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Abstract 

A new approach is presented to the invariant recognition 
of objects under dynamic perceptual conditions. In this 
approach, images of a sequence are used to. adapt object 
descriptions to perceived on-line variabilities of object 
characteristics. This adaptation is made possible by the 
close-loop integration of recognition processes of 
computer vision together with an incremental machine 
learning processes. Experiments presented in this paper 
were run for the texture recognition problem and were 
limited to a partially-supervised evolution of concept 
descriptions (models) rather than utilizing a fully 
autonomous model evolution. Obtained results are 
evaluated using the criteria of system recognition 
effectiveness and recognition stability. 

1: Introduction 

In the area of object recognition in outdoor environments, 
most vision research has focused on recognizing objects 
through textures under stationary conditions. i.e., for 
stable lighting conditions. resolution and surface 
positioning [IIJ. Relatively little has been done on the 
problem of recognizing textl.lres under dynamic conditions. 
The problem of recognizing textures under dynamic 
conditions occurs in most situations and is therefore of 
significant practical imponance. For example. when an 
autonomous system is moving through an environment. 
the vision system has to adapt to changes in perceptual 
conditions. This adaptation to variable perceptual 
conditions must be applied to recognize objects on images 
acquired over time. In order to recognize an object on 
images of a sequence, the system bas to iteratively update 
its texture descriptions (models) with regard to changes in 
object characteristics previously percei ved. 

orientation) and (2) the innuence of natural agents (e.g.• 
changing illumination). Changing resolution causes both 
the repetition rate of texture patterns and the pattern 
characteristics to vary. The variability of texture features 
obtained for different resolutions is significant [1O,12J. 
Changing surface orientation innuences the projection of 
3-D microsuucture of a surface onto a 2·D image. 
Changing lighting is caused by the dynamics of the light 
source (e.g •• intensity, light spectrum), its position in 
relation to an object's surface. and irregularities such as 
shadows or highlights. 

We propose a novel approach to the object recognition 
problem that deals with the dynamics of conditions under 
which objects are perceived. The proposed approach 
integrates learning and recognition processes within a 
closed loop to update object models. Analysis of system 
recognition effectiveness, performed over a sequence of 
images. detects changes in object characteristics. If this 
effectiveness decreases then the system activates 
incremental learning processes of model evolution to 
improve the model discriminating power. The system 
learns initial texture descriptions from teacher-provided 
examples. Then, the system updates these descriptions 
automatically [6]. 

Related research work has been reported by Goldfarb [3J. 
Just as model evolution integrates multi·disciplinary 
research. Goldfarb introduces "Pattern Learning" to 
integrale symbol formation and recognition processes with 
Artificial Intelligence symbol manipulation processes. 
Goldfarb proposes a neural net approach for recognition 
and evolution of structural patterns. Since no experiments 
with real objects are presented. the dynamic perfonnance 
of his system is still questionable. 

2: System Architecture 

Circumstances that cause external conditions 10 vary can The architecture of an adaptive texture recognition system 
be divided into the following two groups: (1) projection is presented in Figure 1 integrates computer vision 
variability (e.g., changing resolution, different surface 
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module (CV) wIth concept acquisition and evolullon 
module (CA&E). 
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The input to the vision system is a sequence of images 
pet) obtained over time. These images represent 
differences in perteptuaJ conditions. An incoming image 
is processed to extract texture attributes. Texture concept 
descriptions (models) are then applied to recognize 
extracted vectors of attributes. Segmentation processes 
unify homogeneous texture areas of the same class. Sccne 
understanding, formulates a scene description and also 
evaluates recognition and segmentation processes using 
roth the preceding and current scene descriptions. 

In the initial training phase, a teacher has to interactively 
extract texture samples from the first image of a sequence. 
These samples (attribute vectors) are then provided to the 
CA&E system along with texture class labels to learn 
texture descriptions. Next.. the CV system applies texture 
descriptions to recognize and segment textures on the next 
images of a sequence. The scene understanding module 
analyzes segmented texture areas along with system 
recognition effectiveness and compares them with the 
results obtained on the preceding image(s). At the same 
time, selected texture samples are provided to the CA&E 
system. The CA&E system monitors the recognition 
effectiveness of the CV system (i.e., the discriminatory 
power of texture concept descriptions). The decrease in 
texture recognition effectiveness carries information about 
changes in the external perteptual conditions and is used 
to activate the concept evolution processes. 

3: Iterati\'e E"olution of Texture \Iodels 

The close-loop cooperation between CV and CA&E 
systems supports the flow of information necessary for 
the evolution of texture descriptions (models) over time. 
This evolution is by learning from the environment and it 
is performed in an incremental mode through the 
forthcoming images of a sequence. This requires the 
autonomous coexistence, indeed cooperation, of the 
recognition and learning parts of an integrated system. 
This integrated system can be implemented within a one
level or multi-level control suucture. 

For the one-level control suucture, an evolution cycle is 
represented by a single loop integrating the CV system 
with the CA&E system. This supports system adaptation 
to a sequence of images. For the two-level control 
structure (Figure 2), this single loop is decomposed into 
an additional internal loop of local evolution. This 
supports system adaptation to both a sequence of images 
and each single image of a sequence. 
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3.1: Initial Training 

The goal of the initial training is to teach the system to 
recognize the most important texture classes typical for a 
given application domain. The training process is 
performed on the rust image of a sequence (the starting 
position or a robot vehicle). The extraction of initial 
training data is done by a teacher selecting image areas of 
texture classes. These areas are then searched randomly to 
extract a given number of training examples. 

The training examples are provided to the CA&E system. 
The AQ14 learning program is then applied to acquire 
initial concept descriptions. The AQ algorithm consuucts 
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discriminant concept description in a top-down fashion 
[5). The system learns classification rules from 
preclassificd sets of examples (events). Examples are 
observations from the problem domain, where each 
example is a list of attribute·value pairs. The set of 
examples of a given class for which the algorithm is 
learning rules is called the positive examples. Other 
classes are characterized by negative examples. AQ begins 
with the most genera] description (the empty. all inclusive 
conjunctive concept) and specializes the concept 
description by adding one or more particular generalized 
conditions from the seed (a selected positive example) 
through the process known as extend against. The 
specialized concept description covers fewer negative 
examples than the more general concept. When the 
concept is consistent (covers no negative events), it is 
saved in the current concept set by disjoining it with the 
previous disjuncts. Next, a new seed is selected and the 
process continues until all positive examples are covered. 

In case of linear attributes. exttnt against returns a range 
of values that include the value for the seed and 
immediately adjacent values not including the negative 
event's value. The results of extending the seed against 
each negative event are then combined by intersecting the 
values for each of the previous tests for each attribute. 
The system then selects these combined values to get a 
disjunct that covers the seed, but none of the negative 
events. The following is an example of a AQ disjunct 
(equality is used as a relational symbol): 
[x I=1..3J[x2=1][x4=()][x6=L7][x8= 1 J. 

3.2: Texture Recognition 

The goal of the recognition process performed by the 
external control loop is (i) to assign class membership to 
all texture events of a given image, and (il) to monitor 
system recognition effectiveness over a sequence of 
images_ The recognition process performed by the CV 
system, incorporates concept descriptions D{t-AT) 
previously learned to assign class membership to each 
texture event and to indicate the confidence level of this 
decision. Next, segmentation processes unify spatially 
distributed classification decisions into homogeneous areas 
of texture classes. 

The recognition goal for the internal control loop is (i) to 

provide guidance for learning processes, and (ii) to verify 
the effectiveness of the evolution processes and the 
accuracy of concept descriptions. The internal evolution 
loop is run through the ordered subgroups of texture 
events. These subgroups are obtained by dividing the set 
of events of texture samples. The recognition process is 
performed in the same way as for the external loop where 

the most recent concepl descriptions D(t·~l) are applied. 
The ~t represents the lime intcr.'aJ between the current and 
previous subgroup of texture events, The ~T. however. 
represents the time interval of image acquisition between 
images P(t) and p(t-~n, where ~T = r ~t for the 
number of iterations of the internal evolution loop. The 
recognition processes of the internal evolution loop are 
applied on given consecutive subgroups of texture events. 
The recognition result is a set of texture events associated 
with recognition decisions and confidence levels. 

3.3: Incremental Learning 

Since the integrated system has to adapt over time, it has 
to modify its models dynamically according to new 
training data. This model .modification must be 
supported by the model acquisition technique working in a 
dynamic fashion. for example, by the incremental learning 
methodology. The incremental learning methodology has 
already been implemented within the AQ family of 
learning programs [5.8]. It has been proven that 
incremental learning increases the speed of learning 
processes. Unfortunately, it can gi ve Slightly more 
complex models and somewhat worse recognition 
effectiveness [1.8]. 

Our approach to the evolution of texture descriptions 
incorporates incremental learning by selecting new 
training examples, and providing them to the system to 
use in modifying previously learned concept descriptions 
D(t-~t). Incrcmentalleaming is pcrfonned for each texture 
class that has to be modified. New training data for 
learning a single class is both a set of positive examples 
representing new events typical for a given class, and a set 
of negative examples representing new events typical for 
other classes. Previously modified concept descriptions 
are provided to the learning system, as well. Thus, the 
incremental learning modifies old descriptions using the 
changed texture characteristics contained in the new 
training data. 

3.4: Partial Supervision of Evolution 
Processes 

In the first experiments with the presented method of 
adaptive object recognition under variable perceptual 
conditions (in dynamic environments), we simplified the 
developed model evolution approach to a "partially· 
supervised" evolution of object models. The experimental 
system included the following technical restrictions: (i) 
texture segmentation was performed by a teacher through 
the sequence of images, and (ii) learning processes were 
initiated every time any texture event was not recognized 
correctly. 



The first limitation, segmentation of texture images by a 
tcacher. was applied to (i) secure perfect separation of 
different texture areas, and (ii) provide the same number of 
texture events for their recognition and the selection of 
new training data protecting the logical soundness of 
system behavior {9J. These assumptions allow us to 

focus on the behavioral analysis of evolution 
characteristics. where other effects innuencing this 
analysis are eliminated. Texture segmentation and the 
selection of texture events for the evolution experiments 
were performed through a dialog with a reacher. For each 
image of a sequence, a teacher drew texture areas 
corresponding to texture classes. Then, the interface 
system selected randomly 200 texture events for each 
class, and for each image of a sequence. 

The second limilation. the initiation of learning processes 
by any data that was not recognized, simplified the 
complexity of control mechanisms that trigger 
incremental learning processes. The execution of 
evolution processes is based on the generation of an 
evolution strategy composed of a sequence of evolution 
actions. We implemented the simplest evolution strategy 
where the initiation of learning processes was triggered by 
the existence of any incorrectly recognized data. The 
simplest evolution action, evolution through 

generalizGlion, was chosen for presented clI;pcrimcms. 
where the system extends by generalization the existing 
concept descriptions over new positive training examples. 

4: Experimental Data 

A sequence of five images (Figure 3) was acquired. where 
the images of a sequence were affected both by variable 
resolution and variable illumination. Each image was 
composed of six texture areas (sweaters). The distance 
between the textured objects and the camera was decreased 
by half during the experiment. Additionally. the light 
source was moved along with the camera. 

Each image of a sequence was processed to extract texture 
attributes characterizing tell;ture classes. We modified 
Laws' [4] well known method of a two step extraction of 
texture attributes. In Lhe first step. the local micro
characteristics of raw texture data is computed. In Lhe 
second step, the local macro-statistics are computed to 
derive statistical measures of the image. Methods based 
on a similar approach were widely applied to texture 
feature extraction, and they provided quite good 
discriminating power [2]. 
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The modificatJon of the Laws' method of texture feature 
cmaction included: (i) the extension of the number of 
filtering masks (i.e .• R5R5. E5L5. E555, and L555) by 
additional four masks (i.e .• E5L5, E555, L555 and 
5353), and (ii) the redesigning of a window used to 
compute local macro-statistics from the filtered image 
from a square to a circular of radius R .. 7.5. 

Acquired texture features were grouped for each pixel of an 
input image into a vector of attributes. A single attribute 
was then quantized onto 57 levels to provide compatible 
input of uaining data for the AQ14 learning program. 
The complexity of attribute distribution is presented 
graphically (Figure 3) on the example of texture class E, 
attribute L5ES. and through five images of a sequence. 
The distribution of the chosen attribute is not nonnal for 
any image of a sequence. The distribution changes bOth 
its pattern and the translational position within the 
attribute space. These effects cause a degradation of 
recognition effectiveness when texture descriptions 
acquired from the data of one image are applied to 
recognize tcxtures on another image. This is why we are 
adapting the vision system to a dynamic environment 
using the learning-based evolution of concept descriptions. 

5: Testing Data and Methodology 

To obtain an objective analysis of system performance, 
evolution effectiveness was measured on different sets of 
data than data used for system evolution. Testing data 
used to measure system performancc was obtained from 
different sections of an image before experiments were ran. 
A singlc dataset of tcsting data containcd 200 tcsting 
cvents characteristic for a single texture class. 
Considering a sequence of five images, the total number 
of Lesting datasets was equal to 30 datasets (each of 200 
testing events), and these datasets were grouped into 5 
files corresponding to the five images of the sequence. 

The testing phase was applied each time after any 
evolution loop (i.e., external or internal loop). During 
the testing phase, currently available models were applied 
to recognize test datasets grouped into five testing files 
corresponding to five images of a sequence. Thus, 
recognition characteristics of model evolution were created 
by collecting the results from each testing phase and each 
iteration of model evolution. The created characteristics 
show the recognition effectiveness of evolved models 
when these models are applied over and over again to the 
same data during consecutive testing phases. 

The evaluation of system performance on a single image 
was based on the following three fold criteria: (1) overall 
system recognition effectiveness expressed by the average 

recogmuon rate, (~) stability of the recogntlion decision 
measured by the standard deviation. and (3) capability of 
recognizing all texture classcs monitored by the mmimum 
recognition rate. 

6: Experimental Results 

This section presents experimental results from the 
evolution of texture descriptions incorporating an 
incremental learning-based "partially supervised" evolution 
approach. 

6.1: Results for One-Loop Evolution 

The recognition characteristics obtained for the one-loop 
evolution approach are presented in the first row of Figure 
4. Each diagram contains recognition characteristics for 
testing dat.asets of five images and through five iteration 
steps. A single curve monitors the recognition 
performance of evolved texture descriptions on a given 
image over consecutive evolution iterations. 

Let us consider the recognition effectiveness. for example, 
of models initially acquired from thc first image of a 
sequence. Once acquired models are thcn evolved over the 
next images of the sequencc; i.e., by the second. third. 
fourth and fifth image. Every time the models are 
updated, the system measures their recognition 
performance on the same testing image; i.e., in our 
example on the first imagc. Completed characteristics 
show the recognition performancc of evolved models 
respective to the firstimagc only; i.e., we can analyze 
recognition stability of the system. On the other hand. 
models evolved by preceding images of a sequence can be 
tested on a particular image that follows these images. 
For example, models evolved by the first, second. third. 
and founh image of a sequence can be applied to the fifth 
image after each evolution iteration. This means that we 
measure system recognition performance on a future 
image of the sequence. 

A lack of stability of recognition characteristics is seen 
particularly for the first and last image of a sequence. 
Two negative evolution effects are observed; i.e., lack-of
support and lack-of-progress. 

The first negative effect, so called lack-oJ-support, relates 
to the decrease in the recognition effectiveness for a given 
image when the evolution of models is continued through 
the next images. We expect that acquired object models 
will have similar recognition effectiveness despite the fact 
that they are evolved over other images characterizing 
object occurrences. 
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The nrst negative effect, so called Jack-oJ-support, relates 
to the decrease in the recognition effectiveness for a given 
image when the evolution of models is continued through 
the next images. We ex~t that acquired object models 
will have similar recognition effectiveness despite the fact 
that they are evolved over other images characterizing 
object occurrences. 

The lack-oJ-support is seen for the lst image 
characteristics. It is illustrated beuer in the left column of 
Figure 5 presenting selected individual recognition 
characteristics of three classes which influence the 
instability of system recognition. Figure 5 illustrates the 
deteriorating recognition effectiveness of initially acquired 
descriptions of classes C, 0 and F when these descriptions 
are evolved over the next images. As mentioned before, 
we would like to have models that adapt once to a given 
image and then do not loose their discriminating power 
during evolution over subsequent images. If models are 
sensitive to evolution iterations then a large number of 
such iterations can weaken their discriminating power. 
This could make the system unable to recognize the 
concept variation that it learned previously. 

We nnd that Jack-ol-support for recognition effectiveness 
is caused by noise accumulation over the sequence of 
images. The selection of new training data does not 
perc;;eive and exclude noisy examples from being provided 
to the -learning module. This selection of new training 
data was performed by the simplest method possible and 
was simply the extraction of all texture events that were 
nOl recognized. In this way. new training datasets of 
selected texture events are characterized by lower Signal
to-Noise Ratio (i.e., they are more noisy) than datasets 
provided to the recognition phase. More careful selection 
of new training data is recommended. 

The second negative effect, so called Jack-oJ-progress, 
relates to the unexpected drop of the recognition 
effectiveness after the model adaptation is performed to a 
gi ven image. In this case. we expect that the recognition 
effectiveness will be higher (or at least on the same level) 
for the current image rather than for the directly preceding 
one. 

l' 
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on lhe 5lh image (lack-of-progress effect) 

The lack-oJ-progress is seen for lhe 5lh image. It is 
illustrated better in lhe left column of Figure 6 presenting 
selected individual recognition characteristics of classes A. 
B and E. In lhis case. evolved models were applied over 
and over again to recognize textures on lhe last image of 
lhe sequence; i.e .• on lhe 5lh image. It is seen lhat lhe 
predictive power of lhe description of class A was very 
high from lhe first to lhe fourth iteration. Because of lhis 
high prediction accuracy. class A was not evolved over 
preceding iterations (Le., over lhe first, second. lhird and 
fourlh images) and thus lhe model of class A did not 
compete wilh olher models. Finally, it was not evolved 
over lhe fiflh iteration (i.e., over the fiflh image of a 
sequence) due to the set of new training data being empty 
for class A - class A was recognized perfectly by models 
after lhe fourth evolution iteration. Simultaneously. 
descriptions of classes B and E were aggressively evolved 

during lhe last iterallon. eroding the deswplJon of class 
A, Classes Band E were rccognized at a much lower 
recognition level in the preceding iterations. causing the 
new training dataseLS for these classes to consist of data 
that significantly moved concept descriptions through the 
attribute space. 

Two solutions to lhe elimination of lhis negative effect 
(i.e., lack-oJ-progress) were proposed; i.e.. (i) lhe 
development of a two-level control system that evolves 
models through split training dataseLS (see next section). 
and (ii) lhe design of a new evolution-oriented learning 
kernel lhat allows for continuous evolution of model 
descriptions. 

6.2: Results for Two-Loop Evolution 

The recognition characteristics obtained for lhe tWO-loop 
evolution of texture concepts are presented in lhe second 
row of Figure 4. Each line representing the recognition of 
an image has two types of measurement poinLS; i.e .• 
points corresponding to the external evolution loop 
(integer iteration values). and poinLS corresponding to lhe 
activated internal evolution loop (fractional iteration 
values). There were five iterations of the external 
evolution loop. For each external loop lhere were lhree 
iterations of lhe internal evolution loop. 

The two-loop evolution of texture models has smoother 
recognition curves than the one-loop evolution. This 
demonstrates that two-loop evolution improves the 
general stability of lhe system. It is seen that the two
loop evolution of texture models reduces lhe two negative 
effecLS. lack.-ol-support and lack-o/-progress.• lhat cause 
rec9gnition instability when one-loop evolution is 
applied. 

Figure 5 shows a slight improvement in the support 
(decrease in lacfc-o/-support) of chosen concept 
descriptions when evolved lhrough other images. The 
lack-oJ-support. however. was not eliminated completely, 
Furlher reduction is expected by filtering new training 
dataSeLS to reduce the influence of noise on lhe evolved 
models. 
On the other hand. Figure 6 presents a significant 
reduction of the lack-o/-progress when two-loop evolution 
approach is applied. The model evolution through the 
internal loop even recovered lhe recognition effectiveness 
for the description of class A. This recognition 
effectiveness did nOl drop to a dangerously low level 
(indicating lhat class A was nOl recognized at all.) The 
recognition effectiveness for other classes (i.e .• class Band 
class E) was stabilized as well. 



7: 	 Conclusions 

This paper presented a new approach to the object 
recognition under variable perceptual conditions, where 
objects have variable characteristics. The proposed 
approach to invariant object recognition has been 
illustrated through the evolution of texture descriptions. 
The approach integrates computer vision with machine 
learning and assumes that (i) the system has to recognize 
objects on each image of a sequence, (ij) the images 
demonsU'ate the variability of conditions under which 
objects are perceived. (iii) an observer and objects can 
move. (iv) the extraction of texture ataibutes and training 
examples can be imperfect. and (v) the system has 10 work 
autonomously or semi·autonomously. 

We utilized images of a sequence to adapt system models 
to perceived variabilities of texture characteristics. The 
experiments presented in this paper were run in a 
"partially-supervised" mode as opposed to a fully 
autonomous model evolution. The experiments were 
compared based on the following two approaches: (i) a 
one-loop evolution, and (ii) a two-loop evolution of 
object models. 

Future experiments involve further modifications of the 
system architecture. These modifications include: 
elimination of partial supervision through the 
development of a scene understanding module for 
automatic selection of texture samples. filtering of new 
training data, and precise guidance of the evolution of 
concept descriptions. 
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