for all io-paths p = (u, v)
of JMK, all f ∈ F such that (u·f)−1(D) = ∅, and all
states q of M reached by p, rhs(q, f) is undefined.



Example 6. Let τ be the identity function with domain
restricted to D = {f(c, a), f(c, b)}. This partial function has
two io-paths p1 = (ε, ε) and p2 = ((f, 2), ε) with residuals
p−1
1 (τ) = τ and p−1

2 (τ) = {(a, a), (b, b)}.
Clearly, τ cannot be defined by any dtop without domain

inspection, since these must all delete the first subtree and
thus cannot test whether it is equal to c. Nevertheless there
exists an earliest dtop M0 with a single state, whose re-
striction to D defines τ . It has the axiom ax = f(c, 〈q0, x0〉)
and the rules:

q0(f(x1, x2))→ 〈q0, x2〉, q0(a)→ a, q0(b)→ b.

Transducer M0, however, fails to satisfies property (C0).
The problem is that the io-paths p1 and p2 reach the same
state q0 in M , even though they have different domains:
ε−1(D) = D and (f, 2)−1(D) = {a, b}.
The minimal earliest dtop M1 that defines τ on D and

that is compatible with D, has two states, ax = f(c, 〈q0, x0〉)
and the rules:

q0(f(x1, x2))→ 〈q1, x2〉, q1(a)→ a, q1(b)→ b.

There exists another earliest dtop M2 with one state, which
defines τ on D, that satisfies (C0) but not (C1). It has axiom
ax = 〈q0, x0〉 and the following rules:

q0(f(x1, x2))→ f(c, 〈q0, x2〉), q0(a)→ a, q0(b)→ b.

Note that M2 is earliest, even though it does not produce the
maximal possible output when restricted to D. Therefore,
(C1) is violated: ⊥ = outJM2K(ε) 6= outτ (ε) = f(c,⊥).

There exist a dtops M3 that defines τ on D and satisfies
(C0) and (C1), but not (C2). This transducer has two states,
but is not isomorphic to M1. M3 is obtained from M1 by
adding the following rule, which permits to accept further
trees outside the domain: q0(g(x1))→ a.

The uniqueness result of minimal earliest compatible trans-
ducers in the following Myhill-Nerode theorem for dtops is
quite intricate.

Theorem 28. The following three properties are equiva-
lent for all partial functions τ ⊆ TF × TG:

1. τ is top-down and has finite index, i.e., the number of
different residuals of io-paths of τ is finite.

2. JMK|L(A) = τ for some dtta A and dtop M .

3. There exists a unique earliest dtop M with a minimal
number of states that is compatible with D = dom(τ)
and such that JMK|D = τ .

It τ satisfies the above properties, then we call min(τ) the
unique minimal earliest compatible dtop of τ .

8. CHARACTERISTIC SAMPLES
We show that top-down partial functions with finite in-

dex can be characterized by its domain and a finite sample
containing examples of input-output pairs.

We fix a path-closed set D ⊆ TF and consider the class
of top-down partial functions τ ⊆ TF × TG of finite index
with domain dom(τ) = D. A sample S for τ is a finite sub-
relation S ⊆ τ . Our objective is to characterize transducers
dtop min(τ) by a finite sample of input-output pairs for τ

whose cardinality is polynomial in the size of M , under the
assumption D = dom(τ).

In order to identify the states of dtops by particular io-
paths that reach them, we assume two total orders <F on
F -paths and <G on G-paths such that paths become smaller
when deleting letters. We then lift these to orders to an order
of pairs of F - and G-paths lexicographically:

(u, v) < (u′
, v

′)⇔ u < u
′ ∨ (u = u

′ ∧ v < v
′).

For examples, we assume that u < u′ if u has fewer letters
than u′ or the same numbers of letters while u preceeds u′

lexicographically. In analogy for v < v′.

Definition 29. Let τ ⊆ TF × TG be a top-down partial
function of finite index and M = min(τ). Let q be a state

of M and f ∈ F (k) for some k ∈ N0.

- The io-path of q is the w.r.t. < least io-path of τ that
reaches q in M ; we denote it by io-pathq.

- If rhs(q, f) is defined in M then for all paths v′ of
rhs(q, f) that are labeled by some 〈q′, xi〉 where 1 ≤
i ≤ k, we define the io-path of the transition q, f, v′ by
io-pathq,f,v′ = (u · (f, i), v · v′) where io-pathq = (u, v).

A state-io-path of τ is some io-pathq where q is a state of
min(τ), and similarly, a trans-io-path of τ is a io-pathq,f,v′

for some transition q, f, v′ of M .

For instance, the 4 io-paths of the transformation τflip given
in the introduction are precisely the state-io-paths for the
states q1, . . . , q4 of the dtop Mflip there, with respect to the
concrete order we fixed above.

More generally, it should be noticed that the definitions
of state- and trans-io-paths depend on the precise ordering.
As a consequence, the definitions of characteristic samples
below will depend on this ordering too.

Definition 30. Let ρ ⊆ TF × TG a binary relation and
p1 = (u1, v1) and p2 = (u2, v2) be pairs of F - and G-paths.
We call p1 and p2 mergeable w.r.t. ρ and D if u−1

1 (D) =
u−1
2 (D) and there is no s ∈ u−1

1 (D) such that p−1
1 (ρ)(s) 6=

p−1
2 (ρ)(s).

Definition 31. Let τ ⊆ TF × TG be a top-down partial
function with dom(τ) = D. A relation S ⊆ TF ×TG is called
a characteristic sample for τ w.r.t < if:

(C) S is a sample for τ , i.e., S ⊆ τ is finite.

(A) outS(ε) = outτ (ε).

(T) for all state-io-paths (u, v) of τ and all f ∈ Σ(k), ei-
ther outτ (u·f) and outS(u·f) are both undefined or
outτ (u·f) = outS(u·f).

(O) for all state-io-paths (u, v) of τ and all f ∈ Σ(k) such
that outτ (u·f) is defined, then, for all v′ with v′·⊥ =|
outτ (u·f), there is a unique i such that (u·(f, i), v·v′)
is an io-path of S.

(N) state-io-paths p1 = (u1, v1) and trans-io-paths p2 =
(u2, v2) of τ that are not mergeable w.r.t. S and D are
not mergeable w.r.t. τ and D.

Consistency (C) ensures soundness. The axiom of min(τ)
can be inferred from S by (A). Property (N) requires that
S contains sufficient information to separate non-equivalent
state- and trans-io-paths of τ .



Lemma 32. Let S be a sample for τ that satisfies (N), p1
a state- and p2 a trans-io-path for τ . If p−1

1 (τ) 6= p−1
2 (τ)

then p1 and p2 are not mergeable w.r.t S and D.

Properties (T) and (O) permit to infer the transitions of
min(τ): (T) allows to build the rigid parts of the right hand
sides of the rules, while (O) allows to find the correct align-
ment, i.e, which variables to put into the right hand side.

Lemma 33. Let S be a sample for τ that satisfies (T)
and (O), p = (u, v) a state-io-path for τ and f ∈ Σ(k) with
outτ (u·f) is defined, then for all v′ with v′·⊥ =| outτ (u·f)
it holds that origS

u·f,v(v
′) = origτ

u·f,v(v
′)

Proposition 34. For every top-down partial function τ

with finite index, there exists a w.r.t. < characteristic sam-
ple S whose cardinality is polynomial in the size of min(τ).

9. LEARNING ALGORITHM
We present our learning algorithm for dtops, which iden-

tifies min(τ) for some unknown top-down partial function
τ ⊆ TF × TG with finite index, from a given dtta A with
L(A) = dom(τ) and a characteristic sample S for τ .

As main data structure it relies on so called dtops with
border-states whose semantics is fixed statically.

Definition 35. A dtop with border-states is a tuple M =
(Qok , Qborder , F,G, ax , rhs, sem) such that:

1. (Q,F,G, ax , rhs) is a dtop where Q = Qok ⊎Qborder ,

2. sem is a collection of partial functions sem(q) ⊆ TF ×
TG for all q ∈ Qborder , and

3. rhs(q, f) is undefined for all q ∈ Qborder and f ∈ F .

The partial functions JMK and JMKq can be defined for all
states q ∈ Q, by JMKq = sem(q) if q ∈ Qborder and as for
dtops before if q ∈ Qok .

The learning algorithm rpnidtop is given in Figure 1. As
input it receives a finite partial function S ⊆ TF ×TG and a
dtta A with L(A) ⊆ TF . All acceptable inputs satisfy the
assumption that there exists a partial function τ ⊆ TF ×TG
with dom(τ) = L(A) for which S is characteristic. Such a
partial function must then be unique. It is the target that
our learning algorithm is supposed to identify.

In order to do so, rpnidtop constructs a sequence of dtops
with border-states. All border-states will be io-paths of S
and all ok-states io-paths of τ . The dtop at the beginning
contains only border-states, and the one at the end only
ok-states. rpnidtop tries to merge border-states with ok-
states in the same order as used for defining characteristic
samples. Intuitively, a merging attempt is successful if no
contradicting evidence on the equivalence of the io-paths
under consideration can be inferred from S and A.

Let P (S) be the set of io-paths of S. This set is totally
ordered by the ordering < that we assumed for defining char-
acteristic sets. We lift this ordering to P (S) ∪ {start} such
that the new constant start becomes the least element.

The data structure maintained by rpnidtop updates a pair
(p0, µ), where p0 ∈ P (S)∪{start} memorizes the current io-
path of S and while µ memorizes io-paths of τ to which
io-paths of S got merged.
More formally, µ : P (S)→ P (S) is a idempotent function

with µ(p) ≤ p for all p ≤ p0 and µ(p) = p otherwise. This

means that only io-paths of S smaller than p0 got merged,
and only with some smaller io-path of S. When started with
a characteristic sample S for some partial function τ and a
dtta A with dom(τ) = L(A), then the current data struc-
ture (p0, µ) of our algorithm is supposed to always satisfy
the following invariants:

(I1) all ok-states p of M(p0, µ, S) are state-io-paths of τ (so
they are pairwise non-equivalent).

(I2) state merging is consistent with the Myhill-Nerode con-

gruence of τ , i.e.: µ(p) = µ(p′)⇒ p−1(τ) = p′
−1

(τ).

Given a partial function S and a pair (p0, µ) satisfying (I1),
we can define a dtop with border-states independently of τ

M(p0, µ, S) = (Qok , Qborder , F,G, ax , rhs, sem)

as follows:

Qok = {µ(p) | p ∈ P (S), p ≤ p0},
ax = outS(ǫ)[v′ ← 〈µ(ǫ, v′), x0〉 | v

′·⊥ =| outS(ǫ)],
rhs(p, f) = v−1(outS(u·f))Ψ

where p = (u, v) ∈ Qok , f ∈ F (k), k ∈ N0,

Ψ = [v′ ← 〈µ(qv′), xiv′ 〉 | v·v
′·⊥ =| outS(u·f)],

and 1 ≤ iv′ ≤ k unique such that qv′ = (u·(f, iv′), v·v′),
is an io-path of S,

Qborder = {p | p occurs in ax or in some rhs(p′, f) where
p′ ∈ Qok and f ∈ F} \Qok ,

sem(p) = p−1(S) for all border-states p.

This definition is correct, since for all p = (u, v) ∈ Qok the
exists indeed a unique iv′ such that qv′ = (u·(f, iv′), v·v′)
is an io-path of S. This follows, since by invariant (I1) all
p ∈ Qok are io-paths of τ , so that we can apply condition (O)
of S being a characteristic samples for τ to p. Furthermore,
note that all applications of µ above are well-defined, since
all pairs (ǫ, v′) in the definition of ax are io-paths of S, as
well as all pairs qv′ in the definition of rhs(p, f).

Proposition 36. Let S be a characteristic sample for a
top-down partial function τ with finite index, and (p0, µ)
a data structure that satisfies invariants (I1) and (I2). If
furthermore, p0 is greater than all state- and trans-io-paths
of τ then M(p0, µ, S) = min(τ).

Let us inspect algorithm rpnidtop in Figure 1 more pre-
cisely. It starts with the empty set of ok-states by initializing
p0 with start . Function µ is initialized to the identity func-
tion on P (S), here named id. The initial dtop with border-
states thus is M := M(start , id, S). This dtop has no ok-
states; its border-states are the io-paths of S occurring in
the axiom. The algorithm then tries to merge border-states
with ok-states, while following the total order < on P (S).

The criterion of mergeability w.r.t. S and L(A) from Def-
inition 30 is applied; it ensures (I1) so that µ(p)−1(τ) =
p−1(τ) for all io-paths p of τ . Since all ok-states are state-
io-paths of τ by (I1) and all border-states are trans-io-paths
of τ (see the proof Proposition 36 in the long version), every
border-state can be merged with at most one ok-state. Since
state merging is done in order, every border-state which can-
not be merged with any ok-state must be a state-io-path of
τ itself, so it can be safely added to the set of ok-states.
The algorithm terminates once all state-io-paths and trans-
io-paths of τ were visited.

Lemma 37. Algorithm rpnidtop preserves (I1) and (I2).



RPNIdtop(S,A)
# where A i s a DTTA and S i s a
# c h a r a c t e r i s t i c sample o f some p a r t i a l
# f u n c t i o n τ ⊆ TF × TG with dom(τ) = L(A)
p0 := start # pre c e ed s a l l i o−paths o f S
µ := id # i d e n t i t y on io−paths o f S
M := M(p0, µ, S)
wh i l e Qborder(M) 6= ∅ do

l e t p = min<(Qborder(M))
l e t l a z y Ok = {p′ ∈ Qok(M) | p and p′ can

be merged w. r . t . S and L(A)}
i f Ok 6= ∅
then # Ok i s a s i n g l e t o n

l e t p′ such tha t Ok = {p′}
µ := µ[p′ → p] # merge p′ with p

e l s e # p must be a s t a t e−i o−path !
s k i p # add p to the ok−s t a t e s

p0 := p
M := M(p0, µ, S)

r e t u r n M # no border−s t a t e s remain

Figure 1: Learning algorithm for DTOPs.

Theorem 38. If S is a characteristic sample for a top-
down partial function τ with finite index, and A a dtta rec-
ognizing dom(τ) then the learning algorithm rpnidtop(S,A)
terminates in polynomial time in the size of S and returns
min(τ).

Proof. Since we assume τ to be top-down and of finite
index, the dtop min(τ) is well defined by Theorem 28. The
learning algorithm terminates, once all state- and trans-io-
paths have been inspected, and thus after linearly many
turns in the while loop, w.r.t. the size of min(τ) and thus S.
As shown by Lemma 37, the algorithm preserves invariants
(I1) and (I2). Proposition 36 shows that the resulting dtop

is indeed equal to min(τ).
For each trans-io-path p = (u, v), the algorithm builds

rhs(p, f). The computation of v−1out(u·f) is in O(|S|). Let
k be the arity of f . We need to infer iv′ = origS

u·f,v(v
′) for all

⊥ positions v′ of v−1out(u·f). This might require to check
for all iv′ -candidates i ∈ {1, . . . , k} whether the residual
(u · (f, i), v · v′)−1S is functional. This can be done in time
O(K ∗ N ∗ |S|) where K is the largest arity of symbols in
F and N the maximal number of state occurrences in some
rhs(p, f), and thus at most O(K ∗ |M | ∗ |S|). Subsequently,
this trans-io-path is tested for mergeability with in the worst
case all state-io-path. Each merge attempt costs O(|S|),
which may sums up to a most O(|S| ∗ |M |) per trans-io-
path. Since there are O(|M | ∗ |F |) trans-io-path, the overall
costs are in O(|M |2 ∗ |F | ∗K ∗ |S|).

Example 7. Consider the transduction τflip presented in
the Introduction. Algorithm rpnidtop can infer τflip from an
dtta for the domain and the following characteristic sample
of τflip (with respect to the order < we fixed for examples):

S = { (root(#,#) , root(#,#))
(root(a(#,#),#) , root(#, a(#,#)))
(root(#, b(#,#)) , root(b(#,#),#))
(root(a(a(#,#),#), b(b(#,#),#)) ,

root(b(b(#,#),#), a(a(#,#),#)))}

The algorithm starts with p0 := start. The first dtop is
thus M = M(p0, id , S). The axiom of M identifies the ax-
iom of min(τ), which is ax = root(〈p1, x0〉, 〈p2, x0〉) where

p1 = (ε, (root, 1)) and p2 = (ε, (root, 2)) are the two border-
states of the first M . Since p1 < p2, the algorithm considers
p1 next. This border-state cannot be merged with any ok-
state of M (there are none). Hence, p1 is turned into an
ok-state by updating p0 := p1, so that the current dtop be-
comes M := M(p1, id , S). This new transducer provides
us with a new rule for the new ok-state, p1(root(x1, x2)) →
〈p3, x2〉 where p3 = ((root, 2), (root, 1)) is a new border-
state. Note that x1 cannot be chosen instead of x2 here,
since the residual ((root, 1), (root, 1))−1(S) contains (#,#)
and (#, b(#,#)), so that it is not functional.

The next border-state to consider is p2 since p2 < p3.
Path p2 cannot be merged with p1, since both states translate
root(a(#,#),#)) differently (p1 outputs # while p2 outputs
a(#,#)). Given that there exists no other ok-state, p2 is
added to the ok-states by updating p0 := p2. The current
transducer becomes M := M(p2, id , S). It provides the rule
since p2(root(x1, x2)) = 〈p4, x1〉 with p4 = ((root, 1), (root, 2)),
so p4 is a new border-state. Again, the choice x1 on the
right-hand side was uniquely determined by S.

Now, the least remaining borderstate is p4 given that p4 <

p3. Note that p4 can neither be merged with p1 nor p2,
since they have different domains. Thus p4 is turned into
an ok-state by updating p0 := p4. This yields two new rules
p4(#) = # and p4(a(x1, x2)) = a(#, 〈p5, x2〉) where p5 =
((root, 2)·(a, 2), (root, 1) ·(a, 2)) is a new border-state. Next,
p3 is considered and turned into an ok-state. This introduces
two new rules p3(#) = # and p3(b(x1, x2)) = b(#, 〈p6, x2〉)
where p6 = ((root, 2)·(b, 2), (root, 1)·(b, 2)). Border-state p5
can indeed be merged with p4, so that the algorithm updates
µ(p5) := p4. Similarly, µ(p6) := p3. Now algorithm rpnidtop

stops, given that no border-states remain. The resulting
dtop is precisely the minimal earliest compatible transducer
for τflip, given in the Introduction (modulo the isomorophism
mapping pi to qi for all 1 ≤ i ≤ 4).

10. XML TRANSFORMATIONS
Xml documents are naturally modeled by unranked trees.

In an unranked tree, a node may have an arbitrary num-
ber of children (independent of its label). It is well-known
that any unranked tree can be encoded as a binary tree. A
commonly used such encoding is the “first-child/next-sibling
(fc/ns) encoding” : the first child of an unranked node be-
comes the left-child in the binary tree, and the next-sibling
of a node becomes the right child (and all other edges of
the unranked trees are removed). As explained in the Intro-
duction, the fc/ns encoding is problematic in the context
of ranked tree transducers. For instance, a dtop operating
on the fc/ns encoding, cannot change the order of children
of the corresponding unranked node. The reason is that in
the encodings these nodes are not children, but are right-
descendants, and a dtop cannot exchange a node with a
descendant node.
The idea of our new encoding is to use the dtds (or xml

Schemas) of the input and output documents in order to
group items that are distinguished by the dtd in an own
subtree, so that the dtop can distinguish them. Given a
finite set of labels F , a dtd D over F consists of a start
symbol in F , denoted start(D) and a mapping D that maps
each element f of F to a regular expression D(f) over F . In
fact, only “1-unambiguous” regular expressions are permit-
ted in dtds (and xml Schemas). For our purpose it suffices
that the regular expressions are unambiguous, which means



that every sequence can be uniquely parsed with respect to
the dtd. A regular expression R over F is either and el-
ement of F , or the symbol pcdata, or is of the form R∗

1,
R+

1 , R1?, (R1|R2|, . . . |Rn), or (R1, R2, . . . , Rn), for n ≥ 1
and regular expressions R1, . . . , Rn. Note that in the last of
these forms the comma “,” means concatenation.

The best way to explain our encoding, is to assume that
the unranked input tree has been parsed against the dtd

already, and we have the parse information at hand. If
the sequence w was parsed against R∗ (or R+), then we
know the subsequences w1, . . . , wn = w such that each wi

is parsed against R. Similarly, if w was parsed against
(R1, R2, . . . , Rn), then we know the w1w2 · · ·wn = w such
that each wi is parsed against Ri. Every data value (text
node) of the xml document is parsed into the special symbol
pcdata (for simplicity, we do not consider empty content).
Let D be a dtd over F , R a regular expression over F , and
w a sequence of unranked trees that parses as w1w2 · · · wn

against R. The ranked D-encoding of w with respect to R,
denoted by encD(R,w), is defined as

• f(encD(D(f), w′)) if R = f ∈ F , n = 1, and w1 is an

unranked tree with root label f and child sequence w′

• pcdata if R = pcdata

• R∗
1(#,#), if R = R∗

1 and n = 0

• R∗
1(encD(R1, w1), encD(R∗

1, w2 · · ·wn)) if R = R∗
1 and

n ≥ 1

• R+
1 (encD(R1, w1),#) if R = R+

1 and n = 1

• R+
1 (encD(R1, w1), encD(R+

1 , w2 · · ·wn)) ifR = R+
1 and

n ≥ 2

• R1?(#) if R = R1? and n = 0

• R1?(encD(R1, w1)) if R = R1? and n = 1

• (R1| . . . |Rm)(encD(Ri, w)), where Ri is the unique ex-
pression against which w was parsed

• (R1, . . . , Rm)(encD(R1, w1), . . . , encD(Rm, wm)).

In our encoding, pcdata is of rank zero, f , while R? and
(R1| . . . |Rm) are of rank one, R∗ and R+ are binary, and

(R1, . . . , Rm) is of rank m. For an unranked tree t = f(t1,
. . . , tm) with f = start(D), the ranked D-encoding of t is
defined as f(encD(D(f), t1 . . . tm)).

As an example, consider the following dtd D1 (given in
W3C syntax; thus start(D1) = LIBRARY and, for instance,
D1(YEAR) = pcdata).

<!ELEMENT LIBRARY BOOK* >

<!ELEMENT BOOK ((AUTHOR, TITLE, YEAR?) | TITLE) >

<!ELEMENT AUTHOR #PCDATA >

<!ELEMENT TITLE #PCDATA >

<!ELEMENT YEAR #PCDATA >

Let tunr be the following unranked tree, where each label
is abbreviated by its first letter, i.e., LIBRARY is written as
“L” and pcdata as “P”:

L(B(A(P ), T (P )), B(A(P ), T (P ), Y (P )), B(T (P )))

The ranked D-encoding of the tree tunr is equal to L(encD1
(

t1t2t3, B
∗)), where t1, t2, t3 are the three subtrees of L, in

that order. We obtain L(B∗(e1, B
∗(e2, B

∗(e3, B
∗(#,#))))),

where the ei are the encodings of the sequences below the
B-nodes. For instance, e1 = encD1

(A(P )T (P ), B∗) which
equals

((A, T, Y ?)|T )((A, T, Y ?)(A(P ), T (P ), Y ?(#)).

Example XML Transformation
In order to illustrate the kind of transformations that our
learning algorithm can infer, we present a transformation
that performs swapping, copying and deletion. We consider
a transformation τ that transforms input trees conforming
to the following dtd D1:

<!ELEMENT LIBRARY (BOOK*) >

<!ELEMENT BOOK (AUTHOR, TITLE, YEAR) >

<!ELEMENT AUTHOR #PCDATA >

<!ELEMENT TITLE #PCDATA >

<!ELEMENT YEAR #PCDATA >

and translates them into output trees conforming to the fol-
lowing D2:

<!ELEMENT LIBRARY (SUMMARY,BOOK*) >

<!ELEMENT SUMMARY (TITLE*) >

<!ELEMENT BOOK (TITLE, AUTHOR) >

<!ELEMENT AUTHOR #PCDATA >

<!ELEMENT TITLE #PCDATA >

The content of book-elements is reorganized by τ : author
and title are swapped, year is deleted, and a summary is
added, which lists just the titles of the books (and hence,
titles of book must be copied by a transducer for τ).
For instance, the tree L(B(A(P ), T (P ), Y (P )), B(A(P ),

T (P ), Y (P ))) is transformed into L(S(T, T ), B(T (P ), A(P )),
B(T (P ), A(P ))). This transformation can be performed by
a dtop with fourteen states. Let si be the tree with i

book-nodes and ti its transformation (ti = τ(si)). For
instance, s2 = L(B(A(P ), T (P ), Y (P )), B(A(P ), T (P ),
Y (P ))). Then the set S = {(s0, t0), (s1, t1), (s2, t2), (s3, t3)}
is characteristic for τ . Hence from this set or any of its su-
persets, the learning algorithm can infer the minimal earliest
transducer for τ .
We detail here the construction of S. First, τ ’s transfor-

mation is realised by the following earliest minimal trans-
ducer M (working on encodings):

ax = L(S(T ∗(〈qL1, x0〉, 〈qL2, x0〉)), B
∗(〈qL3, x0〉, 〈qL4, x0〉))

qL1(L(x1)) → 〈qT1∗ , x1〉
qL2(L(x1)) → 〈qT2∗ , x1〉
qL3(L(x1)) → 〈qB1∗ , x1〉
qL4(L(x1)) → 〈qB2∗ , x1〉
qT1∗(B

∗(x1, x2)) → 〈qT , x1〉
qT2∗(B

∗(x1, x2)) → 〈qT∗ , x2〉
qT∗(B∗(x1, x2)) → T ∗(〈qT , x1〉, 〈qT∗ , x2〉)
qT∗(#) → #
qB1∗(B

∗(x1, x2)) → 〈qB , x1〉
qB2∗(B

∗(x1, x2)) → 〈qB∗ , x2〉
qB∗(B∗(x1, x2)) → B∗(〈qB , x1〉, 〈qB∗ , x2〉)
qB∗(#) → #
qB(B(x1, x2, x3)) → B(T (〈qT , x2〉), A(〈qA, x1〉))
qB(#) → #
qA(A(x1)) → 〈qP , x1〉
qT (T (x1)) → T (〈qP , x1〉)
qP (P ) → P

There are fourteen states and fourteen corresponding io-
paths for M which are:



qL1 : (ε; (L, 1)(S, 1)(T ∗, 1))
qL2 : (ε; (L, 1)(S, 1)(T ∗, 2)),
qL3 : (ε; (L, 2)(B∗, 1)),
qL4 : (ε; (L, 2)(B∗, 2)),

qT1∗ : ((L, 1); (L, 1)(S, 1)(T ∗, 1))
qT∗2 : ((L, 1); (L, 1)(S, 1)(T ∗, 2)),
qB1∗ : ((L, 1); (L, 2)(B∗, 1)),
qB2∗ : ((L, 1); (L, 2)(B∗, 2)),
qT : ((L, 1)(B∗, 1); (L, 1)(S, 1)(T ∗, 1))
qT∗ : ((L, 1)(B∗, 2); (L, 1)(S, 1)(T ∗, 2)(T ∗, 2))
qB : ((L, 1)(B∗, 1); (L, 2)(B∗, 1))
qB∗ : ((L, 1)(B∗, 2); (L, 2)(B∗, 2)(B∗, 2))
qA : ((L, 1)(B∗, 1)(B, 1); (L, 2)(B∗, 1)(B, 2))
qP : ((L, 1)(B∗, 1)(B, 1)(A, 1); (L, 2)(B∗, 1)(B, 2)(A, 1)).

A characteristic sample for τ can be obtained from the
following sets of input trees. We denote si the tree with i

books nodes. To build the axiom we need IA = {s0, s1}. For
the rules the following set is sufficient to compute the right-
hand sides IT = {s1, s2, s3}. The computation of origins is
direct from the domains so IO = ∅. For instance, states qA
and qT have distincts domains. The only different io-paths
that have the same domain are the ones corresponding to
qS1∗ and qB1∗ , qS2∗ and qB2∗ , qS∗ and qB∗ , and also qS and
qB . All of those can be discriminated by ID = {s1, s2}. Let
ti = τ(si). The set

S = {(s0, t0), (s1, t1), (s2, t2), (s3, t3)}

is characteristic for τ . This means that from this set or any
superset of it, the learning algorithm will be able to build
M , the minimal earliest transducer of τ .

11. CONCLUSIONS
Deterministic top-down tree transducers can be learned

from examples. To infer a transducer, our algorithm needs
polynomially many examples in the size of the minimal trans-
ducer. The algorithm does not infer the domain of a trans-
ducer, but starts with a domain (given as a deterministic
top-down tree automaton).

Although, the learning algorithm is Gold-style [15], i.e.,
it uses a given set of examples to infer the transducer, it
could be used as core in an interactive learner in Angluin-
style [1], similar to [5]. Further research is required to justify
this claim. In the context of xml, ranked transducers seem
particularly useful if input and output dtds are given. This
allows to construct encodings into ranked trees which group
similar items (with respect to the dtd) into an own subtree.
A dtop can then delete, interchange, or copy the groups
(here, “group” refers to a regular subexpression of the dtd).

Are there other classes beyond dtop to which our results
could be extended? An interesting and robust class are top-
down tree transducers with regular look-ahead [9]. Such a
transducer is allowed to first execute a bottom-up finite-state
relabeling over the input tree, and then run the top-down
translation on the relabeled tree. The XPath filters that are
used in xslt programs naturally correspond to bottom-up
look-ahead. How can we minimize dtop transformations
with look-ahead (dtop Rs)? Through changing the relabel-
ings, equivalence of dtop Rs can be decided [12]. Thus, for
a given look-ahead, we can minimize the transducer. But it
is unclear how to find both a minimal look-ahead and a cor-
responding minimal transducer, for a given translation. In
fact, it is a hard open problem whether or not it is decidable
for a given dtop

R if it has an equivalent dtop.
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[13] Z. Ésik. Decidability results concerning tree transducers I.
Acta Cybernetica, 5:1–20, 1980.

[14] F. Gécseg and M. Steinby. Tree Automata. Akadémiai
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