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1 INTRODUCTION

Knowledge Bases (KBs) are computer systems that hold knowledge or facts in structured or
unstructured way. They are widely used as one of the fundamental components in Semantic
Web applications as they provide facts and relationships that can be automatically understood by
machines (e.g., computer programs). Knowledge bases can be generally categorized into curated

KBs and open KBs. Curated KBs are built from collaboratively and manually collected Web corpus
(i.e., Wikipedia1) and represent knowledge in the structured form. On the other hand, open KBs
are constructed by assertions that are automatically extracted from Web pages. The lack of well-
structured schema of open KBs makes querying open KBs very di�erent from querying curated
KBs. Only simple queries without joins or constraints can be answered by open KBs [3, 28]. Our
work focuses on querying curated KBs because curated KBs are more widely adopted and support
complex queries. We will use KBs and curated KBs interchangeably hereafter.

Figure 1 illustrates a generic architecture for querying curated KBs. In the knowledge bases layer
(bottom), curated KBs (e.g., DBpedia2) usually use Resource Description Framework (RDF) as the
data representation model because RDF has been accepted as the standard model by W3C3. RDF
encodes a relationship (or fact) with a tri-ary tuple (i.e., triple): (subject, predicate, object), (s, p, o) for
short. Moreover, RDF allows the sharing and reuse of data across boundaries [10]. In order to allow
users perform querying over knowledge bases, a service is built upon each knowledge base. The
service is called SPARQL (SPARQL Protocol and RDF Query Language) Endpoint and is realised
by the HTTP bindings provided by KBs. SPARQL includes two parts: a standard query language
for RDF and the protocol, which uses Web Services Description Language (WSDL) to describe a
means for conveying SPARQL queries to an SPARQL query processing service and returning the
query results. SPARQL Endpoint also realises the potential of federated SPARQL through SERVICE
keyword introduced in SPARQL 1.1 speci�cation, whereby several SPARQL Endpoints are combined
allowing complex queries to be run across a number of KBs. To the clients (i.e., query issuers), a
SPARQL Endpoint acts as a machine-friendly interface towards each knowledge base.

Web Browser API

Optimizer

Querying Layer

Knowledge Bases  

Layer

Fig. 1. �erying Curated Knowledge Bases

1https://en.wikipedia.org/wiki/Main_Page
2http://wiki.dbpedia.org/
3https://www.w3.org/
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http://wiki.dbpedia.org/
https://www.w3.org/


In the querying layer (top), a natural language question is transformed into a structured query
which is executed against a KB and the answers are returned. Currently, querying SPARQL End-
points has the problems like network instability and latency, which a�ect the query e�ciency.
Dumping the data and setting up local SPRAQL Endpoint is a solution, but data in a local Endpoint
is not up-to-date and hosting an Endpoint requires expensive infrastructural support. Many re-
search e�orts have been dedicated to circumvent this problem [16, 17, 25–27] and caching is one of
the popular directions [23]. While most research e�orts focus on providing a server-side caching
mechanism, being embedded in triple stores, client-side caching has not been fully explored [17].
Server-side caching is usually embedded in the background databases. Sometimes they are part
of the query optimizer. Server-side cache is well developed but it is not customized to catch the
di�erent querying patterns from clients. Moreover, the design and development of server-side
cache highly depend on the knowledge of background databases/servers. Therefore, it is not easy
to develop a generic approach. On the other hand, client-side caching is a technique from Web
applications, where the background databases/servers are black boxes to the Web users. Using
client-side caching avoids making repeated requests to the servers and can quickly get answers.
In addition, it is possible to collect client’s querying behaviours. In this article, clients refer to the
users who perform the querying on SPARQL Endpoints. A user can be a human or a machine.
Our approach, SPARQL Endpoint Caching Framework (SECF), adopts the client-side caching

idea and is domain-independent. In other words, our approach does not require the knowledge
on what kind of data and how they stored in the knowledge base. SECF caches the (query, result)
pairs for current processing query and its similar queries. This is motivated by the observation that
end users who consume RDF-modelled knowledge typically use programmatic query clients, e.g.,
software or services to retrieve information from SPARQL Endpoints [16]. These queries usually
have repetitive query patterns and only di�er in speci�c elements of a triple pattern (a triple pattern
is similar to a triple, except that at least one element namely subject, predicate or object, is a
variable). Moreover, they are usually issued subsequently. To illustrate, Figure 2 gives two example
queries that are structurally similar. Query 1 retrieves start year (i.e., the year their acting careers
started) from the actors of the movie Rain Man and the year should be later than 1980. Query 2
requests similar information but for a di�erent movie (Eyes Wide Shut). The di�erences between
these two queries are the movie names (the underlined terms) and the year in the Filter expression.
By considering these observations, we propose to prefetch and cache the query results of similar
queries in advance. Since the subsequent queries have high possibility to be the similar queries
that are cached, the results will be returned immediately (if cached) rather than being retrieved
from SPARQL Endpoints. Therefore, the average query response time will be reduced.

The problem then turns into how to �nd similar queries that are potential subsequent queries. To
this end, SECF utilizes machine learning techniques to learn from the historical queries and captures

Query 1

SELECT ?actor ?year WHERE {

:Rain_Man dbpedia-owl:starring ?actor .

?actor dbpedia-owl:activeYearsStartYear ?year .

}

FILTER(?year>1980)

Query 2:

SELECT ?actor ?year WHERE {

:Eyes_Wide_Shut dbpedia-owl:starring ?actor .

?actor dbpedia-owl:activeYearsStartYear ?year .

}

FILTER(?year > 1960)

Fig. 2. Example of Similar �eries. The queries only di�er in the movie name and year.



the querying characteristics of the users. The key challenge centres on how to transform queries
into vector representation that can be used by learning algorithms. We propose Template-based

feature modelling to transform a SPARQL query into a vector using the distances between this
query and a set of “template queries". Each distance is considered as a feature value in this vector.
This modelling approach drastically reduces the computation time compared to the state-of-the-art
clustering-based feature modelling presented in [7]. SECF then modi�es the k-Nearest Neighbour
(k-NN) [1] model to learn from the feature vectors of training queries and to suggest similar queries
of a new issued query Q . The suggestion process runs in the background thread. The training set
will be updated periodically to re�ect the changes. Thus, the training process will accordingly
perform in a periodical manner. After identifying similar queries, SECF prefetches the results of
these similar queries and caches the (query, result) pairs.
As the cache space is limited, less useful data should be removed from the cache. A cache

replacement algorithm is introduced for this purpose. However, techniques for relational databases
are page-based (e.g., LRU-k [20]), which cannot be directly applied into our client-side caching
framework because our caching is record based. Moreover, our client-side application is not based
on relational database management system (RDBMS). In this article, we use a time-aware frequency

based algorithm, which leverages the idea of a novel approach recently proposed for caching in
main memory databases in Online Transaction Processing (OLTP) systems [15]. More speci�cally, we
propose and developModi�ed Simple Exponential Smoothing (MSES) to evaluate the hit frequencies
of cached queries and remove the ones with the lowest frequencies from the cache.
The contributions of this work are three folds. Firstly, we address the problem of providing a

learning-based approach for accelerating query answering process for SPARQL Endpoints and
design a caching framework. The framework can be deployed as a Web browser plugin, but
ultimately we envisage it being embedded within SPARQL Endpoints that act as clients to other
SPARQL Endpoints. Secondly, SECF suggests similar queries by leveraging machine learning
techniques. The distance measurement for SPARQL queries considers both Basic Graph Patterns
(BGPs) and the most used SPARQL operators. SECF also provides a time-aware smoothing-based
cache replacement algorithm. Thirdly, we perform extensive experiments on real world queries to
showcase the e�ectiveness of SECF.

The remainder of this paper is structured as follows. We give some background knowledge and
overview the related work in Section 2. Then we introduce SECF and the technical details in Section
3. The experimental results are reported in Section 4. We give some discussions in Section 5 and
�nally conclude this article in Section 6.

2 BACKGROUND

In this section, we brie�y introduce the SPARQL query language and then we overview the related
work.

2.1 SPARQL Preliminary

The o�cial syntax of SPARQL1.1 considers operators OPTIONAL, UNION, FILTER, SELECT and
concatenation via a dot symbol (.) to group patterns. VALUES and BIND are to de�ne sets of variable
bindings. We use B, I , L,V for denoting the (in�nite) sets of blank nodes, IRIs, literals, and variables.
A SPARQL graph pattern expression is de�ned recursively as follows [22]:

(i) A valid triple pattern T ∈ (IVB) × (IV ) × (IVLB) is a graph pattern,
(ii) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 UNION P2) and (P1 OP-

TIONAL P2) are graph patterns,



(iii) If P is a graph pattern and R is a SPARQL built-in condition, then the expression (P FILTER
R) is a graph pattern.

A BGP is a graph pattern represented by the conjunction of multiple triple patterns. A SPARQL
query can be decomposed into BGPs for certain operators and the result that can be regarded as a
hierarchical tree. The decomposition is de�ned as follows:

De�nition 2.1. (SPARQL Query Decomposition) Let Q = (SQ , PQ ) be the query where SQ is the

SELECT expression and PQ = P1 ⊕ ... ⊕ Pn is the query pattern with ⊕ ∈ {AND, UNION, OPTIONAL,

FILTER, BIND, VALUES, MINUS}. When pattern feature ⊕ ∈ {AND, UNION, OPTIONAL, MINUS},

graph pattern Pi , i ∈ [1,n] can be recursively decomposed to sub-level graph patterns until the graph

pattern is a BGP which can be further decomposed to triple patterns as Pbдp,i = T1 ⊕ ... ⊕ Tk , where

⊕ = AND. When pattern feature ⊕ ∈ {FILTER, BIND, VALUES}, graph pattern Pi cannot be decomposed

to BGPs and is represented as expressions.

2.2 Related Work

Our work mainly addresses caching problems in two research areas, namely Query Caching and
Query Suggestion. We review the recent representative works of these two areas in this section.

Query caching has the rationale that it keeps the historical data for the usage of new queries. If
new queries use the same data, results can be returned immediately, reducing the overall query
response time. Query caching was originally developed in database communities and in recent
years, has been extended to triple stores that manage SPARQL queries. Martin et al. [17] �rst
proposed caching for SPARQL queries, in which both the complete triple query result and the
application object are cached. However, this approach only considers repeated identical queries,
while our work takes both identical and similar queries into consideration. The latter ones have
high potential to be requested. Yang and Wu [27] developed an approach that caches intermediate
result of basic graph patterns in SPARQL queries. For a new query, the approach checks if the result
of any BGP or join of BGPs of this query is cached. The hit results are joined with the other parts of
the query to form the �nal query result. This approach is designed to be embedded in a triple store
and works with the query processing mechanism in the triple store. Very recently, Papailiou et al.
[21] introduced canonical labelling to identify isomorphic subgraphs in SPARQL query patterns,
which are cached for subsequent querying. This solution implements a caching layer on top of
the distributed partitions and dynamically updates the contents of the cache. Verborgh et al. [26]
proposed a Linked Data Fragments (LDF) approach, aiming at improving data availability. It can also
be regarded as a caching technique because it caches fragments of queryable data from servers that
can be accessed by clients. Each client is able to process SPARQL queries on replicated fragments
cached from servers.
Query suggestion is usually adopted in search engines to better understand users’ information

needs with the ultimate goal to improve the recall of querying. Researchers recently introduce
query suggestion to improve the SPARQL querying. Lehmann et al. [14] proposed to leverage a
supervised learning framework to suggest SPARQL queries based on examples previously selected
by users. This approach narrows the range of possible answers asked by users and requires no
knowledge of the underlying schema or the SPARQL query language. Hasan [7] used a suggestion
model to predict the performance of newly issued SPARQL queries. The model is trained with
previously issued queries and corresponding query performance, e.g., query time. For new queries,
their performances can then be predicted from the trained model. The key contribution is that the
SPARQL queries are modelled as feature vectors. However, their feature modelling method is very
time-consuming. Query relaxation is closely related to query suggestion and extends the original



query to obtain more information by removing some constraints (e.g., “ages of the students in a
class" returns more data than “ages of the female students in a class" by removing the constraint
“female"). In recent years, query expansion techniques have been used by several research e�orts on
SPARQL queries. Elbassuoni et al. [2] proposed multiple types of relaxation methods to improve the
recall of entity-relationship search. Lorey et al. [16] clustered similar SPARQL queries to di�erent
templates in order to detect recurring patterns in queries. These templates can be used to expand
queries for query processing. Fokou et al. [4] investigated query relaxation over RDF data and
focused on identifying parts of SPARQL query that are responsible for the failure of the query. A
recent work proposed by Zhang et al. [29] expands a query in order to obtain accessed triples when
executing the query. Caching these accessed triples will help facilitating subsequent queries that
might need to access them. The work expands a query Q according to the triple patterns of Q . A
new query is generated by picking and modifying one of the triple patterns of Q and keeping the
other parts in Q .

3 THE SPARQL ENDPOINT CACHING FRAMEWORK

3.1 Overview

Figure 3 illustrates the working processes of SECF. We use di�erent color of numbering to depict
the di�erent processes in this framework. The blue numbers are about fetching query results
directly from SPARQL Endpoint. The green ones show the process that the results are returned
from the cache. The orange numbers are for the suggestion process while the yellow numbers are
for caching suggested queries into the cache. When a new query is issued, SECF �rst checks if
query recording is enabled ( 1○). If yes, a background process will log all queries ( 6○). The logged
queries are used for the suggestion process, including training and suggestion ( 7○). Then it checks
if an identical query (either cached as an issued query or a suggested query) has been cached ( 2○).
If not, SECF fetches ( 3○) and returns ( 3○) the results directly from the SPARQL Endpoint. These
results are cached in the cache module ( 5○). If the results are in the cache ( 8○), they are returned
immediately via the cache model ( 9○ and 10○). When query suggestion is enabled, during run-time,
suggested queries are generated for the current query in the suggestion module. The results of
these suggested queries will be retrieved (11○) from the SPARQL Endpoint in advance and cached
(12○), together with the queries in the form of (query, result) pairs (qi , ri ). The aim of prefetching and
caching similar queries in advance is to enhance the hit rate of cache (i.e., how much percentage
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of queries can be answered immediately from cached results). A cache replacement algorithm is
executed when the cache is full or the number of cache queries is reached. It runs in a separate
thread so that it does not a�ect the query answering process.
The overall query speed depends on the hit rate of the cache. As it is observed that most

subsequent queries are similar to previous issued queries in [16], the prefetch/cache process will
increase the number of queries that are hit. If we cache the similar queries, which are potential
subsequent queries, higher hit rate can be achieved. To identify and cache similar queries, we
propose a learning based approach that consists of following three main steps:

• Step 1: Feature modelling. We propose to model SPARQL query to feature vectors that can be
fed into multiple learning algorithms. However, transforming a SPARQL query into vector
representation is a challenging problem.We �rst introduce the distancemeasurement between
SPARQL queries in Section 3.2 and then discuss our feature modelling approach based on
this distance in Section 3.3.

• Step 2: Training and suggestion. After obtaining the feature vectors of SPARQL queries, we
train a suggestion model using historical queries as the training set. A trained model is the
output. When a new queryQ arrives, we �rst transformQ to a feature vector using techniques
from Step 1. Then we feed the vector into the trained suggestion model for similar queries
recommendation. We introduce our approach in Section 3.4.

• Step 3: Cache and replacement. We prefetch the results of similar queries. As the cache is with
limited size, less useful queries (and their results) should be removed from the cache. We
introduce our cache and replacement algorithm in Section 3.5.

3.2 �ery Distance Calculation

To �nd similar queries, we compute the distance between two given SPARQL queries by calculating
the distance between patterns of the two queries:

d(PQ , P
′

Q ) = d(Pbдp , P
′

bдp ) + d(Pf il ter , P
′

f il ter ) + d(Pbind , P
′

bind ) + d(Pvalue , P
′

value ) (1)

Where PQ contains Pbдp , Pf il ter , Pbind , Pvalue and P
′

Q contains P
′

bдp
, P

′

f il ter
, P

′

bind
, P

′

value
.d(PQ , P

′

Q ) =

0 denotes the two queries are structurally the same.

3.2.1 BGP Distance. We propose to use Graph Edit Distance (GED) [24] to measure the distance
between BGPs because a BGP can be represented as a graph. In the graph, subject and object are
nodes linked by predicate as the edge. GED between two graphs is the minimum amount of edit
operations (i.e., deletion, insertion and substitutions of nodes and edges) needed to transform one
graph to the other. However, di�erent BGPs share the same graph, which contains two nodes and

(s, p, o) (s, ?p, o) (?s, p, o) (s, p, ?o)

(?s, ?p, o) (?s, p, ?o) (s, ?p, ?o) (?s, ?p, ?o)

Fig. 4. Mapping Triple Pa�erns to Graphs. Eight types of triple pa�erns are mapped to eight structurally

di�erent graphs. Black nodes are conjunction nodes for clarity. s is for subject, p is for predicate, o is for object.

The question mark indicates that the corresponding component is a variable.



(s, p, ?o) (?s, p, ?o)

group

(s, p, ?o) (?s, p, ?o)

:Rain_Man dbpedia-owl:starring ?actor .

?actor dbpedia-owl:activeYearsStartYear ?year

Fig. 5. Graph Modelling for BGPs in �ery 1.

one edge. Therefore, the distance between each pair of BGPs is zero. In order to distinguish each
BGP graph, we formulate the problem of modelling BGPs to distinct graphs as follows:

Problem 3.1. (BGP Graph Modelling) Given Pbдpi = {tp1, tp2, ..., tpn} denote a BGP of a SPARQL

query, tpk , k ∈ (1,n) is a triple pattern rooted at Pbдpi . дed(дo ,дd ) represents the graph edit distance

between graph дo and graph дd . BGP graph modelling is the task that models each tpk to a graph дtpk
satisfying дed(дtpk ,дtpl ) > 0 when k , l .

To address the above problem, we propose to map all the eight types of triple patterns to eight
structurally di�erent graphs, as shown in Figure 4. The black circles denote conjunction nodes for
clarity. They are not coloured in graph modelling. As we only consider the structures of queries,
whether the connecting node represents a join or union is not distinguished. Therefore, the di�erent
meanings of connecting nodes are not considered in this work. Using these mappings, we model
the triple patterns of BGPs in Query 1 in Figure 2, to a graph, which is depicted in Figure 5.
There are various ways to map triple patterns to graphs. However, in our work, the way that

we choose for the mapping does not a�ect the �nal cache result very much. So we only focus on
mapping distinct triple patterns to distinct graphs. The reason is that in our work, similar queries
that can lead to a cache hit are mostly the ones that are structurally the same with the current
processing query. Speci�cally, the k-NN model �rst returns the structurally the same queries as
similar queries, then returns the ones that are structurally the same but with di�erent �lter and
bindings, and �nally returns structurally similar queries. As the queries are mostly issued by
programmatic clients and are generated with query templates (as described in Section 1), most
returned queries are the ones using the same template, i.e., are structurally the same. Thus the
structurally similar queries will not a�ect the caching results much as they are with small numbers.
So the distances between di�erent triple patterns that are considered in measuring structurally
similar queries give limited impact on caching performance. Therefore, the di�erence of various
mapping ways is not considered here.

3.2.2 Other Distances. We calculate d(Pf il ter , P
′

f il ter
), d(Pbind , P

′

bind
) and d(Pvalue , P

′

value
) only

when d(Pbдp , P
′

bдp
) = 0. We de�ne distance between two FILTER expressions as half of their

levenshtein distance when the variables in these two expressions are identical, otherwise the
distance is a �xed value 1. Thus the distance is in the range of [0, 0.5] or equals to 1.

d(Pf il ter,i , P
′

f il ter,i ) =

{

levenshtein(E(i),E
′
(i))

2max (lenдth(E(i)),lenдth(E
′
(i)))
, i f V (i) = V

′
(i)

1, else
(2)

where E(i) and E
′
(i) represent the FILTER expression for Pf il ter,i and P

′

f il ter,i
. V (i) and V

′
(i) are

variables in these two FILTER patterns respectively. When there are multiple Filter expressions



that can be compared, the total di�erence is de�ned as:

d(Pf il ter , P
′

f il ter ) =

m
∑

i=1

d(Pf il ter,i , P
′

f il ter,i ) (3)

Filter expressions in Query 1 and Query 2 are similar as the distance is 0.05 using Equation (3). So
d(PQ1, P

′

Q2
) = 0.05 (Equation (1)). We also have similar functions for BIND and VALUE patterns.

3.3 Feature Modelling

Using the distance function Equation (1), it is intuitive to suggest similar queries to a given query
Q by calculating the distances between Q and each historical query, then rank the distances in
descending order and �nd the top k similar ones. However, the calculation of distances between
Q and each historical query is time-consuming when the number of historical queries is large.
Moreover, it cannot leverage the machine learning algorithms to facilitate the suggestion process
because machine learning algorithms require the vector representation of objects [6]. Therefore,
we choose to construct feature vectors for SPARQL queries that leverages the distances and can
facilitate the similar queries suggestion. It is worth mentioning that the work in [7] proposes an
approach to transform SPARQL query to vector representation. For comparison, we �rstly introduce
the approach in [7], which we refer to as cluster-based feature modelling (Section 3.3.1) and then
discuss our approach, the template-based feature modelling (Section 3.3.2).

3.3.1 Cluster-based feature modelling. In cluster-based feature modelling, distances between
each pair of queries in the training set are calculated using only BGP distance. Then k-medoids

algorithm [11] is utilized to cluster the training queries by using distance scores that are calculated.
The center queries of each cluster are selected and the distance scores between each center query
and a queryQ is obtained to form a feature vector ofQ , where each score is regarded as an attribute
of the feature of Q . Thus the number of clusters equals to the number of dimensions (i.e., the
number of feature attributes) of the feature vector of Q .

3.3.2 Template-based feature modelling. The cluster-based feature modelling requires distance
calculation between all training queries. Moreover, the clustering process adds additional time
consumption. To reduce the feature modelling time, we propose to replace the center queries used
in cluster-based feature modelling with representative queries that are generated by benchmark
templates. Speci�cally, we generate queries from 18 out of 25 valid templates in the DBPSB bench-
mark [18] (we excluded queries which do not return any results: Query 1, 2, 3, 10, 16, 21 and 23).
We refer to these queries as template queries. By recording the distance scores between a query Q
with the 18 template queries, we obtain an 18-dimension feature vector for Q . The computation
is then drastically reduced from O(n2) in cluster-based feature modelling to O(n), where n is the
number of queries. Therefore, our approach is feasible to apply to large size of training sets.

Moreover, we adopt three dimension reduction algorithms, namely Canonical Correlation Anal-
ysis (CCA) [8], Principal Component Analysis (PCA) [9] and Non-negative Matrix Factorization
(NMF) [13] on the feature vectors. In machine learning, dimension reduction is the process of
reducing the number of random variables to describe a large set of data while still describing
the data with su�cient accuracy. It helps reducing the learning time on the feature vectors. CCA
calculates the coe�cient among all features and chooses the most uncorrelated features. PCA
aims to �nd a linear transformation to project the original data to a lower-dimensional space
which is as informative as possible to capture as much of the variance of the original data in an
unsupervised manner. NMF �nds approximate decomposition of original data matrix and thus
reduces the dimension by storing the two decomposed lower dimensional matrices.
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Fig. 6. Feature Modelling. The cluster-based modelling (a) is based on the distances among each pair of

all the training queries. Clustering is done using these distances. di is the distance between query Q and

the center query of the cluster Ci , and it represents a feature of Q . The template-based modelling (b) uses

template queries. The distance between Q and template query ti represents a feature of Q . A�er dimensional

reduction (DR), the features are extracted to f
′

1
to f

′

r where r < 18.

Figure 6 illustrates the process and di�erence of cluster-based feature modelling and template-

based feature modelling. In Figure 6(a), the modelling is based on all training queries. {D(n−1)n/2
i=1 }

record distances between each training queries. {Cn
i=1} denote clusters. {d

n
i=1} are distances between

query Q and center queries of clusters. In Figure 6(b), t1 to t18 are template queries. d1
′ to d18

′ are
distances between query Q and 18 template queries. f1

′ to fr
′ are features that are obtained after

applying dimensional reduction algorithm (i.e., CCA, PCA or NMF), where r < 18.

3.4 Suggesting and Prefetching Similar�eries

After the feature vectors are obtained (Step 1 in Section 3.1), we train a suggestion model with the
feature vectors of training queries and suggest similar queries to a new query (Step 2). We adopt
k-Nearest Neighbours (k-NN) [1] as prediction model becuase it is one of the two common types
of similarity searches [12]. k-NN is a non-parametric classi�cation and regression algorithm that
predicts the performance of new data point based on its k-nearest training data points:

pnew =
1

k

k
∑

i=1

(pi ), (4)

where pnew is the predicted value of the new data and pi is the performance of the i-th nearest
training data. If the new data is not in the training set, k-NN �nds the point which is the closest to
the new point according to its features.
k-NN is often successful in the cases where the decision boundary is irregular, which applies

to SPARQL queries [7]. It is originally a supervised learning algorithm which requires labels (or
classes). A k-d tree is built for the training data (points) with labels. For a new point, its k nearest
neighbours in the tree are searched and its label (or class) is decided by the labels of these neighbours.
In our work, we do not have labels and the task is not to classify the data points (a point refers to a
query in this work) but to �nd the data points that are close to a given point. We therefore modify
k-NN algorithm to only build the k-d tree according to the Euclidean distance between feature
vectors of SPARQL queries and we omit the label part. The k-NN thus turns into an unsupervised
learning algorithm. Then we use trained k-NN model to suggest the nearest (i.e., the most similar)
queries for a new query. Given the similar queries for a query Q , we prefetch the results of these
queries directly from SPARQL Endpoints and put the (qi , ri ) pairs into the cache during the caching
process.



3.5 Caching and Replacement

As the cache has limit space, the less useful data should be removed from the cache to give space to
more useful data. In traditional page-based cache in databases, the less useful data is less frequently
accessed which will be removed to give space to more frequently accessed data. When the data
required by a new query is in the cache, the result is returned immediately. Each time the data
in cache is accessed, it is called a cache hit. Therefore, the problem of cache replacement is the
problem of identifying the more frequently accessed data.

SECF, the proposed client-side caching framework, does not require the knowledge of underlying
system of SPARQL Endpoint. Thus we cannot directly apply the cache replacement algorithms
used in page-based databases. We propose to use a time-aware frequency based algorithm, which
leverages the idea of a novel approach recently proposed for caching in main memory databases in
Online Transaction Processing (OLTP) systems [15]. Speci�cally, we cache the (query, result) pairs
and consider the hit frequencies of them when performing cache replacement. The recently most
hit queries in the cache are hot queries which are more useful queries. Hot queries will be kept in
the cache, whereas queries in the cache that do not belong to hot queries are considered less useful,
which will be removed from the cache.

Before we introduce the proposed cache replacement algorithm, we introduce how to measure
the hit frequencies of queries in Section 3.5.1. Then we apply the proposed frequency measurement
in developing two cache replacement strategies in Section 3.5.2.

3.5.1 Modified Simple Exponential Smoothing (MSES). We adapt the algorithm used for identify-
ing hot triples in our previous work [29]. Here we introduce this algorithm and how we adapt it to
identify hot queries.
The Exponential Smoothing (ES) is a technique to produce a smoothed data presentation, or to

make forecasts for time series data, i.e., a sequence of observations [5]. It can be applied to any
discrete set of repeated measurement and is currently widely used in smoothing or forecasting
economic data in the �nancial markets. Equation (5) shows the simplest form of exponential
smoothing. This equation is also regarded as Simple Exponential Smoothing (SES).

Xt = α ∗ xt + (1 − α) ∗ Xt−1, (5)

whereXt stands for smoothed observation of time t , xt is the actual observation value at time t , and
α is a smoothing constant with α ∈ (0, 1). From this equation, it is easy to observe that SES assigns
exponentially decreasing weights as the observation becomes older, which meets the requirement
of selecting the most frequently and recently issued queries. The reason behind our choice of SES
is its simplicity and e�ectiveness [15].

In SECF, we exploit SES to estimate hit frequencies of queries. In this case, xt represents whether
the query is hit at time t , thus it is either 1 for a cache hit; or 0 otherwise. Therefore, we can modify
Equation (5) to Modi�ed Simple Exponential Smoothing (MSES):

Et = α + Etprev ∗ (1 − α)tprev−t (6)

where tprev represents the time when the query is last hit and Etprev denotes the previous frequency
estimation for the query at tprev . Et denotes the new frequency estimation for the query at t [15].
The accuracy of MSES can be measured by its standard error. We gave the derivation and the

standard error of Equation (6) and provided a theoretical proof that MSES achieves better hit rates
than the most used cache replacement algorithm LRU-2 in [29].

3.5.2 Cache Replacement Algorithms. We perform cache replacement based on the estimation
score calculated by MSES. Each time a new query is executed, we examine the frequency of cache
hit of this query using MSES. If it is in the cache, we update the estimation of frequency for it.
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is the total number of historical queries;m is the number of historical queries recorded in the partial records.

Otherwise, we just record the new estimation. In order to realise the replacement, we use one hash
map to store contents in the cache and the other hash map for recording information of historical
queries. Figure 7 depicts the two hash maps. Cache stores the query and its results, denoted as
(qi , ri ), where qi is the key and ri is the value. In the full-records, qi is the key and ri , ei , tprev_i is
the value. In the partial records, one more information, the second last hit time of qi is recorded
and it is denoted as tpprev_i . When the cache is not full, (qi , ri ) are cached. Accordingly, related
information is stored in the records. When the cache is full, replacement is required.

To decide which records can be kept in the cache, we develop two cache replacement strategies,
namely the Full-records replacement and the Improved replacement. The di�erence of these two
strategies is whether to keep the full records of the historical queries or not.

Full-records replacement. In the full-records replacement, the algorithm keeps the estimation
records for all processed queries. Speci�cally, it processes all the historical queries. When en-
countering a hit to a query at time t , the algorithm updates this query’s hit frequency estimation
using Equation (6). When the scan on records is completed, the algorithm ranks each query by its
estimated frequency and returns the H queries with the highest estimates as the hot set. These
top-H queries are kept in the cache, while lower ranked queries will be removed from the cache.
However, this algorithm requires storing the whole estimation records which produces large over-
head. Furthermore, it consumes a signi�cant amount of time when calculating and comparing the
estimation values. To solve these issues, we consider improving the algorithm in two ways. One
possible solution is that we just keep a record after skipping certain ones. This is a naive sampling
approach. We vary the sampling rate but it turns out that the performance of this sampling approach
is not desirable (see Section 4.3). The other possible approach is that we maintain partial records by
only keeping those within a speci�ed range of time.

Improved replacement. In the improved replacement, we only keep estimation records from a
certain point of time to the current time to reduce the space overhead of the records. If we only
keep very short records, the new cached query may fail to �nd its last estimation. In that case,
the new estimated frequency of this query may be very small and it will be incorrectly removed
from the cache. If we keep very long records, the space overhead is an issue as we discussed in
full-records cache replacement. So we propose a solution that additionally keeps the second last hit
time of a query in the records. Then we measure the maximum time gap between the last hit time
and the second last hit time for each query in the records. After that, we use current time to minus
this maximum time gap and get a previous time, which is the time that we start to keep the records.
All the records before this time will be deleted.



Table 1. Selected pa�erns from SELECT queries. FILTER occupies large proportion in SELECT queries

FILTER VALUE BIND

DBpedia3.9 83.97% 0.81% 0.06%

LinkedGeoData 50.72% 0.005% 0.0006%

Table 2. Analysis of clients associated with queries and clusters

AvgQ/Client AvgClusters/Client AvgQ/Cluster

DBpedia3.9 23.31 2.27 10.26

DBpedia3.9-100 447.49 3.23 138.54

LinkedGeo 612.51 5.16 118.70

LinkedGeo-100 16,441.84 67.90 245.40

4 EVALUATION

We evaluate our proposed framework in this section. We �rst describe the setup of our evaluation
environment (Section 4.1). Then we provide a detailed analysis of the real-world queries used in
the evaluation (Section 4.2). Finally, we report the experimental results, including the performance
comparison of cache replacement algorithms, feature modelling approaches and the performance
comparison to the state-of-the-art work (Section 4.3 to 4.5).

4.1 Setup

Datasets. We analysed the query logs from DBPedia’s SPARQL Endpoint4 (DBpedia3.9) and
Linked Geo Data’s Endpoint5 (LinkedGeoData) provided by USEWOD 2014 challenge. We extract
queries by decoding, identifying SPARQL queries from query strings and removing incomplete
queries and queries with syntax errors according to SPARQL1.1 speci�cation. We focused on
SELECT queries in the experiments and retrieved 198,235 valid queries from DBpedia3.9 and
1,790,047 valid queries from LinkedGeoData. Among these queries, 83.97% DBpedia3.9 queries and
50.72% LinkedGeoData queries have FILTER operator (Table 1).

Implementation and System. We obtained BGPs by parsing the SPARQL queries using Apache
Jena-2.11.2. We implemented GED using a suboptimal solution integrated in the Graph Matching
Toolkit6. The modi�ed k-NN and LRU-2 were implemented in Java. Speci�cally, we adopted Weka
library7 to build the k-d tree for k-NN. We set up our own SPARQL Endpoint by installing local
Virtuoso server and loading datasets into the Virtuoso. The server has the con�guration of 64-bit
Ubuntu 14.4 with 16GB RAM and 2.40GHz Intel Xeon E5-2630L v2 CPU. Our code runs on a PC
with 64-bit Windows 7, 8GB RAM and 2.40GHZ Intel i7-3630QM CPU.

4.2 Analysis of Real-world SPARQL �eries

4.2.1 Analysis of Average �eries. We used the distance measurement described in Section 3.2
to cluster the queries. Table 2 shows that the average queries for a client in DBpedia3.9 log �les
is 23.31, and the average clusters a client’s queries belong to is 2.27. The average queries in each
cluster is 10.26. For LinkedGeoData queries, the average queries per client is 612.51 and each client’s
queries belong to 5.16 clusters in average. The average queries in each cluster is 118.70. Our analysis
shows that each client performed several queries which have shared clusters, indicating clients
issued similar queries.

4http://dbpedia.org/sparql/
5http://linkedgeodata.org/sparql
6http://www.fhnw.ch/wirtschaft/iwi/gmt
7https://weka.wikispaces.com/

http://www.fhnw.ch/wirtschaft/iwi/gmt
https://weka.wikispaces.com/
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Fig. 8. Analysis of Average Matched Time. Similar queries are usually issued within a short period of time.

We also selected 100 clients with the most queries issued and found that the average number
of queries for these top clients in DBpedia3.9 is 447.49 and the average clusters for one client is
3.23. The average queries per cluster increases to 118.70. The numbers for the top 100 clients who
issued most queries in LinkedGeoData are higher, as average queries per client is 16,441.84, and
average number of clusters per client is 67.90. In average, 245.40 queries belong to one cluster. These
�ndings indicate that clients performed a large number of queries which have similar structures.
The average number of queries for one cluster shows that queries have high similarity.

4.2.2 Analysis of Subsequent �eries. To estimate how likely it is that queries are similar to
previous queries and therefore could bene�t from the prefetched results, we evaluated the time
di�erence between one query and the next matched query (i.e., the next query belonging to the
same cluster) for each client. DBpedia3.9 log �les have a total of 8,500 distinct client IDs and
LinkedGeoData has 2,921 distinct client IDs. We assigned distinct IDs starting from 1 for clients of
both datasets. Figure 8 shows the average time gap between two matches for both datasets. Blue
crosses indicate the average time gap (to next matched query) for each client ID. From Figure 8(a),
we can see most of the time gap are close to zero, positioning blue cross on the X-axis, which means
that the client issues similar-structured queries subsequently. A small number of blue crosses are
away from the X-axis, which means that these clients seldom issue similar-structured queries.
Similar observations are found in Figure 8(b). It demonstrates the fact that most clients issue similar
queries subsequently. Moreover, on average, the similar queries are issued by the same client with
previous queries within a very close time period. This further con�rms that our approach can
bene�t the clients’ subsequent queries in terms of querying answering speed.

4.3 Performance of Cache Replacement Algorithm

We �rstly evaluated our cache replacement algorithm MSES, because it would be used in the
following experiments. To evaluate the performance of MSES, we implemented various algorithms
including the full-record MSES, improved MSES, the sampling MSES, and LRU-2. LRU-2 is a
commonly used page replacement algorithm which we implemented based on record rather than
page. All of LinkedGeoData valid queries obtained were processed in this experiment because the
size of this query set is much larger than DBpedia3.9 query set. Thus we can observe the di�erence
between Improved MSES and MSES algorithms.
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Fig. 9. Cache Replacement Performance (LinkedGeoData). Di�erent values of α have di�erent impact on

the hit rates (a). Di�erent cache replacement algorithms a�ect the hit rates largely (b). The improved MSES

reduces the space overhead largely compared to the MSES (c).

Impact of α . As the Exponential Smoothing has only one parameter α , the choice for α would
a�ect the hit rate performance. However, as per our experiments on di�erent values for α , the hit
rates di�er only slightly and a value of 0.05 shows better performance, as shown in Figure 9(a).

Impact of Cache Replacement Algorithms. Figure 9(b) shows the hit rates achieved by the four
algorithms we implemented. It should be noted that in the experiment, the caching size was set to
20% of the total historical queries and α was set to 0.05 for MSES and its variants. We chose 20% as
the caching size because it is neither too large (e.g., > 50%) to narrow the performance di�erences
among algorithms, nor too small (e.g., < 10%) leading to inaccurate performance evaluation due to
insu�cient processed data. From the �gure, we can see that MSES and Improved MSES have the
same hit rate until they have processed about 1.5 million RDF triples, after which MSES has a higher
hit rate than Improved MSES. This is because MSES maintains the estimations for all processed
records while the Improved MSES only keeps part of the estimations. The changing point denotes
that from which, the Improved MSES maintains partial volume of estimation records. From the
�gure, we can also see that Sampling MSES does not perform well. This �gure only shows the hit
rate of sampling MSES with the sampling rate of 50%, which is expected to have a high hit rate.
The LRU-2 algorithm has the lowest hit rate of all the algorithms. The hit rates of all algorithms
start from 0 and reach their �rst peak at certain points, then �uctuate. The direction to the �rst
peak shows the warm-up stage and the rest of the lines are the warmed stage. This illustrates that
we exploit an incremental approach, which includes a warm-up stage to calculate the hit rate.

Space Usage for Records. Figure 9(c) gives the measurement of space usage by recording the
estimations. As discussed before, MSES performs better than the Improved MSES. However, it
consumes more storage space to maintain the estimation records for all processed triples. It also
takes longer time to check the cache. Figure 9(c) shows the maximum space consumption for each
algorithm. Note that we used all valid LinkedGeoData queries in this experiment. The columns are
classi�ed into four groups which represent the percentage of hot queries to all processed queries.
In each group, the left column represents the maximum space used by MSES, including the hot
queries and the estimation records. The middle column represents the space usage of the Improved
MSES that also includes the hot queries and the estimation records. The right column represents
the size of the hot queries. From this �gure, we can see that the Improved MSES consumes less
space.
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Fig. 10. Performance Comparison among Using CCA, PCA and NMF to Reduce Dimension (Cluster-based)

4.4 Comparison of Feature Modelling Approaches

In the experiments of this section, we compared our feature modelling approach (i.e., template-
based feature modelling) with the state-of-the-art approach (i.e., cluster-based feature modelling),
and evaluated the performance under the scenarios of applying and without applying sugges-
tion/prefetching. We applied the dimensional reduction algorithms on both template-based feature
modelling and cluster-based feature modelling methods.

Because the time consumption of cluster-based approach is tremendous, we did not use all valid
queries as the training set. We randomly chose 21,600 training queries and 5,400 testing queries
from the two query sets separately. The cache replacement algorithm used in all testing cases is
Improved MSES and α = 0.05. Because the larger size of cache, the higher hit rate it would achieve,
we only show experimental results when the number of queries in cache is set to 1,000.

4.4.1 Performance of Cluster-Based Feature Modelling. In order to compare to template-based
feature modelling approach, we applied dimensional reduction algorithms on cluster-based feature
modelling approach. We generated new feature �les with di�erent lower dimensions for DBpedia3.9
and LinkedGeoData queries using CCA, PCA and NMF discussed in Section 3.3.2. The �les are from
Dimension 1 (D1) to D9 for DBpedia3.9 with 10 clusters (C10) and D1 to D14 for LinkedGeoData
with 15 clusters (C15). We then trained k-NNmodel with these �les respectively and got k suggested
queries for a randomly chosen query Q . We computed the average distance between suggested
queries with Q and computed the distances obtained when using CCA, PCA and NMF. The lower
the average distance is, the better the suggestion is. As large amount of the queries from these two
SPARQL Endpoints are similarly-structured or repeated (see Section 4.2), we set a large number of
queries to suggest to avoid the distance to be zero. Thus we chose k=500 in k-NN in this experiment.
As shown in Figure 10, NMF always performs the best for both DBpedia3.9 and LinkedGeoData
queries. It gets optimal result when the number of dimensions is 3. PCA performs better than
CCA when dimension is low and worse than CCA when dimension becomes high. For DBpedia3.9
queries, the intersection is D=5, while for LinkedGeoData, the intersection is D=11. We used NMF
for our dimension reduction in the comparisons thereafter.

4.4.2 Performance of Template-Based Feature Modelling. In template-based feature modelling,
we also leveraged dimensional reduction algorithms. The performance of di�erent algorithms is
shown in Figure 11. It is shown that NMF still outperforms other algorithms in extracting the most
representative features.
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Fig. 11. Performance Comparison among Using CCA, PCA and NMF to Reduce Dimension (Template-based)

Table 3. Time comparison on feature modelling approaches

Datasets Cluster-based modelling (sec.) Template-based Modelling (sec.)

Training Time
DBPedia3.9 33,446 1,109

LinkedGeoData 23,405 758

Average Query Time
DBPedia3.9 355 251

LinkedGeoData 234 158

Table 3 gives the impact of two feature modelling algorithms on time consumption. The training
time is recorded for 21,600 training queries. Cluster-based approach requires 33,446 seconds, which
is more than 9 hours for DBPedia3.9 queries, and 23,405 seconds (i.e., more than 6 hours) for
LinkedGeoData queries. Template-based approach largely reduces the time to 1,109 seconds and
758 seconds, respectively. In terms of the average query time, our template-based approach also
outperforms the cluster-based approach.

4.5 Performance Comparison with the State-Of-The-Art Work

We also compared our work with the Adaptive SPARQL Query Cache (ASQC) introduced in [17],
as it is the �rst and complete work to cache SPARQL query in a client-side manner.

4.5.1 System Performance Comparison. In this experiment, we compared the average hit rate,
average query time and space usage between our work SECF and ASQC. We also gave performance
when no cache was used. To compare our approach with ASQC, we modi�ed the code of ASQC8 to
access our datasets. We performed the experiment on DBpedia3.9 dataset. We used Cluster-Based
Feature Modelling and Improved MSES with α=0.05. Table 4 presents the results. The �rst three
columns of Table 4 show the performance comparison. Compared to the hit rate of ASQC (72.63%),
SECF (78.59%) increases the performance by 5.96%. ASQC takes 264 ms in average for one query
and SECF takes 247 ms. So SECF reduces the query time by 6.44%. When no cache is applied, the
average query time increases to 625 ms. We did not include prefetching time as it is in a separate
thread. The improvements showcase the e�ectiveness of our learning based approach and provide
a research direction for improving SPARQL query performance using machine learning techniques.
Space consumption evaluates how much memory the cache uses. In SECF, the total usage (before
slash) for caching 1,000 queries includes cached queries and answers as well as the estimation
records for cache replacement (after slash). We used the same implementation for ASQC in order
to compare. The results indicate that the most space is consumed by cached (query, result) pairs.

8http://wiki.aksw.org/Projects/QueryCache



Table 4. Performance comparison

ASQC SECF No Cache

Hit 72.63% 78.59% NA

AvgTime 264ms 247ms 625ms

Space 7.15MB 7.15MB/0.45KB NA

AvgFreeMem 217.87MB 206.35MB 224.30MB

AvgIO 11.49 21.43 7.72

AvgCPU 9.37ms 10.60ms 10.09ms

4.5.2 Server Overhead Comparison. In order to evaluate the impact of cache on the Endpoint
server, we monitored the memory and CPU usage as well as I/O on the server. We captured the
usage every 20 seconds until the querying ends. The last three columns of Table 4 show the server
performance of ASQC, SECF and no cache applied. AvgFreeMem refers to the average free memory
usage, AvgIO refers to the average I/O usage and AvgCPU is for the average CPU time, including
system CPU and user CPU time. We only present the result on querying DBpedia3.9 dataset due
to limited space. From the result, we found out that SECF and ASQC cause higher computation
overhead (I/O and CPU) and memory usage on server compared to querying without cache and
ASQC performs slightly better than SECF with more free memory (217.87MB vs 206.35MB), less I/O
(11.49 vs 21.43) and less CPU time (9.37ms vs 10.60ms). It is because that SECF requires prefetching
results for similar queries from server which leads to additional overhead.

5 DISCUSSION

In this section, we discuss some issues from our experience in this work and identify future research
directions.

Partial Caching vs Query Caching. Some works focus on caching part of queries (i.e, subgraph)
[21, 27] and identifying the hit subgraph (i.e., containment checking) [25]. These methods not
only cache the exactly matched queries, but also the queries which share the same subgraph
with the cached ones. Using such subgraph caching broadens the cached items and improves
the cache hit rate. However, parsing and identifying query subgraphs is a very time-consuming
task that counteracts the speed improvement achieved by caching. In some occasions it cannot
accelerate the querying speed. In our current work, we have not considered partial caching of
queries. Investigating e�cient solutions by integrating partial queries into our framework will be
part of our future work.

Dynamic Learning. In the training process, the larger the size of the training queries, the better
performance we can get. The reason is that more query variety can be captured and the model will
be less sensitive to unforeseen queries. However, in practice, unseen queries can be issued very
frequently and quickly. In this case, no matter how large the current training set is, it is ine�cient
to cover as much as possible query varieties. There are two solutions for this issue. One solution is
to periodically train on historical queries. We adopt this idea in our work. Similar to the suggestion
process which is in a background thread, the periodical training, especially the building of the k-NN
model, also runs in the background. Therefore, although it is time-consuming to train large query
sets, periodical training will not a�ect the querying process. One bene�t to use periodical training
is that we can leverage the well developed learning algorithms. Moreover, our approach has already
achieved great improvements in reducing the training time (Section 4.4). The other solution is
incremental learning (or referred to online learning), which holds a new input batch in addition to



the existing learning model to re�ect recently executed queries. We leave the investigation of these
techniques as our future work.

Space Overhead. From evaluation (Section 4.5.2), we observe that the memory space used by
SECF is mostly consumed by cached (query, result) pairs. This is because SECF caches the pairs in
text directly. The size of the cached texts can be reduced by leveraging encoding techniques. Many
existing triple stores (i.e., systems that holds RDF data) [19, 31] encode the RDF triples to numerical
values in order to reduce the space overhead. By developing their own indexing algorithms, the
access and retrieval of the triples become e�cient. We could adapt the ideas to encode SPARQL
queries or part of queries, e.g., BGPs and develop tailored indexing algorithms. We also can adapt
compression techniques for data stream (e.g., [30]) to compress (query, result) pairs in our work.
We will investigate these techniques in the future.

Sever Overhead. We observe from the comparison to the state-of-the-art work, ASQC, that SECF
introduces slightly larger overhead to server side (Section 4.5.2). This is due to the fact that the
prefetching process continuously requests data directly from the SPARQL Endpoint server. One
possible improvement for this issue is to �nd the common results of multiple similar queries, so that
less data requests will be issued. Containment checking can be considered to solve this problem
[25], however, it is time-consuming. A supplementary solution is to add estimation of the results
of these queries and prune the ones that would return empty results. In this way, less queries are
issued directly to the server side.

6 CONCLUSION

In this article, we introduce a client-side caching framework, SECF, to improve the overall querying
performance on the SPARQL Endpoints that are built upon curated knowledge bases. SECF utilises
machine learning techniques to learn clients’ query patterns and suggests similar queries, whose
results are prefetched and cached in order to reduce the overall querying time. Our proposed
template-based feature modelling method greatly outperforms the state-of-the-art method, cluster-
based feature modelling method in terms of training and suggestion time. The suggestion process
achieves the improvement on the overall cache hit rate and is further improved by introducing
dimensional reduction algorithms, especially NMF. The proposed cache replacement algorithm,
MSES, outperforms the most used cache replacement algorithm LRU-2 in terms of hit rate. Improved
MSES further reduces the space overhead by considering a part of estimation records without
losing cache hit rate. Compared to the state-of-the-art client-side caching framework ASQC,
SECF outperforms ASQC in terms of the average query time, but attracts some overhead on the
server. Based on our experience from this work, we also identify a number of interesting research
dimensions to further improve our approach: i) we will investigate more e�cient solutions by
integrating partial queries into our framework; ii) we will examine if incremental learning would
be bene�cial to our framework; iii) we will also adapt compression techniques for data stream to
compress (query, result) pairs in our work.
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