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Abstract

Background: Drug-target interaction prediction is of great significance for narrowing
down the scope of candidate medications, and thus is a vital step in drug discovery.
Because of the particularity of biochemical experiments, the development of new
drugs is not only costly, but also time-consuming. Therefore, the computational
prediction of drug target interactions has become an essential way in the process of
drug discovery, aiming to greatly reducing the experimental cost and time.

Results: We propose a learning-based method based on feature representation
learning and deep neural network named DTI-CNN to predict the drug-target
interactions. We first extract the relevant features of drugs and proteins from
heterogeneous networks by using the Jaccard similarity coefficient and restart random
walk model. Then, we adopt a denoising autoencoder model to reduce the dimension
and identify the essential features. Third, based on the features obtained from last step,
we constructed a convolutional neural network model to predict the interaction
between drugs and proteins . The evaluation results show that the average AUROC
score and AUPR score of DTI-CNN were 0.9416 and 0.9499, which obtains better
performance than the other three existing state-of-the-art methods.

Conclusions: All the experimental results show that the performance of DTI-CNN is
better than that of the three existing methods and the proposed method is
appropriately designed.

Keywords: DTIs prediction, Convolutional neural network, Feature representation
learning
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Background

Drug targets are special molecules that can bind to drugs and produce effects in cells, the

main molecular targets for drugs are proteins [1]. Drug-target interactions (DTIs) pre-

diction is of great significance for drug repositioning [2], drug discovery [3], side-effect

prediction [4] and drug resistance [5]. However, identifying the drug-target interactions

via biochemical and chemical biological experiments is costly and time-consuming [6].

Recently, as genomic, chemical, and pharmacological data become more and more com-

plete, new opportunities for identifying drug target interactions have been emerged [2].

Therefore, many researchers have attempted to predict DTIs by using silico or computa-

tional approaches to guide in vivo validation in recent years, and thus significantly reduce

the cost and time for identifying the drug-target interactions [2].

The traditional computational DTIs prediction approaches are mainly categorized into

docking-based approaches [7] [8] and ligand-based approaches [9]. However, the docking

is difficult to play a good performance when the three-dimensional structures of the target

protein are unknown [10]. The ligand-based approaches are very effective in DTIs predic-

tion, but it often requires a large number of known binding data and thus the prediction

results are poor with only a small amount of known data [11].

In recent years, network-based approaches have demonstrated great advantages com-

pared to docking-based and ligand-based methods [12] [13]. First, network-based

approaches have a good prediction performance even without the three-dimensional

structure of the target. Secondly, they are simple and fast for only by performing simple

physical processes [13]. In the past decade, DTIs prediction approaches based onmachine

learning have also been widely studied. A key idea of these approaches is the assumption

that similar drugs may share similar targets [14].Thus predicting DTIs is often regarded

as a binary classification issue by using chemical structures of drugs and targets as input

features and considering known DTIs as labels [2]. However, most existing prediction

methods are limited to homogeneous networks, which ignore a rich variety of topological

information and the complex interaction relationship of heterogeneous data [3].

In recent years, a variety of computing methods based on heterogeneous data sources

have been developed to predict DTI. Wang et.al used a heterogeneous network data to

obtain the diffusion feature and directly use the obtained diffusion distributions to derive

the prediction scores of DTIs [3]. However, the direct use of diffusion state as a feature or

prediction score is vulnerable to the deviation caused by noise and high dimension of het-

erogeneous network data, resulting in inaccurate DTI prediction [2]. Luo et.al provided

the DTINet as a new prediction method, which extracted the low-dimensional char-

acteristic information from heterogeneous data sources and used the inductive matrix

completion (IMC) approach to predict the drug-target interaction fraction [2]. The induc-

tive matrix completion approach predicts the new DTI by using a small amount of known

drug-protein interaction information, combined with the extracted drug and protein

characteristic information. This method has been proved to be superior to the commonly

used Laplacian regularization least square approach [15], heterogeneous network model

[16], cooperation matrix factorization (CMF) [17] and Bipartite local model by learning

from local information and neighbors [18].

In this paper, we improve the prediction method by learning low-dimensional vec-

tor representations of features from heterogeneous networks, and adopting convolution

neural networks (CNN) as classification model. An efficient DTI prediction method



Peng et al. BMC Bioinformatics 2020, 21(Suppl 13):394 Page 3 of 13

is presented, DTI-CNN, which can be used to identify the drug-target interactions,

guide biochemical experiments and reduce the cost of research. Here are four major

contributions:

• We propose a learning-based method for drug-target interaction prediction that

contains three components, named as heterogeneous-network-based feature

extractor, denoising-autoencoder-based feature selector and CNN-based interaction

predictor.

• Based on random walk with restart (RWR) and denoising autoencoder (DAE) model,

DTI-CNN can cope with the noisy, incomplete and high-dimensional features from

heterogeneous data sources, including drug, proteins, side-effects and diseases

information.

• Based on a deep CNN model, DTI-CNN can handle the low dimensional feature

vectors and predict the probability of interaction between each pair of drugs and

proteins.

• Based on our DTI prediction task, the results indicate that DTI-CNN is better than

the other three state-of-the-art methods and is appropriately designed.

Methods

We propose an learning-based method called DTI-CNN to predict drug-target interac-

tions. The workflow of DTI-CNN is shown in Fig. 1. First, the heterogeneous network was

constructed by integrating a variety of drug and protein related information sources, and

the initial drug feature vector and protein feature vector were obtained by RWR model.

Fig. 1 The flowchart of DTI-CNN pipeline. The DTI-CNN contains heterogeneous-network-based feature
extractor, denoising-autoencoder-based feature selector and CNN-based interaction predictor. First, the
features are extracted from seven networks of drug and protein by the Jaccard similarity coefficient and RWR
algorithm, then we get the low-dimensional representation of drug and protein features by adopting the DAE
model. Third, a deep CNN model is constructed to predict the interaction of each pair of drugs and proteins
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In the second step, the high-dimensional features of drugs and proteins are reduced by

adopting the DAE model, and the low-dimensional representations of them are obtained

respectively. Finally, according to the known drug-protein interactions, the samples are

divided into positive samples and negative samples. Combining the feature vector of drug-

protein pairs, CNN was adopted to predict the association between each pair of drugs

and proteins.

Heterogeneous-network-based feature extractor

The heterogeneous networks is constructed based on two types of networks as follows.

One is the drug-related networks, including drug-drug interactions, drug-disease asso-

ciations, drug-side-effect associations, drug similarities (based on chemical structures of

drugs) [2]. The other is protein-related networks, including protein-disease associations,

protein-protein interactions, protein similarities (based on primary sequences of pro-

teins) [2]. Firstly, the Jaccard similarity algorithm [19] is executed on each association and

interaction matrix respectively, so we can generate a similarity matrix for each network.

Taking the drug-disease interactions matrix as an example, two sets A and B are given

as two rows in the adjacent matrix, which represent the interactions between two dif-

ferent drugs and all diseases. The Jaccard similarity coefficient[20] is an indicator of the

similarity between two sets, defined as follows:

Sim(A,B) =
|A∩B|

|A∪B|
. (1)

The original adjacent matrix is a description of the relationship between a single row and

column node, and the Jaccard similarity coefficient calculation is based on the adjacent

two row vectors of the original adjacent matrix. Thus the similarity matrices S represent

the similarity between each drug or protein node and all features of the column nodes.

The element Si,j represents similarity of row i and row j in the original adjacenct matrix.

After all the original data is transformed into similarity matrices, the RWR algorithm

[21] is applied to each similarity matrix, which represents a weighted network. The dif-

fusion state of each drug or protein is obtained on each network, which includes the

topological structure relation of each drug or protein with all the other nodes in the

network.

The reason for using RWR is that the similarity matrix obtained in the previous step

only calculates the similarity of the two nodes in isolation. RWR can be used to consider

global structure information in the network. If the distribution state of the two nodes is

close, they can be considered to be in a similar position relative to other nodes in the

network. According to the RWR principle, the greater the similarity between the two

nodes, the higher the transition probability of them [22].

Taking the drug-disease similarity matrixAi,j as an example, we can get the drug-disease

transition probability matrix B according to theAi,j, whose elements Bi,j describe the tran-

sition probability from the drug node i to the disease node j [23], that is defined as follows:

Bi,j =
Ai,j∑
j Ai,j

. (2)

Next, the final drug-disease diffusion state matrix can be obtained by iterative conver-

gence as follows:

St+1
i = (1 − pr)S

t
iB + prei. (3)
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Where Sti is the result after t iterations, and each element stores the probability of access-

ing a disease node from the drug node i after iteration in the process of random walk, pr

is the restart probability, and ei is an n-dimensional unit matrix.

After all the similarity matrices is transformed into diffusion state matrices, we splice

the single diffusion state matrix of drug and protein networks, so that we can get two

diffusion state matrices about drug and protein. The row of the drug diffusion matrix

represents different drugs, and the column represents the four nodes of drugs, diseases,

side effects and drugs, in which the element D(i, j) represents the transition probability

between drug i and node j. The row of the protein diffusion state matrix represents differ-

ent proteins, and the column represents the three nodes of protein, disease and protein,

in which the element P(i, j) represents the transfer probability of protein i and node j.

Denoising-autoencoder-based feature selector

The vector of diffusion state matrix obtained in the previous step is high-dimensional,

noisy and incomplete. In order to obtain the essential features, we apply a DAE model

which carry on the data operation on the basis of the autoencoder. The main idea of DAE

is shown in Fig. 2. Taking the diffusion state matrix about drug as an input example, by

adding noise to the input training data and making the self-encoder learn to remove this

noise, the real input which has not been polluted by noise can be obtained [24]. Therefore,

the encoder can obtain the most essential features from the original input to get more

robust representation. This is why its generalization ability is better than that of the gen-

eral encoder [25]. Autoencoders use automatic Encoders to obtain low-dimensional data

through neural networks based on the input data. Similarly, the Decoders to recover the

original input from low-dimensional data [26].

In the model, we reduce the dimension of drug features to 100 dimensions and pro-

tein features to 400 dimensions. We set the noise figure to 0.2, and use the softplus [27]

and RMSProp fuction [28] to optimize the mean-square error (MSE) [29]. At last, the

backpropagation (BP) algorithm is used to train our DAE [30].

CNN-based interaction predictor

Convolutional Neural Networks is a classical and widely used structure since 1980s [31]

and can greatly reduces the complexity of convolution neural network [32]. The param-

eters of each layer network are shared and the number of parameters to be trained

Fig. 2 The schematic illustration of denoising autoencoder. The original input data is high-dimensional, noisy
and incomplete, the DAE adds noise to it and makes the self-encoder learn to remove the noise, which
makes the encoder learn more robust and low-dimensional representation in the input data. Then the
decoder is used to recover the original input from low-dimensional data, the loss between the original input
and the decoder output is optimized by the RMSProp algorithm
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is reduced during training. Compared with the standard fully connected neural net-

work, it has better performance in image classification, sentence classification and other

classification tasks [33].

Inspired by the success of CNN in classification tasks [34], we use CNN as the super-

vised learning model and the structure of the prediction model is shown in Fig. 3. The

prediction model contains the convolution, max-pooling, fully-connected and output

layer. A convolution layer with a rectified linear unit (ReLU) activation fuction [34] is used

as a feature extractor [35]. A max-pooling layer is employed to reduce the dimension of

features, and the fully-connection layer and the output sigmoid layer are used to classify

the tasks.

As the key component of a CNN, convolution layer can help the model to learn

local and global structures from the input vector [35]. In our model, the convolu-

tional layer consists of 4 kernels. Given the input vector X of length S, and the length

of weight vector is 4 ∗ 1. For each kernel, convolution operation is independent and

thus we can obtain four particular feature with the length (S − 4) + 1, which was

extracted from the input vector and named feature map M. The M is obtained as

follows:

Mi =

4∑

j=1

WjXi+j. (4)

Fig. 3 The structure of the convolutional neural network model
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where (i ∈ 0, 1, . . . , S − 4), and W is initialized by a truncated normal distribution and

used as a weight vector. Then a ReLU function is used to the feature map obtained last

step:

f (x) = max(0, x). (5)

The ReLU function is selected for the excitation function, which can effectively simplify

the calculation process and avoid the gradient explosion and disappearance [36].

Next layer is the max-pooling layer, which can extract the maximum value in the pooled

region and the pooled region continues to move forward at a certain step size in an input

sequence, thus reducing the dimension in each feature map [36]. In our model, the pooled

size is 2 ∗ 1, and the step size is 2. Given an input vector Ai (i ∈ 0, 1, . . . , S − 4), the length

of output of this layer is (S−2)+1
2 .

After the first two layers, we use a one-dimensional vector to connect the important

features extracted from all the kernels and then pass them to the fully connected layer.

The number of hidden units in this layer is 180 and the output of this layer is calculated

as follows:

f = W ∗ y. (6)

where W ∈ R(n∗180) is the weight matrix, y is the output of pooling layer, and f is the

ReLU function.

The final output sigmoid layer is constructed for the binary classification. The Sigmoid

function maps output values between 0 and 1 for classification, which is extracted by the

following equation:

S(x) =
1

1 + e−x
. (7)

Results

Data preparation

To make the performance evaluationn, DTI-CNN was tested on the drug-target interac-

tions prediction task.

We obtained the heterogeneous network from Luo’s paper, which include 12,015

nodes and 1,895,445 edges in total [2]. The isolated nodes are excluded. The het-

erogeneous network integrates four types of nodes (drugs, proteins, diseases and

side-effects) and six type of edges (drug-protein interactions, drug-drug interac-

tions, drug-disease associations, drug-side-effect associations, protein-disease asso-

ciations and protein-protein interactions) [2]. Based on chemical structures of

drugs and primary sequences of proteins, we also built up the multiple similarity

networks [16].

The drug nodes, known DTIs and drug-drug interactions were extracted from the

DrugBank database [37]. The protein nodes and protein–protein interactions were

obtained from the HPRD database [38]. The disease nodes, drug–disease and protein–

disease associations were extracted from the Comparative Toxicogenomics Database [39].

The side-effect nodes and drug–side-effect associations were collected from the SIDER

database [40].
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In our model, we first constructed seven similarity matrices after the Jaccard simi-

larity algorithm. We obtained the drug-related similarity matrices including drug-drug

similarity matrix, drug-disease similarity matrix, drug-side-effect similarity matrix and

drug similarities matrix. The protein-related similarity matrices include protein-disease

similarity matrix, protein-protein similarity matrix and protein similarities matrix. Sec-

ondly, we perform RWR algorithm for the two kinds of matrices respectively and splice

the single diffusion state matrix of drug and protein networks. After this step, we get

two diffusion state matrices corresponding to drug and protein respectively. The rows

of the drug diffusion matrix represent different drugs, and the columns represent pro-

teins, diseases, side effects and drugs nodes. The values in the matrix represent the

associations between drugs and the four biological entities. The rows of the protein

diffusion state matrix represent different proteins. The columns represent proteins, dis-

eases and drugs nodes. The values in the matrix represent the associations between

proteins and the three biological entities. Then, we reduce the dimension of drug

diffusion state matrix and protein diffusion state matrix respectively by using DAE

model. Finally, we obtain the drugs feature vector matrix of 100 dimensions and a total

of 708 samples. Similarly, the proteins feature vector matrix is 400 dimensions and

1512 samples.

At last, we adopted the method of ten fold cross validation to divide the train set and

test set, in which 90% of the positive and negative samples were used to train model

and 10% of the positive and negative samples were used to test the model. According

to the known drug-protein interactions matrix, we use the known drug-protein inter-

action pairs as positive samples. We randomly selected negative samples with the same

number of positive samples. In total, we have 3846 samples. After splicing the corre-

sponding protein vectors into drug vectors, we get drug-protein pair vectors of 500

dimensions.

Model parameters

For the RWR model, the restart probability is 0.5 and the number of iterations is 20.

The parameters used in the DAE model are as follows. For the drug features

matrices, the original dimensions are 2832 and the DAE has one hidden layer

with 100 units. For the protein features matrices, the original dimensions are 4536

and has one hidden layer with 400 units. For drug and protein features, there

are 16 and 32 samples for each batch respectively. The number of epochs is 20.

The noise scale value is 0.2 and we use Respro optimizer algorithm to train the

model.

The parameters of the CNN model are as follows. We added a dropout layer before

the fully-connected layer and the dropout percentage is 0.5. We run 35 epochs with 64

samples for each batch . We used Adam algorithm and set an initial learning rate as 0.001

to optimize the binary cross entropy loss [41].

Evaluation Metrics

The AUROC and AUPR scores were used to evaluate the model test and

comparison. AUROC and AUPR scores are commonly used evaluation cri-

teria for machine learning, which represent the area under the curve of

ROC curve and PR curve respectively. The higher the score, the higher the
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prediction accuracy of the model and the better the performance of the

model.

ROC curve refers to the curve with false positive probability (FPR) as horizontal axis

and true positive rate (TPR) as longitudinal axis, in which FPR = FP
TN+FP , TPR = TP

TP+FN .

PR curve refers to the curve with Recall as horizontal axis and Precision as longitudinal

axis, and Recall = TP
TP+FN , Precision = TP

TP+FP .

Performance evaluation on predicting drug-target interactions

We compared the performance of DTI-CNN with three existing state-of-art methods

(DTINet [2], CMF [17] and NRLMF [42]) on the task of predicting drug-target interac-

tions.All models are trained and tested with a 10-fold cross validation. Our comparative

results are shown in Fig. 4 and Table 1. Comparing with other methods, the result shows

that DTI-CNN can perform best on both scores at the same time and DTINet is the sec-

ond best method. The AUROC of DTI-CNN is 0.9416, which is 0.03 higher than DTINet.

The AUPR of DTI-CNN is 0.02 higher than DTINet. In summary, DTI-CNN performs

better on drug-target interactions prediction task than the other three state-of-the-art

DTI prediction methods.

Effects of DTI-CNN components

We choose two different approaches in feature selection module and interaction predic-

tion module respectively to figure out the performance of each module of DTI-CNN. To

test the effect of our feature selection model, we first use the singular value decomposi-

tion (SVD) method [43] to replace our DAE model and name this method as SVD-CNN.

To test the effect of the CNN component, we substitute the CNNmodel with the support

vector machine (SVM) model and name this method as DTI-SVM. All three methods are

used on DTI prediction task to compare performance and the comparative results are

shown in Fig. 5 and Table 2. Comparing with other two methods, the result shows that

DTI-CNN can achieve higher AUROC and AUPR scores at the same time, indicating that

the two modules of our model are appropriately designed.

Fig. 4 The ROC (a) and P-R (b) curves of DTI-CNN, DTINet, CMF and NRLMF on drug-target interactions
prediction task. The AUROC of DTI-CNN is 0.9416 and the AUPR of DTI-CNN is 0.9499, which performs better
on the drug-target interactions prediction task than the other three state-of-the-art DTI prediction methods
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Table 1 The AUROC, AUPR scores of DTI-CNN, DTINet, CMF and NRLMF on drug-target interactions
prediction task

Methods AUROC AUPR

DTINet 0.9111 0.9290

NRLMF 0.8692 0.4411

CMF 0.9037 0.4173

DTI-CNN 0.9416 0.9499

Case study in three drugs

We extracted the known DTIs from the DrugBank database. We choose the three drugs

with the largest number of interactions in knownDTIs, which are Quetiapine, Olanzapine

and Meprobamate. In the train set, we exclude all the features and interactions between

the three drugs and their related proteins to avoid logic circle. In the test set, we input

the features of the three drugs and its related proteins. In the “Quetiapine set”, 24 of 24

known interactions are identified. In the “Meprobamate set”, 23 of 24 known interactions

are discovered. And in the “Olanzapine set”, 23 of 23 known interactions are recognized.

These results indicate that the DTI-CNNmethod has a good performance on drug-target

interactions prediction.

Discussion

At present, there are three traditional kinds of DTI prediction approaches which con-

tains molecular-based approach, ligand-based approach and network-based approach

[10]. There are a variety of related models, and the demand for algorithm prediction accu-

racy is getting higher and higher. The feature learning approach based on deep learning

is different from the traditional neural network [44]. Through layer-by-layer learning, we

can learn the essential features of the data set without relying on a large scale of samples.,

so as to predict the unknown data more accurately [45].

The purpose of this research is to improve the prediction accuracy by using the CNN

model based on depth learning on the basis of the developed method DTINet. The

DTINet contains two modules which are feature extraction and classification. In the first

Fig. 5 The ROC (a) and P-R (b) curves of DTI-CNN, SVD-CNN and DTI-SVM on drug-target interactions
prediction task. The DTI-CNN achieves both higher AUROC and AUPR scores than the SVD-CNN and the
DTI-SVM method, indicating that the DTI-CNN has been appropriately designed
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Table 2 The AUROC, AUPR scores of DTI-CNN, SVD-CNN and DTI-SVM on drug-target interactions
prediction task

Methods AUROC AUPR

DTI-SVM 0.9068 0.9292

SVD-CNN 0.9306 0.9370

DTI-CNN 0.9416 0.9499

module, we replace the dimension reduction model based on SVD with DAE model to

ensure that we can learn features that aremore suitable for neural network learning. Then,

we improve the classification prediction model of DTINet and use the CNNmodel as the

new prediction model in the second module. Compared with the IMC approach used by

DTINet, the CNNmodel can take into account the topological information and interrela-

tion between the nodes in the network. In addition, we also choose three state-of-the-art

DTI prediction methods as comparison. The experimental results show that the AUROC

and AUPR scores of our model are both higher than DTINet, NRLMF and CMF.

In addition, we want to know which network contributes more to the DTI prediction.

We sequentially remove a network from the original heterogeneous networks as new

input data, and then use our DTI-CNN method to perform DTI prediction. The results

are shown in Table 3. The result shows that the drug-drug interaction of drug networks

and the protein similarities of protein networks contributed more to the DTI predic-

tion. When the drug-drug interaction network was removed, the result achieves both the

lowest AUROC and AUPR scores at the same time.

In the future, we will consider adding more relevant information to the heteroge-

neous network. For the CNN model, we can add the network structure appropriately to

accommodate more complex input networks. In this work, although DTI-CNN is mainly

designed to predict DTIs, it is an extendible method and can also be used to predict other

related directions in the future, such as drug-drug, drug-side-effects and protein-disease.

Conclusion

In this paper, we propose a learning-based method named DTI-CNN to predict the drug-

target interactions. Firstly, the Jaccard similarity coefficient and RWR model are used to

obtain the relevant features of drugs and targets from heterogeneous networks. Then, we

use DAE model to reduce dimensions and identify the essential features. Thirdly, based

on the features obtained from the last step, a CNN model is constructed to make a pre-

diction of DTIs.To demonstrate the advantages of DTI-CNN, we compare it with three

advanced methods. In addition, we also evaluate the effect of each DTI-CNNmodule. All

Table 3 The AUROC, AUPR scores of sequentially strip out a network from the original
heterogeneous network as new input data of DTI-CNN on drug-target interactions prediction task

Networks AUROC AUPR

Without drug-drug 0.9299 0.9370

Without drug-disease 0.9343 0.9416

Without drug side-effect 0.9344 0.9444

Without drug similarities 0.9345 0.9425

Without protein-protein 0.9418 0.9499

Without protein-disease 0.9364 0.9452

Without protein similarities 0.9327 0.9411
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the experimental results show that the performance of DTI-CNN is better than that of

the existing methods and the proposed method is appropriately designed. The case study

also shows that DTI-CNN can be used to predict the drug-target interactions.
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