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Abstract

Motivation: A microRNA (miRNA) is a type of non-coding RNA, which plays important roles in many bio-
logical processes. Lots of studies have shown that miRNAs are implicated in human diseases, indicating
that miRNAs might be potential biomarkers for various types of diseases. Therefore, it is important to
reveal the relationships between miRNAs and diseases/phenotypes.
Results: We propose a novel learning-based framework, MDA-CNN, for miRNA-disease association iden-
tification. The model first captures richer interaction features between diseases and miRNAs based on a
three-layer network with an additional gene layer. Then, it employs an auto-encoder to identify the essential
feature combination for each pair of miRNA and disease automatically. Finally, taking the reduced feature
representation as input, it uses a convolutional neural network to predict the final label. The evaluation
results show that the proposed framework outperforms some state-of-the-art approaches in a large margin
on both tasks of miRNA-disease association prediction and miRNA-phenotype association prediction.
Availability: The source code and data are available at https://github.com/Issingjessica/MDA-CNN.
Contact: jiajiepeng@nwpu.edu.cn;shang@nwpu.edu.cn;zywei@fudan.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
A microRNA (miRNA) is a type of non-coding RNA containing about 22
nucleotides and it has been found in different types of organisms, e.g.,
plants, animals, viruses [Liu et al., 2015, Huang et al., 2011, Li et al.,
2013a, Yuan et al., 2015], etc. Existing research reveals that miRNAs
play important roles in different biological processes, including cell gro-
wth [Ambros, 2003], cell cycle regulation [Carleton et al., 2007], immune
reaction [Taganov et al., 2006], tumor invasion [Ma et al., 2007] and
cell fate transitions [Shenoy and Blelloch, 2014] by targeting specific

messenger RNAs (mRNAs) and regulating gene expression and mRNA
degradation [Shi et al., 2013, Jiang et al., 2010].

Studies also indicate that many miRNAs are implicated in human dise-
ases [Jiang et al., 2008], e.g., cancer [Volinia et al., 2012], immune-related
diseases [Huang et al., 2007], Parkinson’s disease [Kim et al., 2007], etc.
According to the statistics of the Human microRNA Disease Database
(HMDD) [Li et al., 2013b], there are more than 10,000 identified miRNA-
disease associations, involving 572 miRNAs and 378 diseases. Moreover,
recent experiment results [Goulart et al., 2015, Dweep and Gretz, 2015]
show strong links between miRNAs and phenotypes. Considering miR-
NAs might be potential biomarkers for various types of diseases, it
is important to further explore the relationships between miRNAs and
diseases/phenotypes to understand pathogenicity mechanisms.
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Identifying the associations between a pair of miRNA and dise-
ase/phenotype via biological experiment is time-consuming and costly in
terms of financial input. Therefore, researchers explore to predict these
associations automatically based on computational approaches [Pallez
et al., 2017, Zou et al., 2015, You et al., 2017]. Most of existing approaches
are based on network. The basic assumption is that miRNAs associa-
ted with the same or similar diseases are more likely to be functionally
related [Chen et al., 2012], and the crucial technical point is simila-
rity computation for different kinds of pairs including miRNA-miRNA,
disease-disease and miRNA-disease [Zou et al., 2015]. According to infor-
mation involved in similarity computation, network-based approaches can
be loosely grouped into two categories [Zou et al., 2015], local network
similarity methods [Kertesz et al., 2007, Lewis et al., 2003, Wei et al.,
2012, Xuan et al., 2013, Han et al., 2014] and global network similarity
methods [Chen et al., 2012, Chen and Yan, 2014].

Jiang et al. [Jiang et al., 2010] propose a hypergeometric distribution-
based method to identify the miRNA-disease association based on miRNA-
miRNA and disease-disease network. Xuan et al. propose HDMP method
to predict miRNA-disease associations based on the most similar neigh-
bors [Xuan et al., 2013]. Specifically, the association score between a
miRNA mr and a disease d is calculated by considering the association
between d and the k most similar neighbors ofmr. The evaluation results
show that HDMP performs better than Jiang’s method. Local network
similarity-based methods only consider the direct edge information con-
tained in the involved networks, neglecting the global structure of these
networks.

In the global network similarity-based category, some researchers
adopt the random walk with restart (RWR) model to predict miRNA-
disease associations. For example, RWRMDA utilize RWR on a miRNA-
miRNA association network to measure the similarities between known
disease-associated miRNAs and candidate miRNAs [Chen et al., 2012].
The experiment results show that RWRMDA obtains reliable predictive
accuracy, but it cannot predict novel miRNAs for diseases that do not
have known associated miRNAs [Chen and Yan, 2014]. To overcome this
drawback, Chen et al. propose a method to predict the miRNA-disease
association using a semi-supervised method [Chen and Yan, 2014]. A key
step of network similarity-based methods is mapping miRNAs and disea-
ses to the same network. Therefore, the result may highly depend on the
quality of constructed networks. Recently, You et al. construct a heteroge-
neous network by integrating different types of heterogeneous biological
datasets and propose a path-based method to calculate the association score
between miRNAs and diseases [You et al., 2017]. Experiment results show
that it performs better than other four recently proposed methods ([Xuan
et al., 2013], [Chen and Yan, 2014], [Chen et al., 2016] and [Chen et al.,
2012]).

Although many attempts have been made to identify miRNA-disease
association automatically, most of them are un-supervised ones solely
based on networks without using labeled information. This largely limits
the performance of state-of-the-art systems. Instead of using networks
to compute association scores directly, we explore to use them extract
interaction features for miRNA-disease pairs and predict their associations
in a supervised fashion.

In general, miRNA-disease networks contain two levels, one for miR-
NAs and the other for diseases. Similarities are computed within the same
level and cross levels. We argue that similarity computation using tar-
get concepts (miRNA and disease) directly is unable to catch the deep
interaction patterns between them. As we know, miRNAs are implicated
in many human diseases by regulating their target genes [Ardekani and
Naeini, 2010], indicating that gene plays a crucial role to bridge miR-
NAs and diseases. For example, miRNA-21 is associated with human
hepatocellular cancer via regulating expression of the PTEN tumor sup-
pressor gene [Meng et al., 2007]. Therefore, we believe gene information

should be considered in studying miRNA-disease associations. Although
some existing methods consider gene information in similarity computa-
tion, they can not capture the complex interaction features of how miRNA
associating with disease via genes. To address this problem, we introduce
a gene layer in the middle of the miRNA and disease layers to form a three-
layer-network and propose a novel way to extract interaction features for
miRNA-disease pairs.

In past a few years, deep neural networks (e.g. convolution neural netw-
orks) have been applied to many bioinformatics applications [Min et al.,
2017] and produced promising results. It has been proved that convolutio-
nal neural networks obtain the ability to detect meaningful combinations
of features from the input data automatically [Angermueller et al., 2016].
Considering features extracted from three-layer network might contain
noises, we propose to use convolutional neural network (CNN) to learn
the best combination of features and predict the final labels for a given
miRNA-disease pair.

In this article, we present a novel learning-based framework, MDA-
CNN, to identify the association between a pair of miRNA and disease.
Here are four major contributions:

• We introduce a learning-based framework for the task of miRNA-
disease association prediction that contains three components, namely
network-based feature extractor, auto-encoder-based feature selector
and CNN-based association predictor.

• To better represent the correlation between miRNAs and diseases, we
construct a three-layer network with an additional gene layer in the
middle. A novel feature representation is then proposed based on the
regression model.

• We employ a deep convolutional neural network (CNN) architecture to
deal with the feature vectors produced in the previous step to determine
the final label for miRNA-disease pairs.

• The evaluation results show that MDA-CNN outperforms some state-
of-the-art approaches for both miRNA-disease and miRNA-phenotype
association identification.

2 Methods
We propose a novel algorithm called MDA-CNN to predict miRNA-
disease association. The framework of MDA-CNN is shown in figure 1 and
it contains three steps. First, given a three-layer network (Figure 1a), we
apply a regression model to calculate the disease-gene and miRNA-gene
association scores and generate feature vectors for disease and miRNA
pairs based on these association scores. Second, given a pair of miRNA and
disease, corresponding feature vector is passed through an auto-encoder-
based model to obtain a low dimensional representation (Figure 1b).
Third, a deep convolutional neural network (CNN) architecture is con-
structed to predict the association between miRNA and disease based on
the representation vector obtained in last step (Figure 1c).
2.1 Network-based feature extraction

As we know, miRNAs are implicated in many diseases by regulating gene
expression post-transcriptionally. In this work, we add the gene-layer netw-
ork as the bridge to extract the interaction features between miRNA-disease
pairs. For each miRNA-disease pair, its feature vector is the concatena-
tion of the disease vector and miRNA vector. Elements in the disease (or
miRNA) vector represent the relations between the disease (or miRNA)
and each gene in the gene-layer network. Instead of the binary value that
represents whether a disease (or a miRNA) and a gene are associated, we
use an association score to measure the relation between a disease (or a
miRNA) and a gene.
Association score calculation
In the following, we take disease and gene layer as the example to illustrate
our algorithm. The association score between a miRNA and a gene can be
computed similarly.
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Fig. 1. The workflow of MDA-CNN. With a three-layer network as input, MDA-CNN contains three main steps: network-based feature extraction (a), auto-encoder-based feature selection
(b) and convolutional neural network-based association prediction (c).

Let Nd and Ng be a disease network and a gene association network
respectively.DNd

andGNg represent the sets of diseases and genes invo-
lved inNd andNg respectively.Adg is a set of disease-gene associations
between DNd

and GNg . Inspired by [Wu et al., 2008], the association
score between a disease d and a gene g can be measured as the Pearson
correlation coefficient of Sd and Rg :

Cor(d, g) =
cov(Sd, Rg)

δ(Sd)δ(Rg)
(1)

where Sd = [Sim(d, d1), Sim(d1, d2), ..., Sim(d, dn)] is a vector
of similarity scores between d and each disease in Nd, Rg =

[R(g, d1), R(g, d2), ..., R(g, dn)] is a vector of closeness scores betw-
een g and each disease in Nd, cov() and δ() represent covariance and
standard deviation respectively.

GivenNg andAdg , the closeness scores between a geneg and a disease
d can be defined as follows:

R(g, d) =
∑

g
′∈G(d)

e−dis(g,g
′
) (2)

where G(d) is the set of genes associated with d, dis(g, g
′
) is the square

of the shortest path between g and g
′

in Ng .
Instead of using the path-distance-based similarity, we apply a regres-

sion model to calculate the similarity between two disease di and dj . The
model is able to consider the importance of genes for different diseases.
The model is defined as follows:

Sim(di, dj) = Cdi +
∑

gi∈G(di)

βdigiR(gi, dj) (3)

where βdigi is the regression coefficient of this linear regression model,
G(di) is the set of genes associated with di, Cdi is a bias constant for

each disease. βdigi represents the importance of gi to di. The basic idea
of this regression model is that the similarity of two diseases can be mea-
sured via associated genes. GivenNd,Ng andAdg , this linear regression
model could be trained and used to calculate disease similarities. Note that
Sim(di, dj) can be different with Sim(dj , di).
Feature representation
Feature representation is the key step before applying the machine learning
algorithm. However, existing studies use an association score to link a
disease and a miRNA, which is not able to capture the complex interaction
between them. By adding the gene layer, we can generate a vector to
represent features of a miRNA-disease pair.

Given a disease d, we calculate association score between d and each
gene involved in the gene layer based on Equation 1. After that, a feature
vector of d can be generated as

Xd = [Cor(d, g1), Cor(d, g2), ..., Cor(d, gn)] (4)

where gi represents a gene involved in Ng , n is the number of genes
involved in Ng . To reduce the influence of extreme values (outliers) in
Xd, we apply softmax normalization [Grover and Leskovec, 2016] on
Xd. Specifically, the normalized vector X′d is represented as follows:

X′d = [
exp(Cor(d, g1))∑n
i=1 exp(Cor(d, gi))

, ...,
exp(Cor(d, gn))∑n
i=1 exp(Cor(d, gi))

] (5)

Similarly, given a miRNAm, a vectorX′m can be generated as follows:

X′m = [
exp(Cor(m, g1))∑n
i=1 exp(Cor(m, gi))

, ...,
exp(Cor(m, gn))∑n
i=1 exp(Cor(m, gi))

] (6)

For a miRNA-disease pair, we concatenate X′d and X′m as the vector for
feature representation.

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted June 22, 2018. ; https://doi.org/10.1101/276048doi: bioRxiv preprint 

https://doi.org/10.1101/276048


“main0608” — 2018/6/11 — page 4 — #4

4 Peng et al.

2.2 Auto-encoder-based feature selection

The length of vector generated in previous step (e.g. the concatenation of
X′d and X′m) is the double of |GNg |, which is very large and noisy. The-
refore, we apply auto-encoder to identify the essential feature combination
and reduce the dimension of the feature vector for each pair of miRNA
and disease automatically.

Auto-encoder is used for dimensionality reduction for the downstream
machine learning task such as classification, visualization, communication
and the storage of high-dimensional data [Chicco et al., 2014]. Unlike the
widely-used method, principal components analysis (PCA), auto-encoder
is a non-linear generalization of PCA that uses an adaptive "encoder"
network to transform the high-dimensional data into a low-dimensional
code, and a similar "decoder" network to recover the data from the low-
dimensional code. The low-dimensional code is then used as a compressed
representation of the original data.

In our experiments, the vector X′d and X′m are concatenated before
feeding into the auto-encoder model. Letnbe the number of genes involved
in the network Ng . The original dimension of the input is 2n. In our
model, we use the mean-square error (MSE) [Wax and Ziv, 1977] as the
loss function. The sigmoid activation function and Adam algorithm are
used to optimize the MSE loss. Our auto-encoder network is trained by
the backpropagation (BP) algorithm [Rumelhart et al., 1988].

2.3 Convolutional neural network-based association
prediction

Convolutional neural network (CNN) was proposed in the late 1980s by
Lecun [Lecun et al., 1989] which performs very well in image classi-
fication [Krizhevsky et al., 2012], sentence classification [Kim, 2014]
and classification task on the structured-graph data [Atwood and Tows-
ley, 2015]. In this work, we also choose convolutional neural network as
supervised learning model for learning the best combination of features
and predicting the final label of a given miRNA-disease pair. The stru-
cture of the proposed model is shown in Figure 2. Our model includes

Input Vector

Convolutional layer

Max-pooling layer

Fully-connected layer

Softmax output

4 kernels

size  4 × 1

size  4  × 1

stride 4

50 neurons

probability over labels

ReLU activation

ReLU activation

softmax function

dropout, 0.5 

Fig. 2. The structure of the proposed convolutional neural network model. The input is a
vector. Our model consists of the convolutional layer, max-pooling layer and FC layers.
The output is the probability distribution over labels for each sample.

the following layers: convolution and activation layer, max-pooling layer,
fully-connected layer and softmax layer. A convolutional layer and a recti-
fied linear unit (ReLU, [Nair and Hinton, 2010]) activation layer are used

to extract features from the input that is the output of dimension reduction
step (see previous subsection). A pooling layer is used for dimensionality
reduction. The final fully-connected layer and softmax layer are for the
classification task.

The convolutional layer is responsible for learning subspace features
of the input. The convolutional layer of our model consists of 4 kernels.
4 × 1 weight vector is convolved with the input vector with length L.
After the convolution, for each kernel, we can obtain a feature map C (a
particular feature extracted from the input) that is a vector with the length
(L− 4) + 1. The feature map C is extracted by the following equation:

Cu =

4∑
j=1

WjXu+j (7)

where u ∈ {0, ..., L − 4}, X is the input vector, and W ∈ R4 is a
weight vector, which is initialized by a truncated normal distribution with
mean zero and standard deviation 0.1. A highCu indicates that the kernel
captures the features of the sub-region of the input very well. Cu is then
passed through a ReLU function f(x) = max(0, x) that ignores negative
outputs and propagates positive outputs from previous layer. Although
there are various non-linearities, ReLU activations are the most popular
because of its computational efficiency, sparsity and reduced likelihood of
vanishing gradient [Krizhevsky et al., 2012, Lecun et al., 2015].

Max-pooling layer is used to down-sample the latent representation
after the convolutional layer. It takes the maximum value over non-
overlapping sub-regions (i.e., the pooling size is 4) of the output of
convolutional layer and outputs the most important feature over a nei-
ghborhood in each feature map. Given an input sequence f(Cu) (u ∈
{0, ..., L− 4}), the output of pooling layer is shown as follows:

max
u∈{0,...,3}

f(Cu), max
u∈{4,...,7}

f(Cu), ..., max
u∈{L−7,...,L−4}

f(Cu)

(8)
with length of (L−4)+1

4
.

Convolutional layer and max-pooling layer can extract the important
features from the input vector. The outputs of all the kernels are then
concatenated into a vector and fed to the fully-connected layer.

The final two layers are a fully-connected layer and a softmax layer.
There are 50 hidden units in the fully-connected layer. The output of poo-
ling layer is y ∈ Rn, where n is the length of concatenated outputs of
the pooling layer. The output of the fully-connected layer is :f(W · y),
where W ∈ R50×n is the weight matrix, and f is the ReLU activation.
The final softmax layer is used for classification task.
3 Results

3.1 Experiment setup

We evaluate our model on two tasks, namely, miRNA-disease association
prediction and miRNA-phenotype association prediction.

For miRNA-disease association prediction, we need to have three simi-
larity networks for the same type of elements, namely, diseases, genes
and miRNAs. We obtain disease similarity network and miRNA simila-
rity network from You et al. [2017]. We utilize the protein network of
human genes from Human Protein Reference Database (HPRD) [Baolin
and Bo, 2007]. The involved associations across different networks are
disease-gene and miRNA-gene associations. The disease-gene associati-
ons are obtained from DisGeNET database [Piñero et al., 2016] and only
manually curated disease-gene associations are kept. The miRNA-gene
associations are obtained from miRWalk2.0 database [Dweep and Gretz,
2015]. During the computation, we remove those genes that have no corre-
lation with diseases or miRNAs. For the experimental dataset, the positive
set is obtained from HMDD [Li et al., 2013b]. Because there is no availa-
ble dataset for negative samples, we randomly generate a negative set with
the same size as the positive set.

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted June 22, 2018. ; https://doi.org/10.1101/276048doi: bioRxiv preprint 

https://doi.org/10.1101/276048


“main0608” — 2018/6/11 — page 5 — #5

Predicting miRNA-disease association via CNN 5

In the evaluation of miRNA-phenotype association prediction, the
three involved networks are phenotype, protein and miRNA network.
The protein and miRNA networks are the same as the dataset used in
the miRNA-disease association prediction task. The phenotype network
is generated based on HPO [Robinson et al., 2008]-based similarity using
traditional Resnik method [Resnik, 1995], which is also utilized in [Masino
et al., 2014]. The involved associations across networks at different levels
are phenotype-gene and miRNA-gene associations. The miRNA-gene
associations are the same as the dataset used in the miRNA-disease associ-
ation prediction test. Phenotype-gene associations are obtained from HPO
database. For performance evaluation, the positive set of validated miRNA-
phenotype associations is obtained from miRWalk2.0 database [Dweep and
Gretz, 2015]. We randomly generate a negative set with the same size as
the positive set.

In both tasks, we use 10-fold cross validation [Kohavi et al., 1995]
to train and test our model. All aforementioned datasets are available
in the supplementary data. The detail of these datasets could be found
in supplementary document. The parameters used in the auto-encoder
and convolutional neural network are also described in the supplementary
document.

Fig. 3. The ROC (a) and P-R (b) curves of four tested methods on miRNA-disease
association prediction task.

3.2 Performance evaluation on predicting miRNA-disease
associations

We evaluate the performance of MDA-CNN and the other three methods
(i.e. CIPHER [Wu et al., 2008],PBMDA [You et al., 2017] and WPSMDA)
on the task of predicting miRNA-disease associations. WPSMDA is an
alternative of MDA-CNN. The detail of WPSMDA can be found in the sup-
plementary document. Evaluation metrics include area under the receiver
operating characteristic curve (AUROC), area under the precision-recall
curve (AUPR), precision, recall and F1-score.

Table 1. The AUROC, AUPR, Precision, Recall and F1-Scores of four methods
on miRNA-disease association prediction task. Bolded numbers are the best
performance in each category.

AUROC AUPR Precision Recall F1-score
CIPHER 0.5564 0.5612 0.4942 0.9954 0.6605
PBMDA 0.6321 0.6140 0.5192 0.9036 0.6594
WPSMDA 0.6406 0.5942 0.5418 0.9363 0.6864
MDA-CNN 0.8897 0.8887 0.8244 0.8056 0.8144

The experiment results show that MDA-CNN achieves the highest per-
formance among all methods according to AUROC, AUPR, and F1-Score.
The average AUROC achieved by MDA-CNN across 10-fold cross vali-
dation is 0.8897, which is significantly higher than the scores of CIPHER,
PBMDA and WPSMDA (Table 1). Figure 3(a) shows ROC curves of one
cross-validation result. Results of other 9 splits can be found in the sup-
plementary document (Supplementary Figure S2). Comparing the AUPR
scores from the four methods shows that MDA-CNN performs the best
with the PBMDA as the runner-up (Table 1 and Figure 3(b)). The ave-
rage AUPR score of MDA-CNN is about 0.27 higher than the second
best method. Figure 3(b) shows P-R curves of one cross-validation result.

Results of other 9 splits can be found in the supplementary document (Sup-
plementary Figure S3). It is shown that MDA-CNN can achieve the highest
F1-score. Importantly, both precision and recall scores of MDA-CNN are
more than 0.80 when achieving the highest F1-score. In summary, this
experiment shows that MDA-CNN can achieve significant improvement in
predicting miRNA-disease associations compared to some state-of-the-art
approaches.

3.3 Performance evaluation on predicting
miRNA-phenotype associations

In addition to evaluate MDA-CNN on miRNA-disease association pre-
diction problem, we further test whether MDA-CNN can be applied to
predict miRNA-phenotype associations. Patient phenotypes, which may
be determined by both genetically or environmentally, are the physical, bio-
chemical and physiological makeup of a patient [Robinson et al., 2008].
Understanding the miRNA-phenotype association can reveal how miRNAs
are implicated in human diseases.

Table 2. The AUROC, AUPR, Precision, Recall and F1-Scores of four methods
on miRNA-phenotype association prediction task. Bolded numbers are the best
performance in each category.

AUROC AUPR Precision Recall F1-score
CIPHER 0.5212 0.5271 0.5051 0.9991 0.6710
PBMDA 0.7453 0.7197 0.6725 0.7614 0.7141
WPSMDA 0.6927 0.6954 0.5492 0.9310 0.6909
MDA-CNN 0.9429 0.9344 0.8667 0.8748 0.8704

Fig. 4. The ROC (a) and P-R (b) curves of four tested methods on miRNA-phenotype
association prediction task.

Similar with the evaluation on miRNA-disease dataset, we compare
MDA-CNN with three methods (i.e. CIPHER, PBMDA and WPSMDA).In
general, the results show that MDA-CNN performs better than other meth-
ods according to all metrics.The average AUROC score of MDA-CNN
is 0.9429, which is significantly higher than the second best method
PBMDA (the value is 0.7453) (Table 2). Similarly, MDA-CNN achie-
ves the highest AUPR score (0.9344), while the score of the runner-up
(PBMDA) is 0.7197 (Table 2). Figure 4(a) and (b) show ROC and PR
curves of one cross-validation result. Results of other 9 splits can be
found in supplementary document (Supplementary Figure S4 and S5).
It is shown that MDA-CNN can achieve the highest F1-score (Table 2).
Comparing with other methods, MDA-CNN can achieve both high pre-
cision and recall. In summary, MDA-CNN performs better than some
state-of-the-art approaches in predicting miRNA-phenotype associations.

3.4 Effects of MDA-CNN components

In order to evaluate the performance of each step of MDA-CNN, we com-
pare MDA-CNN with two versions of MDA-CNN, each with a different
approach in feature representation step and convolutional neural network
step on miRNA-disease association prediction task. To test the perfor-
mance of our feature representation model, we create BR-CNN where
the values in the feature vector are binary values. To test the effect of
the convolutional neural network model, we create MDA-SVM where the
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convolutional neural network model is replaced by support vector mach-
ine (SVM) model. Table 3 shows that MDA-CNN is significantly better
than BR-CNN (p-value < 0.05, Wilcoxon test) and MDA-SVM (p-value <
0.05, Wilcoxon test) in terms of all metrics, indicating that the two steps
in MDA-CNN contribute to the performance and have been appropriately
designed.

Table 3. The AUROC, AUPR, Precision, Recall and F1-Scores of MDA-
SVM, BR-CNN and MDA-CNN on miRNA-disease association prediction
task. Bolded numbers are the best performance in each category.

AUROC AUPR Precision Recall F1-score
MDA-SVM 0.8647 0.8524 0.7879 0.7856 0.7864
BR-CNN 0.8537 0.8515 0.7884 0.7726 0.7797
MDA-CNN 0.8897 0.8887 0.8244 0.8056 0.8144

3.5 Case study on lung cancer

We apply MDA-CNN to predict the miRNAs associated with lung cancer
as a case study.

Lung cancer is the leading cause of cancer-associated death [Bandi
et al., 2009, Jemal et al., 2010]. In HMDD database, there are 110 miR-
NAs that associate with lung cancer. In the experiment, to avoid logic
circle, we first remove all the associations between lung cancer and its
related miRNAs from the training set. We use MDA-CNN to predict the
association between lung cancer and every miRNA. Then, we compare the
prediction result with the record in HMDD database. 110 miRNAs associ-
ating with lung cancer are found in HMDD database. 52 of 110 miRNAs,
named “easy set", have at least one known target gene in the protein netw-
ork. 58 of 110 miRNAs, named “hard set", have no known target gene in
the protein network. It is no surprise that almost all miRNAs (51 of 52) in
the “easy set" are identified by MDA-CNN. In addition, 53 of 58 miRNAs
in “hard set" are identified. To test the power of gene layer-based feature
representation, we replace gene layer-based feature representation with
binary values representing whether a miRNA targets a gene. In the “easy
set", 41 of 52 miRNAs are identified. However, in the “hard set", only 12
of 58 miRNAs are identified. It indicates that by introducing a gene layer
network to extract interaction features, MDA-CNN is able to enhance the
performance of miRNA-disease association prediction.

To test whether MDA-CNN can predict new miRNA-disease associ-
ations that is not available in existing database. We rank the predicted
miRNAs based on their prediction probabilities. We find that 3 of top 20

miRNAs are not associated with lung cancer (see supplementary table S1).
The three miRNAs are hsa-mir-16, hsa-mir-15a and hsa-mir-106b, which
are in the third, fourth and tenth place in the predicted miRNAs. Based on
the literature study, we find that hsa-mir-15a and hsa-mir-16 are likely con-
tributing to the tumorigenesis of non-small cell lung cancer by regulating
cyclins D1, D2, and E1 [Bandi et al., 2009]. Although no direct evidence
shows that hsa-mir-106b is associated with lung cancer, evidence shows
that hsa-mir-106b is a cancer-associated miRNA [Nagini, 2012].

4 Conclusion
Recently, researchers have started to focus on identifying miRNA-
disease associations by computational tools. In this article, we propose
a learning-based framework named MDA-CNN to identify the miRNA-
disease/phenotype associations. We first extract features of miRNA
and disease/phenotype based on a three-layer network. Then, an auto-
encoder-based model is proposed for feature selection. Using this feature
representation, we propose a convolutional neural network architecture
for the purpose of predicting miRNA-disease/phenotype associations. To
demonstrate the advantages of MDA-CNN, we compare it with three
state-of-the-art methods. The experiments on both miRNA-disease and
miRNA-phenotype associations show that MDA-CNN performs better

than existing methods, indicating that the proposed learning-based frame-
work is appropriately designed. Additionally, case study on lung cancer
shows that MDA-CNN could be used to predict the miRNA-disease
associations.
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