A Learning Automata-based Heuristic Algorithm for Solving
the Minimum Spanning Tree Problem in Stochastic Graphs

Javad Akbari Torkestani
Department of Computer Engineering, Islamic Azad University, Arak Branch, Arak, Iran
j-akbari@iau-arak.ac.ir

Mohammad Reza Meybodi
Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran
Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Computer Science, Tehran, Iran
mmeybodi@aut.ac.ir

Abstract

During the last decades, a host of efficient algorithms have been developed for
solving the minimum spanning tree problem in deterministic graphs, where the
weight associated with the graph edges is assumed to be fixed. Though it is clear
that the edge weight varies with time in realistic applications and such an
assumption is wrong, finding the minimum spanning tree of a stochastic graph has
not received the attention it merits. This is due to the fact that the minimum
spanning tree problem becomes incredibly hard to solve when the edge weight is
assumed to be a random variable. This becomes more difficult, if we assume that
the probability distribution function of the edge weight is unknown. In this paper,
we propose a learning automata-based heuristic algorithm to solve the minimum
spanning tree problem in stochastic graphs wherein the probability distribution
function of the edge weight is unknown. The proposed algorithm taking advantage
of learning automata determines the edges that must be sampled at each stage. As
the presented algorithm proceeds, the sampling process is concentrated on the
edges that constitute the spanning tree with the minimum expected weight. The
proposed learning automata-based sampling method decreases the number of
samples that need to be taken from the graph by reducing the rate of unnecessary
samples. Experimental results show the superiority of the proposed algorithm
over the well-known existing methods both in terms of the number of samples and
the running time of algorithm.

Keyword: Learning automata, Minimum spanning tree, Stochastic graph

1. INTRODUCTION

Spanning tree of a connected, undirected graph is a tree-based subgraph by which all the graph
vertices are connected. A minimum spanning tree (MST) of an edge-weighted graph is a spanning tree
having the minimum sum of edge weights among all the spanning trees. The weight assigned to each
edge of the graph represents its cost, traversal time, or length depending on the context. The minimum
spanning tree is an appealing structure in the design of the communication systems that economically
connect spatially dispersed elements, computer networks and other network-related problems.
Minimum spanning trees also arise in more subtle applications in statistical cluster analysis [45, 46],
data storage [47, 48, 49], picture processing [50], and speech recognition [51]. Due to the tremendous
growth of the communication networks, the network applications of the minimum spanning trees have

attracted a lot of attentions during the last decades. For instance, the broadcasting problem, in which
the same data must be sent to all the nodes within the network (one to all), can be simply modeled by
the minimum spanning tree problem. The minimum spanning tree is also the optimal routing tree for
data aggregation (all to one) in distributed environments. Besides, in some of the multicast routing
protocols [1, 2], the minimum spanning tree is still one of the most effective and reliable methods to
multicast the massages from a source node to a group of destinations. In most scenarios, the edge
weight is assumed to be fixed, but such an assumption does not hold true in real world applications and
the weights vary with time indeed. For example, the links in a communication network may be affected
by collisions, congestions and interferences. Therefore, the MST problem is generalized toward a
stochastic MST problem in which the edge weights are not constant but random variables. There have
been many studies of the minimum spanning tree problem deal with the deterministic graphs and have
been designed several renowned sequential algorithms such as Boruvka [3], Kruskal [4], and Prim [5]
in which the MST problem can be solved in polynomial time. However, when the edge weight is allowed
to be a random variable (or vary with time), the problem of finding the minimum spanning tree of the
(stochastic) graph becomes incredibly difficult. This becomes more intractable, if the probability
distribution function of the edge weight is assumed to be unknown.

Ishii et al. [6] proposed a method for solving the stochastic spanning tree problem in which the
mentioned problem is transformed into its proxy deterministic equivalent problem and then a
polynomial time algorithm presented to solve the latter problem. In this method, the probability
distribution of the edge weight is assumed to be known. Ishii and Nishida [7] considered a stochastic
version of the bottleneck spanning tree problem on the edges whose weights are random variables.
They showed that, under reasonable restrictions, the problem can be reduced to a minimum bottleneck
spanning tree problem in a deterministic case. Mohd [8] proposed a method for stochastic spanning
tree problem called interval elimination. In the proposed method, like Ishii et al. [6], the problem is first
transformed into a deterministic equivalent problem and then solved. Mohd also introduced several
modifications to the algorithm of Ishii et al. [6]. He showed that the modified algorithm is able to obtain
much better results in less time. Ishii and Matsutomi [9] presented a polynomial time algorithm to
solve the problem stated in [6]. In this approach, the parameters of underling probability distribution of
edge costs are assumed to be unknown, and so they are estimated by a confidence region from
statistical data. In the proposed method, the problem is first transformed into a deterministic
equivalent problem with a min-max type objective function and a confidence region of means and
variances, since they assume that the random edge costs have normal distributions. In [52], Jain and
Mamer proposed a method for estimation of the distribution of the MST weight in a stochastic network.
They relaxed the condition that the random variable associated with the edge weight must be
identically distributed. They obtained bounds on the distribution and the mean of the MST weight
which is proved to be better than the naive bound obtained by solving the deterministic MST with
expected edge weights. Alexopoulos and Jacobson’s algorithm [10], which is hereafter referred to as
ALJA, extended the partitioning technique considered in [40] to compute and bound specific values of
the minimum spanning tree distribution in networks with independent, but not necessarily identically
distributed, discrete edge weight random variables. Alexopoulos and Jacobson also proposed several
methods to determine the probability that a given edge belongs to a minimum spanning tree. They
demonstrated that the exact calculation of values of the minimum spanning tree distribution is NP-
hard.

Katagiri et al. [11] examined the case where the edge weights are fuzzy random variables. They
introduced a fuzzy-based approach to model the minimum spanning tree problem in case of fuzzy
random weights. Almeida et al. [12] studied the minimum spanning tree problem with fuzzy
parameters and proposed an exact algorithm to solve this problem. In [13], Hutson and Shier studied
several approaches to find (or to optimize) the minimum spanning tree when the edges undergo the
weight changes. Repeated Prim (RP) method, cut-set (CM) method, cycle tracing (CTM) method, and
multiple edge (ME) sensitivity method are the proposed approaches to find the MST of the networks in
which each edge weight can assume a finite number of distinct values. To approximate the expected
weight of the optimal spanning tree, Hutson and Shier used the algebraic structure to describe the
relationship between different edge-weight realizations of the network. They compared different

approaches and showed that the multiple edge sensitivity method (ME), hereafter referred to as HUSH,
outperforms the others in terms of the time complexity and the size of the constructed state space.
Fangguo and Huan [14] considered the problem of minimum spanning trees in uncertain networks in
which the edge weights are random variables. In [14], the concept of the expected minimum spanning
tree is initially defined and a model of the problem is accordingly formulated. Based on this model, a
hybrid intelligent algorithm as a combination of the genetic algorithm and stochastic simulation is
proposed. In order to code the corresponding spanning tree for the genetic representation, the Priifer
encoding scheme that is able to represent all possible trees is employed. Dhamdhere et al. [15] and
Swamy and Shmoys [16] formulated the stochastic minimum spanning tree problem as a stochastic
optimization problem and proposed some approximation approaches to solve two and multistage
stochastic optimization problems.

The major problem with the above mentioned stochastic minimum spanning tree algorithms is that
they are practical when the probability distribution function (PDF) of the edge weight is assumed to be
known. While such an assumption does not hold true in realistic applications. In this paper, we propose
a learning automata-based approximation algorithm for solving the minimum spanning tree problem in
the stochastic graph, where the probability distribution function of the weight associated with the
graph edge is unknown. In the proposed heuristic algorithm, by a learning automata-based sampling
method, it is probabilistically decided whether an edge must be sampled or not. That is, each learning
automaton which is assigned to a given graph node decides which incident edge must be sampled at
each stage. In the course of the learning process, automata learn how to sample the edges along the
minimum spanning tree with a higher probability. Hence, as the proposed algorithm approaches to the
end, sampling process is concentrated on the edges by which the minimum spanning tree is
constructed. In other words, the sampling process finally focuses on the spanning tree with the
minimum expected weight. Such a probabilistic sampling method reduces the rate of unnecessary
samples. To evaluate the performance of the proposed stochastic MST algorithm, the obtained results
are compared with those of Alexopoulos and Jacobson [10] and Hutson and Shier [13], both in terms of
the number of samples and running time of algorithm. The simulation experiments show that the
proposed stochastic MST algorithm outperforms the algorithms proposed by Alexopoulos and Jacobson
[10] and Hutson and Shier [13] in terms of all metrics of interest.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the minimum
spanning tree problems, and describes the stochastic minimum spanning tree problem. Section 3
introduces the learning automata in a nut shell. In Section 4, the proposed learning automata-based
algorithm is presented. Section 5 shows the performance of the proposed algorithm through simulation
experiments and comparison with the best existing methods. Section 6 concludes the paper.

2. MINIMUM SPANNING TREE PROBLEM

The Minimum Spanning Tree problem is a classical combinatorial optimization problem in graph
theory. This problem is defined as to find the minimum weight spanning tree in a weighted graph. Many
engineering problems such as the design of communication network, electric power system, and so on
can be described by MST problem. The weight assigned to each edge of the network could represent its
cost, traversal time, or length depending on the context. The minimum spanning tree problem can be
generally subdivided into deterministic MST Problem and stochastic MST problem depending upon the
edge weight is assumed to be fixed or a random variable. Figure 1 shows the new classification of the
minimum spanning tree algorithms which is proposed in this paper.

A minimum spanning tree of a weighted, undirected graph G is a spanning tree of G whose edges
sum to minimum weight. In other words, a minimum spanning tree is a tree formed from a subset of the
edges in a given undirected graph, with two properties: first, it spans the graph, i.e., it includes every
vertex in the graph, and then it is a minimum, i.e., the total weight of all the edges is as low as possible.

DEFINITION 1 Let G < V,E > denotes an undirected graph consisting of vertex-set V = {v;,v,, ..., v}
and edge-set E = {ey, €5, ..., e} SV X V.Subgraph G' < V', E' > of graph G < V, E > is a spanning tree,
if we have

1) Sub-graph G'is connected.
2) G'has the same vertex-setas G,ie, V' =V.
3) |E'| =n — 1, where |E'|denotes the cardinality of edge-set E'.

DEFINITION 2 Let G < V,E,W > denotes an edge-weighted, undirected graph, where V = {v,,v,, ..., v,}
is the vertex-set, E = {e;, €5, ...,e} SV X V is edge-set, and W = {w,, w,, ..., w,,,} is the set of weights
associated with the edges. Let T = {1, T, T3, ... } denotes the set of possible spanning trees of graph G.
Let w; and wy; = ZVejETi w; denote the weight associated with edge e; € E and spanning tree 7; € T.

Therefore, spanning tree 7* € T is the minimum spanning tree (MST) of graph G, if w,- = minVTiET{WTi}'

Centralized
Unconstrained MST Exact
Deterministic MST Distributed
[Approximate
MST Algorithms Constrained MST

Exact
Stochastic MST

Approximate

Figure 1. A new classification of the MST algorithms

2.1. DETERMINISTIC MINIMUM SPANNING TREE PROBLEM

Deterministic MST problem deals with finding the minimum spanning tree of the graph where the
weight associated with the graph edge is constant. Most researches study the minimum spanning tree
problem when the edge weight is constant, and so a host of deterministic algorithms are available. As
shown in Figure 1, deterministic minimum spanning tree problem can be further subdivided as
unconstrained and constrained MST problems. Constrained MST problem is a generalization of the MST
problem in which some additional constraints must be satisfied.

Unconstrained MST algorithms are divided as centralized and distributed algorithms. Boruvka’s
algorithm [3], Kruskal’s algorithm [4], and Prim’s algorithm [5] are three well-known centralized MST
algorithms. Distributed MST algorithms are further classified as exact and approximation algorithms.
Gallager et al. [17], Spira [18], Dalal [19], Gafni [20], Awerbuch [21], Garay et al. [22], Elkin [23], and
Kutten and Peleg [24] are representative exact solutions proposed for unconstrained MST problem.
While the previous distributed algorithms deal with computing the exact MST, the next important
question addressed in the literature concerns the study of distributed approximation of MST, i.e.,
constructing a spanning tree whose total weight is near optimal. Peleg and Rabinovich [25], Elkin [26,
27, 28], and Maleq and Pandurangan [28] proposed several approximation algorithms for finding a
near optimal solution to the MST problem.

Constrained minimum spanning tree problem is a bicriteria (or multi-criteria) problem in which
two (or more) parameters must be optimized. In other words, the constrained minimum spanning tree
problem can be defined as a generalization of the MST problem in which some additional constraints
are satisfied at the same time. Constrained minimum spanning tree problem is defined as follows.

DEFINITION 3 Given a weighted, undirected graph G < V,E,W,C >, where V = {v,v,, ...,v,,} is the
vertex-set, E = {eq, €5, ...,e} €V X V is edge-set, W = {wy, w,, ..., w,,,} is the set of weights associated
with the edges, and C = {c;, c;, ..., ¢;n} denotes the (additional) constraints imposed to the edges. The
constrained minimum spanning tree problem (CMSTP) can be formulated as the following optimization
problem.

min ZVe].ET w; €Y)

subject to

Eve]-ET Cj < L! (2)
where L is the imposed constraint and T is the solution to the CMSTP. That is, the constrained minimum
spanning tree problem is to find the spanning tree with the minimum total weight and the total
constraint at most L.

Aggarwal et al. [29] proved that the constrained minimum spanning tree problem is a weakly NP-
hard problem. Representative constrained minimum spanning tree problems studied in the literature
include Bounded Diameter Minimum Spanning Tree (BDMST) [30], Degree Constrained Minimum
Spanning Tree (DCMST) [31], Capacitated Minimum Spanning Tree (CMST) [32], Generalized Minimum
Spanning Tree (GMST) [33], Delay-Constrained Minimum Spanning Tree [34, 35], and Hop-Constrained
Minimum Spanning Tree (HMST) [36]. Since the constrained minimum spanning tree problem is an NP-
hard problem, heuristic methods, such as tabu search [37], ant colony optimization [31], genetic
algorithms [38, 39], and fuzzy-based algorithms [32], have been extensively used by the researchers for
solving this complex optimization problem.

2.2. STOCHASTIC MINIMUM SPANNING TREE PROBLEM

As mentioned above, a deterministic MST algorithm aims at finding the minimum spanning tree of
the graph, where the edge weight is assumed to be fixed, while a stochastic minimum spanning tree
algorithm deals with the graph edge whose weight is a random variable. In most scenarios, it is
assumed that the edge weights are fixed, but this is not always true. For example, links in a
communication network can malfunction or degrade as a result of congestion, accidents, weather, etc.
More generally, the edges of a time-varying network can assume several states. Therefore, a
deterministic graph is not able to realistically model the characteristics of such networks, and so the
network topology should be modeled by a stochastic graph. As mentioned before, several algorithms
have been proposed to solve the minimum spanning tree problem, where the network parameters are
deterministic. However, finding the minimum spanning tree becomes considerably harder when the
graph is stochastic. In what follows, we define the stochastic minimum spanning tree problem and
review the stochastic MST algorithms in a nut shell.

DEFINITION 4 A stochastic edge-weighted graph ¢ is defined by a triple<V,E,W >, where V =
{vi, vy, ..., } denotes the vertex-set, E = {e;,e,,...,e,,} SV XV denotes the edge-set, and W =
{wy, w,, ...,w,,} denotes the set of weights associated with the edge-set such that positive random
variable w; is the weight of edge ¢; € E.

DEFINITION 5 Let G <V,E,W > denotes a stochastic edge-weighted graph,and T = {7,7,,73,...}
denotes the set of possible spanning trees of the stochastic graph ¢ <V,E,W >. Let w;; denotes the
expected weight of spanning tree t;. The stochastic MST (SMST) is defined as a stochastic spanning tree
with the minimum expected weight. That is, stochastic spanning tree t* € T is the stochastic minimum
spanning tree if and only if W+ = miny,er{Ww;,}.

Several authors have examined network optimization problems where the edge weights are
determined by independent (though not necessarily identically distributed) discrete random variables.
However, in stochastic graphs, the MST problem has not received the attention it deserves. The existing
stochastic minimum spanning tree algorithms are further subdivided as exact [6, 7, 8, 9, 10] and
approximation [11, 12, 14, 15, 16] algorithms. Due to the hardness of the stochastic minimum spanning
tree problem for general stochastic graphs, exact algorithms are only feasible for small graphs, while
very large graphs often arise in realistic applications. Therefore, polynomial time approximation

algorithms have been also proposed for finding a near optimal solution of the stochastic minimum
spanning tree problem.

The following briefly describes two methods proposed for solving the minimum spanning tree
problem in stochastic graphs with which our proposed algorithm is compared. In [40], an efficient
heuristic approach was presented by Doulliez and Jamoulle for computing the probabilistic measures of
the multistage systems. The proposed method is based on the iteratively partitioning the state space of
the system. The proposed decomposition technique was first proposed for solving the stochastic
maximum flow problem in networks with discrete arc capacities where all the flow requirements must
be satisfied. Alexopoulos and Jacobson [10] enhanced the efficiency of the state space partitioning
technique presented in [40] by extending and enriching its theoretical foundations. They applied the
extended partitioning technique for computing the probability distribution of the weight of the
minimum spanning trees in stochastic graphs with independent, but not necessarily identically
distributed, discrete edge weight random variables. They proved that the exact calculation of the
parameters of the probability distribution of the weight of the minimum spanning tree is known to be
NP-hard. The number of iterations of the proposed algorithm is typically small for moderate size
problems, however for large graphs Alexopoulos and Jacobson’s algorithm may cause an intractable
computational cost. Therefore, the running time of their proposed algorithm is not necessarily
polynomial. The state space partitioning technique upon which the Alexopoulos and Jacobson’s
algorithm is based computes the probabilistic measure (the probability distribution of the weight of the
stochastic MST) by dividing all the possible edge-weight realizations (the entire state space of the
problem) iteratively into subsets with known contribution to the probabilistic measure and subsets
with unknown contribution. This continues until no sets with unknown contribution remain to be
processed. In fact, the partitioning technique is very similar to a factoring or branch-and-bound
procedure, where the nodes of the search tree are the sets with unknown contribution. At any iteration,
the bounds on the probabilistic measure can be computed. As the algorithm proceeds, the bounds get
more tightened and finally equal to the value of the probabilistic measure.

Hutson and Shier [13] considered several approaches to solve the minimum spanning tree
problem in networks in which the edge weight can assume a finite number of distinct values. In [13],
the authors believe that even for small graphs the state space of the problem (i.e., the number of
possible edge-weight realizations) is massive. Therefore, to alleviate the negative impacts of the huge
state space, they propose a systematic way based on Hasse diagram for generating the state space
which avoids generating unnecessary and repetitive states. In this method, the algebraic structure of
the underlying Hasse diagram is exploited to find the relationship between the different edge-weight
realizations of the stochastic network. This algebraic structure represents a graphical form of the state
space in which a state is represented by a node and an edge represents a change to the next largest
weight of exactly one edge. Then, a rooted spanning tree and a traversal algorithm of that tree combine
to generate each state without repetition. Hutson and Shier then proposed several approaches for
calculating the minimum spanning trees associated with the above constructed state space. The
proposed approaches are repeated prim (RP) method, cut-set (CT) method, cycle tracing method
(CTM), and multiple edge (ME) sensitivity method. They theoretically analyzed the complexities of
different approaches and showed that RP and CM are always faster than CTM. Such a result is expected
since RP and CM have worst case running times of order O(n2N) and O(mN), respectively, which
dominate the complexity of order O(nmN) for CTM, where n is the number of nodes, m is the number
of edges, and N denotes the number of states. They also show that ME has a worst case running time of
O(mN). Hutson and Shier also conducted several experiments to show the performance of the
proposed algorithms. The obtained results show that the multiple edge sensitivity method (ME)
outperforms the others in terms of the time complexity and the size of the constructed state space.
Therefore to show the superiority of our method over the proposed approaches, we compare it with
ME. The main problem with the proposed approaches in [13], specifically ME method, is that to reduce
the complexities of the method they take into consideration only a small subset of all the possible
realizations of the stochastic network. Such a reduced state space may cause the missing of the optimal
solution or even near optimal solutions. Hence, these approaches do not assure the minimum expected
solution.

3. LEARNING AUTOMATA

A learning automaton [43, 44] is an adaptive decision-making unit that improves its performance
by learning how to choose the optimal action from a finite set of allowed actions through repeated
interactions with a random environment. The action is chosen at random based on a probability
distribution kept over the action-set and at each instant the given action is served as the input to the
random environment. The environment responds the taken action in turn with a reinforcement signal.
The action probability vector is updated based on the reinforcement feedback from the environment.
The objective of a learning automaton is to find the optimal action from the action-set so that the
average penalty received from the environment is minimized.

Learning automata have been found to be useful in systems where incomplete information about
the environment exists [60]. Learning automata are also proved to perform well in complex, dynamic
and random environments with a large amount of uncertainties. A group of learning automata can
cooperate to cope with many hard-to-solve problems. To name just a few, learning automata have a
wide variety of applications in combinatorial optimization problems [53, 55], computer networks [54,
56, 57, 58, 59], queuing theory [61], signal processing [62], information retrieval [63], adaptive control
[64], and pattern recognition [65].

The environment can be described by a triple E = {a, 8, ¢}, where a = {a,, @3, ..., a,} represents
the finite set of the inputs, § = {4, B, ..., Bm} denotes the set of the values that can be taken by the
reinforcement signal, and ¢ = {cy, c,, ..., ¢,} denotes the set of the penalty probabilities, where the
element c; is associated with the given action ;. If the penalty probabilities are constant, the random
environment is said to be a stationary random environment, and if they vary with time, the
environment is called a non stationary environment. The environments depending on the nature of the
reinforcement signal f can be classified into P-model, Q-model and S-model. The environments in

which the reinforcement signal can only take two binary values 0 and 1 are referred to as P-model
environments. Another class of the environment allows a finite number of the values in the interval [0,
1] can be taken by the reinforcement signal. Such an environment is referred to as Q-model
environment. In S-model environments, the reinforcement signal lies in the interval [0,1].

Learning automata can be classified into two main families [43]: fixed structure learning automata
and variable structure learning automata. Variable structure learning automata are represented by a
triple < fa, T >, where f is the set of inputs, is the set of actions, and T is learning algorithm. The

learning algorithm is a recurrence relation which is used to modify the action probability vector. Let
a;(k) € ¢ and p(k) denote the action selected by learning automaton and the probability vector

defined over the action set at instant k, respectively. Let a and b denote the reward and penalty
parameters and determine the amount of increases and decreases of the action probabilities,
respectively. Let r be the number of actions that can be taken by learning automaton. At each instant k,
the action probability vector p(k) is updated by the linear learning algorithm given in Equation (3), if

the selected action a;(k) is rewarded by the random environment, and it is updated as given in
Equation (4) if the taken action is penalized.

_[pit) +a[l—p;(K)] j=i 3)
ik “)‘{(i—a)p,-(lo R

(@ =bp; () j=i)
pilk+1) = () +a-bp vj#i

If a = b, the recurrence equations (3) and (4) are called linear reward-penalty (Lg_p) algorithm, if
a > b the given equations are called linear reward-epenalty (Lz_.p), and finally if b = 0 they are called
linear reward-Inaction (Lg_;). In the latter case, the action probability vectors remain unchanged when
the taken action is penalized by the environment.

3.1. VARIABLE ACTION SET LEARNING AUTOMATA

A variable action set learning automaton is an automaton in which the number of actions available
at each instant changes with time. It has been shown in [42] that a learning automaton with a changing
number of actions is absolutely expedient and also e-optimal, when the reinforcement scheme is Ly_;.
Such an automaton has a finite set of n actions, a = {a;, a5, ..., a,}. A = {44, 4,, ..., A, } denotes the set
of action subsets and A(k) € « is the subset of all the actions can be chosen by the learning automaton,
at each instant k. The selection of the particular action subsets is randomly made by an external agency
according to the probability distribution ¥ (k) = {¥;(k), ¥, (k), ..., ¥ (k)} defined over the possible
subsets of the actions, where Y;(k) = Prob[A(k) = A;]lA; €A1 <i<2™"—-1].
p;(k) = Probla(k) = a;|A(k), a; € A(k)] is the probability of choosing action «;, conditioned on the
event that the action subset A(k) has already been selected and also «a; € A(k). The scaled probability
p; (k) is defined as

pi(k) = pi(k)/K (k) (5)

where K (k) = Y 4,ca) Pi(k) is the sum of the probabilities of the actions in subset A(k), and
p;(k) = Prob[a(k) = a;].

The procedure of choosing an action and updating the action probabilities in a variable action set
learning automaton can be described as follows. Let A(k) be the action subset selected at instant k.
Before choosing an action, the probabilities of all the actions in the selected subset are scaled as defined
in equation (5). The automaton then randomly selects one of its possible actions according to the scaled
action probability vector p(k). Depending on the response received from the environment, the learning
automaton updates its scaled action probability vector. Note that the probability of the available actions
is only updated. Finally, the probability vector of the actions of the chosen subset is rescaled as
pi(k +1) =p;(k + 1) - K(k), for all a; € A(k). The absolute expediency and e-optimality of the method
described above have been proved in [42].

4. THE PROPOSED STOCHASTIC MST ALGORITHM

As mentioned earlier, many studies have been conducted on deterministic minimum spanning
tree problem, but stochastic minimum spanning tree problem has not received the attention it
deserves. On the other side, due to the stochastic nature of the real world network applications,
deterministic algorithms are not capable of finding the minimum spanning tree in such stochastic
networks. Therefore, in this paper, we propose a learning automata-based approximation algorithm
called LASMSTA (short for learning automata-based stochastic minimum spanning tree algorithm) for
finding the optimal solution of the stochastic minimum spanning tree problem, where the probability
distribution function of the edge weight is unknown. The deterministic case of the optimum spanning
tree problem has been well studied and until now several powerful polynomial time algorithms have
been proposed. But, when the edge weight vary with time, the optimum solution of the MST problem is
extremely hard to find. The aim of this paper is to show the capabilities of the learning automata for
solving such a difficult problem. The proposed algorithm is based on a sampling method in which at
each stage a set of learning automata determines which edges must be sampled. This sampling method
may result in decreasing unnecessary samples and hence decreasing the running time of algorithm.

Let G <V,E,W > denotes the input stochastic graph, where V = {v;, v, ..., .} is the vertex-set,
E ={e;, e, ...,e} SV XV is the edge-set, and matrix W denotes the weights associated with the edge-
set. In this algorithm, a network of learning automata isomorphic to the stochastic graph is initially
formed by equipping each node of the graph with a L,_; learning automaton. The resulting network can
be described by a triple < 4, &, W >, where A = {4,,4,,..,A,} denotes the set of the learning

automata, a = {gl,gz,...,gn} denotes the set of all possible actions in which a; = {a}, a?, ...,a{i}
defines the set of actions that can be chosen by learning automata 4; (for each a; € @) and ; is the

cardinality of action-set @;. Edge e(; j, corresponds either to the action aij of the learning automata A4;
or to the action a} of the learning automata A;. That is, each learning automaton can select each of its

incident edges as an action. Choosing action ai] by automaton A; adds edge e(; j, to the minimum
spanning tree. Weight w; ; is the weight associated with edge €., j) and assumed to be a positive random
variable with an unknown probability distribution.

In the proposed algorithm, each learning automaton can be in one of two modes active and
passive. All learning automata are initially set to the passive state. The proposed algorithm consists of a
number of stages and at each stage one of the possible spanning trees is randomly constructed. The
proposed algorithm is based on the distributed learning automata, and to explore the spanning trees, it
traverses the distributed learning automata by the backtracking technique. Each stage of the LASMSTA
algorithm is initiated by choosing one of the graph vertices at random. The learning automaton
corresponding to the selected vertex is activated and chooses one of its actions based on its action
probability vector. The edge corresponding to the selected action is added to the spanning tree which is
currently being formed. The weight associated with the selected edge is added to the total weight of
spanning tree as well. To avoid the loops in the tree, each passive learning automaton prunes its action-
set (or scales up its action probability vector) by disabling the actions corresponding to the edges
selected so far or the edges by which a cycle may be formed. Then, the learning automaton which is at
the other end of the selected edge is activated. It chooses one of its actions as the previous activated
automata did. The sequential activation process of learning automata (or selecting tree edges) is
repeated until either a spanning tree is constructed, or no more actions can be taken by the currently
active learning automaton. In the former case, the current stage is successfully completed by finding a
solution to the minimum weight spanning tree problem (this occurs when the number of selected edges
is greater than or equal to (n — 1), where n denotes the cardinality of the vertex -set), and in the latter
case, the proposed algorithm traces the path induced by the activated learning automata back for
finding a learning automaton with available actions. The learning automaton which is found in the
backtracking process is activated again. The action-set of such an automaton has to be updated by
disabling its last selected action. Now, the reactivated automaton resumes the current stage by
choosing one of its possible actions as described above. The learning automaton activation (or
reactivation) process is continued until formation a spanning tree. The backtracking technique
proposed in this paper assures that a spanning tree will be constructed at each stage of algorithm. By
the backtracking technique, each learning automaton may activate more than one of its neighbors at
each stage. That is, more than one action can be chosen by each learning automaton.

As mentioned earlier, the corresponding edge is added to the spanning tree, once an action is
chosen by a learning automaton. The weight associated with the selected edge is also added to the total
weight of the spanning tree. Since the weight associated with the graph edge is assumed to be a positive
random variable, a particular spanning tree may experience a different weight at each stage. Therefore,
the proposed algorithm deals with the average weight of the spanning trees rather than their weight at
each stage. To do so, at the end of stage k, the average weight of the selected spanning tree is computed
as follows:

We suppose that spanning tree t; is selected at stage k. The average weight of spanning tree t;
until stage k is computed as

—r _ 1 k; j

W‘ri - k_l. Zjlz1 W‘ri (6)
where k; denotes the number of times spanning tree t; is constructed until stage k, and wle. denotes the
weight of the j™* sample of spanning tree t;, which is defined as

i j
Wr, = z:V(Slt)ETi We(s.t) ’

where w/

etst) denotes the weight of edge e(s) as a part of the jt" sample taken from spanning tree ;.

To guarantee the convergence of the proposed algorithm to the optimal solution (i.e.,, minimum
spanning tree), the average weight of the constructed spanning tree has to be compared with the
dynamic threshold, T}, at each stage. At stage k > 1, the dynamic threshold is calculated as

1 _
T =7 di=a W (8)

where r denotes the number of all spanning trees explored until stage k.

ALGORITHM LASMSTA THE PROPOSED STOCHASTIC MINIMUM SPANNING TREE ALGORITHM

L:Input: Graph G < V,E,W >, Stop Threshold §
2:0utput: The minimum spanning tree
3:Assumptions

4: Let T denotes the selected tree

5:Begin Algorithm

6: k< 0,T,<0

7: Repeat

8: TeQ,w, <0

9: The first automaton is randomly selected, denoted as A; and activated

10: Repeat

11: If A; has no possible actions Then

12: Path induced by activated automata is traced back for finding an automaton with available actions
13: The found learning automaton is denoted as 4;

14: End If

15: Automaton A; chooses one of its actions (say action a{)

16: T<T+ {e(Ai_A].)}, Wy < wp + {we(Ai’Aj)}

17: Each automaton prunes its action-set to avoid the loop

18: Automaton 4; is activated

19: Set Ai to A]

20: Until [t| = |V|-1

21: Compute the average weight of the selected spanning tree and denote it w,

22: If w, < T,_; Then

23: Reward the selected actions of the activated automata along the spanning tree
24: Else

25: Penalize the selected actions of the activated automata along the spanning tree
26: End If

27: Tk « [(k - 1)Tk—l + WT]/k

28: k—k+1

29: Enable all the disabled actions

30: Until the probability of finding a MST is greater than §
31:End Algorithm

Figure 2. Pseudo code of the proposed stochastic MST algorithm

At each stage, the average weight of the selected spanning tree is compared with the dynamic
threshold. All activated learning automata reward their chosen actions, if the average weight of the
selected spanning tree is less than or equal to the dynamic threshold. They penalize the taken actions
otherwise. Since each learning automaton updates its action probability vector by using a Lr_; learning
algorithm, the probability vectors remain unchanged when the learning automata are penalized. At the
end of each stage, the disabled actions must be enabled again and the action probabilities are rescaled
as described on variable action learning automata in Section 2.3. The process of constructing the
spanning trees and updating the action probabilities is repeated until the choice probability of the
constructed spanning tree is greater than a certain threshold § which is called stop threshold. The
choice probability of a spanning tree is defined as the product of the probability of choosing the
selected edges. The spanning tree which is selected just before the algorithm stops is the spanning tree
with the minimum expected weight among all the spanning trees of the stochastic graph. Figure 2
shows the pseudo code of the proposed Stochastic MST algorithm.

5. EXPERIMENTAL RESULTS

To study the performance of the proposed stochastic minimum spanning tree algorithm, we have
conducted several simulation experiments on four well-known stochastic benchmark graphs borrowed
from [10, 13]. The running time of algorithm and the number of samples taken from the stochastic
graph (i.e, sampling rate) are our metrics of interest. To show the outperformance of our proposed
algorithm, the obtained results are compared with those of algorithms proposed by Alexopoulos and
Jacobson [10] and Hutson and Shier [13]. All algorithms are tested on two sparse graphs called Alex1
and Alex2 as well as two complete graphs with 5 and 6 vertices called Kz and K, respectively. Alex1
comprises 8 nodes and 14 edges, and Alex 2 has 9 nodes and 15 edges. The discrete random variables
associated with the edge weight of Alex1 and Alex2 have two and three states in mode A and B,
respectively. The probability distributions of the random weights assigned to the edges of Alex1 and
Alex2 given in [41] tend toward the smaller edge weights. That is, higher probabilities are assigned to
the edges with smaller weights. Such a biased distribution is more pragmatic for modeling the network
dynamics than a simple uniform distribution. The other two benchmark stochastic graphs on which we
tested the studied algorithms are two complete graphs K; and Ky given in [13]. All stochastic MST
algorithms were tested on benchmarks graphs K5 and Ky in two different modes and the obtained
results reported in Tables 1 and 2. In the former mode denoted as E1, the distribution of the edge
weight has a small variance, and in the latter mode specified as E2 the variance of the distribution
associated with the edge weight is large. The random variables assigned to the edge weight of K5 and K¢
have four and three states, respectively.

Table 1. The performance evaluation of the proposed algorithm for different learning rates

Learning rate RT SR PCR
0.05 5.9029 5890 100
0.06 3.7890 4921 100
0.07 2.3400 3764 100
0.08 1.9097 3118 100
0.09 0.9412 2912 100
0.10 1.0350 2101 100
0.15 0.2100 1623 98
0.20 0.1050 1234 97
0.25 0.0970 1031 96
0.30 0.0783 989 93
0.35 0.0611 711 90
0.40 0.0510 590 88
0.45 0.0123 357 85
0.50 0.0098 210 81

In learning automata-based algorithms, choosing the (proper) learning rate is the most
challenging issue. From the learning automata theory, it is concluded that in our proposed algorithm
the costs of the learning process increases and the expected weight of the spanning tree decreases
(converges to the optimal one) as the learning rate decreases. That is, the solution optimality is
inversely proportional to the learning rate. Such a conclusion can be also drawn from the results shown
in Table 1. This property enables us to make a trade-off between the costs (running time and sampling
rate) of the proposed algorithm and the optimality of the obtained solution by a proper choice of the
learning rate. This means that the complexity of the proposed algorithm can be accommodated to the
required optimality of the solution. To estimate the optimality of the solution, we calculate the
percentage of the converged runs (PCR) to the expected weight of the minimum spanning tree for
different values of learning rate. PCR is measured for 100 independent runs. To find an appropriate
learning rate, we compute the running time (RT) of algorithm (in second), the total number of samples
taken from the graph edges (i.e., the sampling rate of algorithm) (SR), and the percentage of the
converged runs (PCR) as the learning rate of algorithm varies from 0.05 to 0.50 for Alex1. The obtained

11

results are shown in Table 1. Since the proposed algorithm aims at finding the minimum solution, from
the obtained results it can be observed that the proposed algorithm always converges to the minimal
solution with the minimum number of iterations and minimum number of samples, if the learning rate
is setto 0.1.

As discussed earlier, the simulation results given in Table 1 reveal that the running time of the
proposed algorithm is inversely proportional to the learning rate. The results also show that the
sampling rate and the convergence rate to the optimal solution increases as the learning rate decreases.

In learning automata-based algorithms, the convergence rate to the optimal solution is inversely
proportional and the convergence speed is directly proportional to the learning rate. This is due to the
fact that a learning automata-based algorithm with a small enough learning rate is capable of exploring
almost all possible solutions, and so finds the best one. In fact, the costs of a learning automata-based
algorithm (e.g., computational or communicational costs) increase as the learning rate decreases. As
shown in Table 1, the running time of algorithm (which is the inverse of the convergence speed)
increases as the learning rate becomes smaller. From Table 1, it can be seen that the sampling rate is
directly proportional to the running time and increases as the learning rate increases. On the other
hand, the optimality of the response (e.g., the percentage of the converged runs (PCR)) increases as the
learning rate decreases. The results given in Table 1 also show that PCR increases as the learning rate
decreases. This is because the number of stages of algorithm increases and so the algorithm has enough
time to find the optimal (or very near to optimal) solution.

In all learning automata-based experiments conducted in this paper, the reinforcement scheme
under which the action probability vector of the learning automata is updated is a linear reward-
inaction (Lg_,) algorithm with learning rate 0.1. The stop threshold $ is set to 0.95. This means that the
proposed algorithm stops if the probability with which a spanning tree is selected becomes greater
than or equal to 0.95. Each algorithm is tested on all the above mentioned variations of the stochastic
benchmark graphs Alex1, Alex2, K5 and K and the results are summarized in Tables 2 and 3. The
results reported in these tables are average over 100 runs. Table 2 shows the running time of each
algorithm (in second), and Table 3 represents the total number of samples need to be taken from the
graph edges (i.e., sampling rate of algorithm) by each algorithm.

Table 2. The average running time (RT) of different algorithms (in second)

Graph Vertices Edges ALJA HUSH LASMSTA
Alex1-A 8 14 7.412 3.110 1.035
Alex2-A 9 15 15.70 7.231 1.482
Alex1-B 8 14 19.42 19.45 1.982
Alex2-B 9 15 34.78 28.12 2.609

K<-E1 5 10 18.38 8.450 1.749

K<-E2 5 10 30.29 12.98 2.198

K¢-E1 6 15 85.21 53.87 5.054

K.-E2 6 15 101.2 69.44 8.290

From the numerical results reported in Table 2, it can be concluded that graphs K; and K, are
more time consuming than Alex1 and Alex2. This is due to the fact that a larger number of samples
must be taken from the large state space of the complete graphs (i.e., K5 and K;) for convergence to the
optimal spanning tree even for smaller vertex-sets. This is also because of the probability distribution
function of the random variable associated with the edge weight.

Table 2 shows the average amount of time consumed by each algorithm to solve the minimum
spanning tree problem for every above mentioned stochastic benchmark graphs. Comparing the
running time of ALJA, HUSH, and LASMSTA given in Table 2, it is observed that the time complexity of
our proposed algorithm (LASMSTA) is significantly shorter than that of HUSH and ALJA. This is because
of the fact that, unlike ALJA and HUSH, the proposed algorithm is not based on the construction of the
extremely large state space of the stochastic problem. Furthermore, LASMSTA removes the non-
optimal edges (i.e., the edges that are not along the branches of the optimal spanning tree) from the
sampling process for the next stages. That is, as LASMSTA proceeds the edges or branches which do not

belong to the optimal spanning tree are pruned. As mentioned earlier, the process of constructing the
problem state space is extremely time consuming for moderate size or even small stochastic graphs,
and becomes an intractable problem in large networks. Therefore, ALJA and HUSH take too much time
for the state space construction phase. In addition, finding the optimal tree form the huge state space
requires a along time. Hence, it is expected that the running time of HUSH and ALJA will be very longer
than that of LASMSTA. The obtained results given in Table 1 confirm this, showing that HUSH lags far
behind LASMSTA, and ALJA takes longer time as compared with HUSH. This is because HUSH considers
only a small subset of all the possible realizations of the stochastic problem state space, and avoids
generating unnecessary and repetitive states. The reduced state space shortens the running time of
HUSH in comparison with ALJA. On the other hand, reducing the number of states may cause the
missing of the optimal state in HUSH. As a result, the probability of finding the optimal solution in HUSH
is smaller than that of ALJA. Form Table 1, it can be observed that LASMSTA always converges to the
optimal solution (i.e., spanning tree with the minimum expected weight) for learning rates less than
0.15, while the rate of the convergence to the optimal solution is at most 90 percent for HUSH and at
most 94 percent for ALJA. Putting together the higher convergence rate and shorter running time of the
proposed algorithm reveals its outperformance better.

Table 3. The average sampling rate (SR) of different algorithms

Graph Vertices Edges ALJA HUSH LASMSTA
Alex1-A 8 14 24117 10760 2101
Alex2-A 9 15 35982 23412 2760
Alex1-B 8 14 76980 44902 3208
Alex2-B 9 15 103492 80981 3912

K<-E1 5 10 142981 53902 3032

K<-E2 5 10 192091 62411 4490

K¢-E1 6 15 210376 60787 6210

K.-E2 6 15 311442 71192 6341

We also conducted several simulation experiments to measure the average sampling rate (i.e., the
average number of samples need to be taken from the stochastic graph) of ALJA, HUSH, and LASMSTA
on different variations of the stochastic benchmark graphs Alex1, Alex2, K; and Kg. The obtained
results are summarized in Table 3. Comparing the results given in this table, it is obvious that LASMSTA
considerably outperforms the other algorithms in terms of the sampling rate. This is because the
proposed learning automata-based algorithm removes the edges or branches of the graph which do not
belong to the optimal spanning tree from the sampling process, and so is concentrated on the edges
that construct the spanning tree with the minimum expected weight. Therefore, the proposed
algorithm reduces the rate of unnecessary samples meaningfully. The results also show that the
sampling rate of HUSH is very smaller in contrast with ALJA, specifically for the complete benchmark
graphs. This is due to the fact that HUSH reduces the size of the problem state space by avoiding the
unnecessary and repetitive states. However, sampling from the very huge state space of the stochastic
problem which is constructed in ALJA and HUSH causes a mush higher sampling rate compared to
LASMSTA. In addition to the lower sampling rate, LASMSTA has a higher convergence rate (to the
minimal solution) in comparison with HUSH and ALJA.

6. CONCLUSION

In this paper, we first proposed a classification of the minimum spanning tree problems, and then a
learning automata-based heuristic algorithm for solving the minimum spanning tree problem in a
stochastic graph where the probability distribution function of the edge weight is unknown. At each
stage of the proposed algorithm, the edges that must be sampled are determined by the learning
automata assigned to the graph vertices. As the proposed algorithm proceeds, the sampling process is
focused on the edges by which the spanning tree with the minimum expected weight is constructed.
Therefore, the proposed algorithm significantly decreases the rate of unnecessary samples. To show the

13

performance of the proposed algorithm, we conducted several simulation experiments and compared
the obtained results with those of the best existing methods. The results show the superiority of our
proposed algorithm over the others in terms of the convergence rate to the optimal solution, running
time of algorithm, and the sampling rate.

REFERENCES

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

T. C. Chiang, C. H. Liu, and Y.M. Huang, “A Near-Optimal Multicast Scheme for Mobile Ad hoc
Networks Using a Hybrid Genetic Algorithm,” Expert Systems with Applications, 2007, Vol. 33
pp. 734-742.

G. Rodolakis, A. Laouiti, P. Jacquet, and A. M. Naimi, “Multicast Overlay Spanning Trees in Ad hoc
Networks: Capacity bounds protocol design and performance evaluation,” Computer
Communications, 2008, Vol. 31, pp. 1400-1412.

0. Boruvka, “Ojistem Problemu Minimalnim (about a certain minimal problem),” Praca Moravske
Prirodovedecke Spolecnosti, 1926, Vol. 3, pp. 37-58.

J. B. Kruskal, “On the Shortest Spanning Sub Tree of a Graph and the Traveling Salesman
Problem,” in Proceedings of the American Mathematical Society, 1956, Vol. 7, No. 1, pp. 748-750.

R. C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell Systems Technical
Journal, 1957, Vol. 36, pp. 1389-1401.

H. Ishii, S. Shiode, T. Nishida, and Y. Namasuya, “Stochastic Spanning Tree Problem,” Discrete
Applied Mathematics, 1981, Vol. 3, pp. 263-273.

H. Ishii, and T. Nishida, “Stochastic Bottleneck Spanning Tree Problem,” Networks, 1983, Vol. 13,
pp. 443-449.

I. B. Mohd, “Interval Elimination Method for Stochastic Spanning Tree Problem,” Applied
Mathematics and Computation, 1994, Vol. 66, pp. 325-341.

H. Ishii, and T. Matsutomi, “Confidence Regional Method of Stochastic Spanning Tree Problem,”
Mathematical and Computer Modeling, 1995, Vol. 22, No. 19-12, pp. 77-82.

[10] C. Alexopoulos and J. A. Jacobson, “State Space Partition Algorithms for Stochastic Systems with

Applications to Minimum Spanning Trees,” Networks, 2000, Vol. 35, No. 2, pp. 118-138.

[11] H. Katagiri, E. B. Mermri, M. Sakawa and K. Kato, “A Study on Fuzzy Random Minimum Spanning

Tree Problems through Possibilistic Programming and the Expectation Optimization Model,” in
Proceedings of the 47th IEEE International Midwest Symposium on Circuits and Systems, 2004.

[12] T. A. Almeida, A. Yamakami, and M. T. Takahashi, “An Evolutionary Approach to Solve Minimum

Spanning Tree Problem with Fuzzy Parameters,” in Proceedings of the International Conference
on Computational Intelligence for Modelling, Control and Automation, 2005.

[13] K. R. Hutson, and D. R. Shier, “Minimum Spanning Trees in Networks with varying Edge Weights,”

Annals of Operations Research, Vol. 146, pp. 3-18, 2006.

[14] H. Fangguo, and Q. Huan, “A Model and Algorithm for Minimum Spanning Tree Problems in
Uncertain Networks,” in Proceedings of the 3rd International Conference on Innovative
Computing Information and Control (ICICIC'08), 2008.

[15] K. Dhamdhere, R. Ravi, and M. Singh, “On Two-Stage Stochastic Minimum Spanning Trees,”
Springer-Verlag Berlin, 2005, pp. 321-334.

[16] C. Swamy, and D. B. Shmoys, “Algorithms Column: Approximation Algorithms for 2-Stage
Stochastic Optimization Problems,” ACM SIGACT News, 2006, Vol. 37, No. 1, pp. 1-16.

[17] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A Distributed Algorithm for Minimum Weight
Spanning Trees,” ACM Transaction on Programming Languages & Systems, 1983, Vol. 5, pp. 66-
77.

[18] P. Spira, “Communication Complexity of Distributed Minimum Spanning Tree Algorithms,” in
Proceedings of the Second Berkeley Conference on Distributed Data Management and Computer
Networks, 1977.

[19] Y. Dalal “Broadcast Protocols in Packet Switched Computer Networks,” Technical Report 128,
Department of Electrical Engineering, Stanford University, April 1977.

[20] E. Gafni, “Improvements in the Time Complexity of Two Message-Optimal Election Algorithms,”
in Proceedings s of the 4th Symposium on Principles of Distributed Computing (PODC), 1985, pp.
175-185.

[21] B. Awerbuch, “Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting,
Leader Election, and Related Problems,” in Proceedings of the 19th ACM Symposium on Theory
of Computing (STOC), 1987, pp. 230-240.

[22]]. Garay, S. Kutten, and D. Peleg, “A Sublinear Time Distributed Algorithm for Minimum-Weight
Spanning Trees,” SIAM Journal on Computing, 1998, Vol. 27, pp. 302-316.

[23] S. Kutten, and D. Peleg, “Fast Distributed Construction of k-Dominating Sets and Applications,”
Journal of Algorithms, 1998, Vol. 28, pp. 40-66.

[24] M. Elkin, “A Faster Distributed Protocol for Constructing Minimum Spanning Tree,” in
Proceedings s of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004, pp. 352-361.

[25] D. Peleg and V. Rabinovich, “A Near-Tight Lower Bound on the Time Complexity of Distributed
MST Construction,” in Proceedings s of the 40th IEEE Symposium on Foundations of Computer
Science (FOCS), 1999, pp. 253-261.

[26] M. Elkin, “Unconditional Lower Bounds on the Time-Approximation Tradeoffs for the Distributed
Minimum Spanning Tree Problem,” in Proceedings of the ACM Symposium on Theory of
Computing (STOC), 2004, pp. 331-340.

[27] M. Elkin, “An Overview of Distributed Approximation,” ACM SIGACT News Distributed
Computing Column, 2004, Vol. 35 No. 4, pp. 40-57.

[28] M. Khan, and G. Pandurangan, “A Fast Distributed Approximation Algorithm for Minimum

Spanning Trees,” in Proceedings of the 20th International Symposium n Distributed Computing
(DISC), 2006.

15

[29] V. Aggarwal, Y. Aneja, and K. Nair, “Minimal Spanning Tree Subject to a Side Constraint,”
Computer Operations Research, 1982, Vol. 9, pp. 287-296.

[30] M. Gruber,]. Hemert, and G. R. Raidl, “Neighborhood Searches for the Bounded Diameter
Minimum Spanning Tree Problem Embedded in a VNS, EA and ACO,” in Proceedings of Genetic
and Evolutionary Computational Conference (GECC0’2006), 2006.

[31] T. N. Bui, and C. M. Zrncic, “An ant-based Algorithm for Finding Degree-constrained Minimum
Spanning Tree,” in Proceedings of the 8th annual conference on Genetic and evolutionary
computation, 2006, pp. 11-18.

[32] T. Oncan, “Design of Capacitated Minimum Spanning Tree with Uncertain Cost and Demand
Parameters,” Information Sciences, Vol. 177, 2007, pp. 4354-4367.

[33] T. Oencan, J. F. Cordeau, and G. Laporte, “A Tabu Search Heuristic for the Generalized Minimum
Spanning Tree Problem,” European Journal of Operational Research, 2008, Vol. 191, No. 2, pp.
306-319.

[34] M. Parsa, Q. Zhu, and].]. Garcia-Luna-Aceves, “An Iterative Algorithm for Delay-Constrained
Minimum-Cost Multicasting,” IEEE/ACM Transactions on Networking, 1998, Vol. 6, No. 4, pp.
461-474.

[35] H. F. Salama, D. S. Reeves, Y. Viniotis, “The Delay-constrained Minimum Spanning Tree Problem,”
in Proceedings of the Second IEEE Symposium on Computers and Communications, 1997, pp.
699-703.

[36] L. Gouveia, L. Simonetti, and E. Uchoa, “Modeling Hop-constrained and Diameter-constrained
Minimum Spanning Tree Problems as Steiner Tree Problems over Layered Graphs,” Journal of
Mathematical Programming, Springer, 2009.

[37] Y. M. Sharaiha, M. Gendreau, G. Laporte, and I. H. Osman, “A Tabu Search Algorithm for the
Capacitated Shortest Spanning Tree Problem,” Networks, 1998, Vol. 29, No. 3, pp. 161-171.

[38] L. Hanr, and Y. Wang, “A Novel Genetic Algorithm for Degree-Constrained Minimum Spanning
Tree Problem,” International Journal of Computer Science and Network Security, 2006, Vol. 6,
No. 7A, pp. 50-57.

[39] M. Krishnamoorthy, and A. Ernst, “Comparison of Algorithms for the Degree Constrained
Minimum Spanning Tree,” Journal of Heuristics, 2001, Vol. 7, pp. 587-611.

[40] P. Doulliez, and E. Jamoulle, “Transportation Networks with Random Arc Capacities,” RAIRO,
Recherche Operationnelle Operations Research, 1972, Vol. 3, pp. 45-60.

[41] K. R. Hutson, and D. R. Shier, “Bounding Distributions for the Weight of a Minimum Spanning
Tree in Stochastic Networks,” Operations Research, 2005, Vol. 53, No. 5, pp. 879-886.

[42] M. A. L. Thathachar, and B. R. Harita, “Learning Automata with Changing Number of Actions,”
[EEE Transactions on Systems, Man, and Cybernetics, 1987, Vol. SMG17, pp. 1095-1100.

[43] K. S. Narendra, and K. S. Thathachar, “Learning Automata: An Introduction,” New York, Printice-
Hall, 1989.

[44] S. Lakshmivarahan, and M. A. L. Thathachar, “Bounds on the Convergence Probabilities of
Learning Automata,” IEEE Transactions on Systems, Man, and Cybernetics, 1976, Vol. SMC-6, pp.
756-763.

[45]]J. C. Gower, and G. J. S. Ross, “Minimum Spanning Trees and Single Linkage Cluster Analysis,”
Journal of the Royal Statistical Society (Applied Statistics), 1969, Vol. 18, No. 1, pp. 54-64.

[46] Z. Barzily, Z. Volkovich, B. Akteke-Oztiirk, G. W. Weber, “On a Minimal Spanning Tree Approach in
the Cluster Validation Problem,” Informatica, 2009, Vol. 20, No. 2, pp. 187-202.

[47] S. Marchand-Maillet, Y. M. Sharaiha, “A Minimum Spanning Tree Approach to Line Image
Analysis,” in Proceedings of 13th International Conference on Pattern Recognition (ICPR'96),
1996, pp. 225.

[48]]. Li, S. Yang, X. Wang, X. Xue, and B. Li, “Tree-structured Data Regeneration with Network Coding
in Distributed Storage Systems,” in Proceedings of International Conference on Image
Processing, Charleston, USA, 2009, pp. 481-484.

[49] A. N. C. Kang, R. C. T Lee, C. L. Chang and S. K. Chang, “Storage Reduction Through Minimal
Spanning Trees and Spanning Forests,” IEEE Transaction on Computers, 1977, Vol. C-26, pp. 425-
434.

[50] R. E. Osteen, and P. P. Lin, “Picture Skeletons Based on Eccentricities of Points of Minimum
Spanning Trees,” SIAM Journal on Computing, 1974, Vol. 3, pp. 23-40.

[51] R. L. Graham, and P. Hell “On the History of the Minimum Spanning Tree Problem,” IEEE Annals
of the History of Computing, 1985, Vol. 7, No. 1, pp. 43-57.

[52] A. Jain, and]J. W. Mamer, “Approximations for the Random Minimal Spanning Tree with
Applications to Network Provisioning,” Operations Research, 1988, Vol. 36, pp. 575-584.

[53] J. Akbari Torkestani, and M. R. Meybodi, “Learning Automata-Based Algorithms for Finding
Minimum Weakly Connected Dominating Set in Stochastic Graphs,” International Journal of
Uncertainty, Fuzziness and Knowledge-based Systems, to appear, 2010.

[54]]J. Akbari Torkestani, and M. R. Meybodi, “Mobility-based Multicast Routing Algorithm in Wireless
Mobile Ad Hoc Networks: A Learning Automata Approach,” Journal of Computer
Communications, 2010, Vol. 33, pp. 721-735.

[55] J. Akbari Torkestani, and M. R. Meybodi, “A New Vertex Coloring Algorithm Based on Variable
Action-Set Learning Automata,” Journal of Computing and Informatics, 2010, Vol. 29, No. 3, pp.
1001-1020.

[56] J. Akbari Torkestani, and M. R. Meybodi, “Weighted Steiner Connected Dominating Set and its
Application to Multicast Routing in Wireless MANETSs,” Wireless Personal Communications,
Springer Publishing Company, Feb. 2010.

[57] J. Akbari Torkestani, and M. R. Meybodi, “An Efficient Cluster-based CDMA/TDMA Scheme for

Wireless Mobile AD-Hoc Networks: A Learning Automata Approach,” Journal of Network and
Computer applications, 2010, Vol. 33, pp. 477-490.

17

[58] J. Akbari Torkestani, and M. R. Meybodi, “Clustering the Wireless Ad-Hoc Networks: A
Distributed Learning Automata Approach,” Journal of Parallel and Distributed Computing, 2010,
Vol. 70, pp. 394-405.

[59] J. Akbari Torkestani, and M. R. Meybodi, “An Intelligent Global Flooding Algorithm in Wireless Ad
Hoc Networks based on Distributed Learning Automata,” Journal of Computer Networks, 2010,
Vol. 54, pp. 826-843.

[60] E. A. Billard, and S. Lakshmivarahan, “Learning in Multi-Level Games with Incomplete
Information-Part I,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,
1999, Vol. 19, pp. 329-339.

[61] M. R. Meybodi, “Learning Automata and Its Application to Priority Assignment in a Queuing
System with Unknown Characteristics,” Ph.D. thesis, Department of Electrical Engineering and
Computer Science, University of Oklahoma, Norman, Oklahoma, USA, 1983.

[62] A. A. Hashim, S. Amir, and P. Mars, “Application of Learning Automata to Data Compression,”
New York: Plenum Press, in Adaptive and Learning Systems, K. S. Narendra ed., 1986, pp. 229-
234.

[63] B. J. Oommen, and E. R. Hansen, “List organizing strategies using stochastic move-to-front and
stochastic move-to-rear operations,” SIAM Journal of Computations, Vol. 16, pp. 705-716, Aug.
1987.

[64] C. Unsal, P. Kachroo, and]. S. Bay, “Multiple Stochastic Learning Automata for Vehicle Path
Control in an Automated Highway System,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A, 1999, Vol. 29, pp. 120-128.

[65] A. G. Barto, and P. Anandan, “Pattern-Recognizing Stochastic Learning Automata,” IEEE
Transactions on Systems, Man, and Cybernetics, 1985, Vol. SMC-15, pp. 360-375.

Author Biography

Javad Akbari Torkestani received the B.S. and M.S. degrees in Computer Engineering
in Iran, in 2001 and 2004, respectively. He also received the Ph.D. degree in Computer
Engineering from Science and Research University, Iran, in 2009. Currently, he is an
assistant professor in Computer Engineering Department at Arak Azad University,
Arak, Iran. Prior to the current position, he joined the faculty of the Computer
Engineering Department at Arak Azad University as a lecturer. His research interests
include wireless networks, mobile ad hoc networks, fault tolerant systems, learning
systems, parallel algorithms, and soft computing.

Mohammad Reza Meybodi received the B.S. and M.S. degrees in Economics from
Shahid Beheshti University in Iran, in 1973 and 1977, respectively. He also received
the M.S. and Ph.D. degree from Oklahoma University, USA, in 1980 and 1983,
respectively in Computer Science. Currently, he is a full professor in Computer
Engineering Department, Amirkabir University of Technology, Tehran, Iran. Prior to
current position, he worked from 1983 to 1985 as an assistant professor at Western
Michigan University, and from 1985 to 1991 as an associate professor at Ohio
University, USA. His research interests include wireless networks, fault tolerant
systems, learning systems, parallel algorithms, soft computing and software development.

19

