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Abstract: This paper aims to design an inventory model for a retail enterprise with a profit max-
imization objective using the opportunity for a price discount facility given by a supplier. In the
profit maximization objective, the demand should be increased. The demand can be boosted by
lowering the selling price. However, lowering the selling price may not always give the best profit.
Impreciseness plays a vital role during such decision-making. The decision-making and managerial
activities may be imprecise due to some decision variables. For instance, the selling price may not
be deterministic. A vague selling price will make the retail decision imprecise. To achieve this goal,
the retailer must minimize impreciseness as much as possible. Learning through repetition may be
a practical approach in this regard. This paper investigates the impact of fuzzy impreciseness and
triangular dense fuzzy setting, which dilutes the impreciseness involved with managerial decisions.
Based on the mentioned objectives, this article considers an inventory model with price-dependent
demand and time and a purchasing cost-dependent holding cost in an uncertain phenomenon. This
paper incorporates the all-units discount policy into the unit purchase cost according to the order
quantity. In this paper, the sense of learning is accounted for using a dense fuzzy set by considering
the unit selling price as a triangular dense fuzzy number to lessen the impreciseness in the model.
Four fuzzy optimization methods are used to obtain the usual extreme profit when searching for the
optimal purchasing cost and sale price. It is perceived from the numerical outcomes that a dense
fuzzy environment contributes the best results compared to a crisp and general fuzzy environment.
Managerial insights from this paper are that learning from repeated dealing activities contributes to
enhancing profitability by diluting impreciseness about the selling price and demand rate and taking
the best opportunity from the discount facility while purchasing.

Keywords: EOQ model; price-dependent demand; discount; selling price; dense fuzzy; learning;
optimization

1. Introduction

The inventory control problem is about the optimum control over the stock so that
the maximum gain can be attained by the manufacturer, retailer, or those who maintain
the stock of the items. Intelligent decision-making must ensure a smooth supply to the
consumers in addition to favoring the supplier’s profitability. There needs to be more
inventory to ensure continuity when dealing with customers. That means for uninterrupted
supply flow to meet the consumers demand, sufficient stock is required. Although, surplus
products in the stock must be inclined to the opposite of the decision-maker, making it
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difficult to reduce costs. Thus, the mathematical theory of inventory control problems is
considered an adequate operation research tool.

In 1913, Haris [1] first incorporated a classical economic order quantity model (EOQ) in
the field of the inventory control problem. Because it is intuitive and effective at capturing
the dynamics of the model, lot sizing problems have attracted the interest of researchers
and decision-makers more than other inventory control strategies. The classical EOQ
model presented a fundamental problem under the presumptions of determinism, i.e.,
constant demand with no shortages. The research on lot sizing modeling progressively
became more advanced and included more trustworthy assumptions that served a variety
of applications [2,3]. The demand pattern is an essential aspect of a business scenario. It
can be neither constant nor well predictable. The demand rate may be dependent on one or
more decision variables (time [4], stock level [5], and selling price [6]). At the same time, it
may be imprecise. On the other hand, the optimal pricing of items to be sold is a matter of
great concern to retailers. The retail price has a great effect on the design of consumption.
In a developing country, generally, the customer pays attention to a low-priced product.
The retailers may offer a low price to boost consumer demand. The average turnover can
be best at a high consumption rate. So, the average turnover is related to the selling price
through demand. However, the relationship is not so straightforward because a low selling
price can lessen the earned revenue, which may cause low average turnover. We can say
that the demand is negatively proportional to the unit selling price. The ultimate impact of
the selling price on profit is matter of concern. Therefore, the selling price is a very crucial
decision variable.

In recent years, inventory models with a price discount feature have received much
attention from academics. Customers receive a discount on each unit of the advertised
product they purchase through the all-unit discount as long as their entire basket satisfies
the minimum criterion. However, with an incremental discount, the consumer continues to
pay full price for the first units until they hit the threshold and only pays the discounted
price for the extra units they purchase after reaching that point. One of the alluring aspects
of the modest commercial situation is the availability of all-unit discounts. All-unit discount
facilities are crucial in competitive business because of the globalization of the marketing
strategy. The purchasing cost is a vital factor in the lot-sizing policy. Demand and selling
prices have essential impacts on the customers’ order size. Demand will increase due to
lower selling prices, and the consumers will order more. In this case, retailers need to buy
more products, and for this situation, an all-units discount facility will be a crucial aspect
for retailers according to the size of the order. However, it will raise the risk of overstocking,
mainly when the demand is still being determined. In an unpredictable environment, the
linked ordering and pricing dilemma becomes increasingly tricky when quantity discount
policies are offered since retailers must find a balance between ordering and selling. In this
article, an all-unit discount facility on the unit purchase cost is discussed from a supplier or
a manufacturer to his/her retailer.

Assume that in a recently opened inventory system, the rate of demand or another
parameter for a specific product is still being determined because of a lack of experience
and knowledge of the requirements of the typical community. Yet, as time goes on, the
decision-maker will come to understand the reality and ultimately agree on a limited
demand for that specific product. The notion of fuzzy concept has been extensively used in
the analysis of numerous lot sizing problem throughout the years to deal with ambiguous
situations, inadequate descriptions, and hazy data. As soon as an inventory system is
implemented, there is a great deal of uncertainty because there are no data on consumer
preferences, demand, order amount, product preferences, etc. When the frequency of turns
(n) (frequency of negotiations to reach a final agreement or opinion) grows, more knowledge
is gathered and analyzed, allowing for a more precise prediction and reduced uncertainty.
Situations of this nature cannot be disregarded. By learning from the experience of repeated
work, the degree of ambiguity regarding the demand pattern may be minimized, and the
decision-makers’ judgments on the unit selling price can be made apparent. When making
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decisions, the densely fuzzy environment gives the impression of learning to lessen the
degree of imprecision with repetition. In this paper, an optimal decision approach is used
for an inventory model under learning phenomena in favor of the retailer’s goal of reducing
cost and boosting turnover.

The following research questions encouraged the writers to introduce the concept in
this paper based on the above inferences:

• What is the appropriate approach in a marketing scenario driven by the EOQ model
where uncertain demands of the customers depend on the unit selling price?

• How does the uncertain demand pattern affect the decision-making process?
• How does the price discount facility affect the profit-optimizing policy?
• How much can the decision-maker benefit from learning by performing repetitive

tasks to implement a more robust strategy to achieve his/her purpose?
• What are the immediate effects of the unit price discount policy and learning through

experience on the economic order quantity model?

All the above insights on the decision-making approach are quantitatively illustrated and
proven in this study. This paper focuses on the abovementioned insights by investigating an
EOQ model with price-dependent demand and a unit discount policy under learning through
experience using a triangular dense fuzzy set (TDFS) decision-making configuration.

This section precedes the following sections. Section 2 describes a detailed literature
review on the topics concerned. Section 3 contains the mathematical preliminaries that
are used in this paper. Section 4 presents the notations and hypotheses used to develop
the inventory model in this paper. Section 5 discusses inventory models with respect to
different fuzzy phenomena. Section 6 is about the numerical simulation. The discussion
and managerial insights into the outcomes are given in Section 7. This paper ends with
concluding remarks on the overall findings and future research scopes, which are presented
in Section 8.

2. Theoretical Background

The basis of the theoretical foundation for this paper is detailed in the following
subsections.

2.1. Recent Advancement in Inventory Modeling

Haris [1] introduced an inventory model. After that, numerous researchers have
worked in this field. During the last decade, the theory of inventory modeling has extended
more rapidly in various aspects. For instance, Roy [7] developed a lot size model using
the demand function, unit holding cost, and deterioration rate as linear functions for the
sale price, time, and time, respectively. Tripathy and Mishra [8] replaced the linear time-
dependent deterioration rate with a Weibull-distributed function of time. Alfares and
Ghaithan [9] added an excellent review article on inventory management policy studies
with time-varying holding costs. Bhunia and Shaikh [10] introduced a lot-sizing model
where the deterioration rate follows the Weibull distribution. Pal et al. [11] presented an
inventory model, where the demand depends on the price rate and inventory stock level,
considering that the items are deteriorating. Their paper also discussed the effect of inflation
and delayed payments. Ghoreishi et al. [12] constructed a deteriorating EOQ model, where
demands depend on the selling price and inflation rate and discussed the combined action
of the customer return policy, delays in payment with permission, and inflation rate.
Taleizadeh et al. [13] investigated numerous optimal coordinating policies in a supply
chain to improve coordination in the supply chain. They identified the best order size and
selling price for each supply chain member using the Stackelberg game-theoretic approach.
Mishra et al. [14] created a lot-sizing in which they assume inventory level and unit selling
price dependent demand, permitting shortages in two scenarios: partial backlogging and
full backlogging. They discussed preservation technology in their paper to protect the
items from deterioration. Panda et al. [15] incorporated a deteriorating inventory model,
where the demand function depends on the frequency of advertisement, stock levels of the
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items, and the unit selling price and measures the effect of an alternative trade credit policy.
They used the concept of two warehouses, i.e., the retailer stores his items in two different
warehouses with different deterioration rates. A nonlinear stock level-dependent EOQ
model was introduced by Cardenas-Barron et al. [16], which considers a trade credit policy
and a nonlinear stock level-dependent holding cost. Alfares and Ghaithan [17] created
an inventory model with stock and price-dependent demand and time and production
cost-dependent carrying cost. The green level for a green manufacturing system was
introduced by Akhtar et al. [18] into the demand and production cost function. Recently,
Hakim et al. [19] studied an inventory model where the nonlinear demand rate depends
on the green level and selling price.

2.2. Price Discount Policy-Based Inventory Model

In recent years, inventory models with price discount facility have been broadly ex-
amined by many researchers. The all-unit discount gives consumers a discount on every
unit of the advertised product they buy as long as their entire basket matches the minimal
requirement. However, with an incremental discount, the customer only pays the dis-
counted price for the additional units they buy after reaching the threshold and continues
to pay the full price for the original units up to that point. For instance, Shi et al. [20]
presented a pricing model with price-depended demand where the supplier offers an
all-unit quantity discount to the retailers in an application to the newsvendor problem.
Chen and Ho [21] considered a fuzzy newsboy inventory problem with a quantity discount.
Taleizadeh and Pentico [22] formulated an EOQ model with various back-ordering and
all-unit discount policies. Taleizadeh et al. [23] discussed two EOQ models based on imple-
menting an incremental discount policy in the different backlogging scenarios. Alfares [24]
developed an EPQ model where demand is nonlinear stock dependent, with time and unit
purchasing cost-dependent holding costs under a price discount facility. Later, Alfares
and Ghaithan [25] contributed another work to the literature which replaces the price
dependency of demand in the place stock along with time-sensitive stock cost and quan-
tity discount policy. Huang et al. [26] deliberated an integrated EPQ model of unreliable
processes with a price discount facility in an uncertain fuzzy environment. Sebatjane and
Adetunji [27] also utilized the concept of the incremental discount policy while discussing
an EOQ model considering constant demand and time-dependent holding costs. Consider-
ing the all-units discount facility, Shaikh et al. [28] added a pricing model with stock levels,
price-dependent demand, and Weibull-distributed, time-dependent deterioration. Khan
et al. [29] extend the work of Shaikh et al. [28] by considering linearly time-dependent
holding costs and holding costs proportional to purchasing costs. Next, Mashud et al. [30]
explored the concept of Khan et al. [29] by assuming a time-varying deterioration func-
tion with an expiration date. Then, Shaikh et al. [27], in a crisp sense, addressed interval
phenomena, which was also addressed by Rahman et al. [31]. Kuppulakshmi et al. [32]
recently addressed an EPQ model for a defective product, which included a price discount
facility in a fuzzy environment. In this article, we considered an all-unit quantity discount
from supplier. Table 1 represents a comparison among the recent literature on inventory
models with a price discount policy.

Table 1. List of inventory models with discount facility.

References Year Model
Type Model Features Discount Type Discount

Environment

Shi et al. [20] 2012 NP Price-dependent demand and supplier
quantity discount

All-unit quantity
discount Crisp

Chen and Ho
[21] 2013 NP Fuzzy constant demand and

quantity discount
All-unit quantity

discount Crisp

Taleizadeh and
Pentico [22] 2014 EOQ Constant demand, partial backordering, and

supplier quantity discount
All-unit quantity

discount Crisp
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Table 1. Cont.

References Year Model
Type Model Features Discount Type Discount

Environment

Taleizadeh et al.
[23] 2015 EOQ Constant demand, discount facility, and

partial backordering
Incremental

discount Crisp

Alfares [24] 2015 EPQ Stock dependent demand, discount policy,
and variable holding cost

All-unit quantity
discount Crisp

Alfares and
Ghaithan [25] 2016 EOQ Price-dependent demand, time varying

holding cost, and quantity discount
All-unit quantity

discount Crisp

Huang et al.
[26] 2018 EPQ Fuzzy constant demand, unreliable process,

and quantity discount Fixed discount rate Fuzzy

Sebatjane and
Adetunji [27] 2019 EOQ Constant demand and growing items Incremental

quantity discount Crisp

Shaikh et al.
[28] 2019 EOQ

Stock dependent demand, constant
deterioration, partially backlogging shortage,

and holding cost proportional to purchase
cost and time varying

All-unit quantity
discount Crisp

Khan et al. [29] 2020 EOQ
Price dependent demand, constant

deterioration, and holding cost proportional
to purchase cost and time varying

All-unit quantity
discount Crisp

Mashud et al.
[30] 2021 EOQ

Price dependent demand, advance payment,
time varying deterioration, and time varying

holding cost

All-unit quantity
discount Crisp

Rahman et al.
[31] 2022 EOQ Stock dependent demand, deteriorating

items, and with and without shortage
All-unit quantity

discount Interval

Kuppulakshmi
et al. [32] 2023 EPQ Fuzzy demand and imperfect product Price discount Fuzzy

NP: Newsvendor Problem; EOQ: Economic Order Quantity; EPQ: Economic Production Quantity.

2.3. Fuzzy Differential Equation in Inventory Model

During the authentic decision-making progression, a decision-maker must face un-
certainties. A decision-maker must consider uncertainties in the parameters since they
significantly influence decision-making. A fuzzy set is considered one of the best meth-
ods for defining, describing, and measuring uncertainty in the parameters. Zadeh [33]
presented the notion of a fuzzy set in 1965. After that, many researchers developed the
fuzzy theory concept. The idea of fuzzy differential equations is given by Kaleva [34]. The
economic order quantity model using a fuzzy differential equation was first developed
by Park [35] under fuzzy uncertainty. After that, several novel ideas helped to improve
practical theory on fuzzy inventory models, both for inventory modeling and optimization
methods. Debnath et al. [36] examined a multi-objective inventory model with non-linear
demand by applying the generalized Hukuhara derivative technique in a fuzzy environ-
ment. Several works [37,38] have worked on the inventory problem using fuzzy differential
equations. Very recently, Manna et al. [39] discussed a production inventory model for
imperfect items by considering an imperfect rate and the demand function as a generalized
fuzzy number using the fuzzy differential and fuzzy integral approach.

2.4. Learning-Based Decision-Making Using the Inventory Model

An essential aspect of human intelligence is the ability to learn by repeating the same
kind of tasks. A person’s performance improves because of experiences gathered through
habits. From the decision-maker’s perspective, experience-based learning always grows
the decision. Wright [40] was the first person to recognize this learning phenomenon
in an industrial environment. After that, several researchers investigated the impact of
learning on different inventory characteristics that expanded the works. By applying
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the concept of uncertainty learning to an EOQ model, Glock et al. [41] discovered how
fuzziness is reduced by learning, as well as how this reduction affects the ordering strategy.
Mahato [42] discussed the effect of learning on an inventory control problem with imperfect
production in a fuzzy uncertain arena. Kumar et al. [43] introduced the notion of learning
into an EPQ model considering partial backlogging in a fuzzy random situation to find a
defective product in the production process. To explore an EOQ model using backorder
policy under fuzzy uncertainty, Kazemi et al. [44] included the notion of human learning.
Moreover, Shekarian et al. [45] discussed an EOQ model for objects of inferior quality
while considering fuzzy uncertainty and learning. Kazemi et al. [46] applied the two-stage
human learning curve (named the Jaber–Glock learning curve), i.e., motor, and cognitive
abilities of human beings in a backorder EOQ model in a fuzzy environment. Soni et al. [47]
also considered lowering vagueness concerning the fuzzy uncertain demand, thus enabling
learning abilities in the continuous review inventory model. De and Beg [48] addressed
incorporating the effects of learning experiences into fuzzy sets, precisely the triangular
dense fuzzy set (TDFS), as well as new defuzzification techniques. Using the property
of the Cauchy sequence, they showed that in TDFS, fuzziness, described by sequential
representation, can be reduced over time by executing a repetitive task. In TDFS, De [49]
added a key and lock capability in terms of the triangular dense fuzzy lock set (TDFLS) to
further enhance the idea of experience-based learning. Maity et al. [50] discussed an EOQ
model under daytime by considering holding cost, demand rate, setup cost, and idle time
cost as TDFLS. Rahaman et al. [51] introduced the EOQ model with price-sensitive demand
considering the effect of memory and experience-based learning with TDFLS. Recently,
memory and learning affecting inventory problems have been discussed by Rahaman
et al. [52] using the fractional derivative and TDFS, respectively. In this article we applied
the learning effect to the selling price per unit and purchase cost per unit with an all-unit
discount using TDFS. Table 2 summarizes the literature on the learning based investigations
of inventory problems.

Table 2. Literature review on learning-based inventory problems.

References Year Model Description Applied Learning
Concept on Learning Method Application Area

Glock et al. [41] 2012 EOQ model with fuzzy demand Customer demand Wright’s power
function formula Firm practitioners

Mahata [42] 2014

Inventory model for an
imperfect product considering
partial backlogging in a fuzzy

environment based on the
credibility measure of a

fuzzy event

Production time Wright’s power
function formula

General
application in

production
inventory

Kumar et al. [43] 2015
EPQ model with partial

backlogging and
process shifting

Production time Wright’s power
function formula

Decorative
manufactures

company

Kazemi et al. [44] 2015
Backorder EOQ model with
learning rate under a fuzzy

environment
Order quantity Wright’s power

function formula
Paper distribution

problem

Shekarian et al.
[45] 2016

EOQ model of imperfect
product with constant demand

under fuzziness
Defective items S-shaped logistic

curve model

General
manufacturing

problem

Kazemi et al. [46] 2016
Backorder fuzzy EOQ model

with two-level combined
human learning

Demand,
maximum

inventory level

Jaber–Glock
learning curve

model

Paper distribution
problem



Systems 2023, 11, 235 7 of 34

Table 2. Cont.

References Year Model Description Applied Learning
Concept on Learning Method Application Area

Soni et al. [47] 2017
Continuous review inventory

system with shortage and
triangular fuzzy demand

Demand function,
ordering quantity

Wright’s power
function formula

General ordering
application

Maity et al. [50] 2019 EOQ model under daytime
with uncertain demand

Holding cost,
demand rate, set
up cost, idle time

cost

Triangular dense
fuzzy lock set

Newly open
shop/industry

Rahaman et al. [51] 2021

EOQ model with price-sensitive
demand considering the effect

of memory and
experience-based learning

Unit selling price,
demand rate

Triangular dense
fuzzy lock set

General ordering
problem

Rahaman et al. [52] 2021 Memory and learning effecting
inventory management problem Demand rate Triangular dense

fuzzy set
General ordering

problem

2.5. Research Gaps and Novelty of This Paper

Suppose a retail enterprise is set to sell commodities after purchasing in an all-unit dis-
count facility availed by the supplier. The supplier sets the purchasing price per unit for the
retailers based on the discrete intervals of order size. The purchasing and retailing scenario
may not always be precise and deterministic. Impreciseness in such a decision-making
scenario is almost unavoidable due to fluctuations in the real-world market situation.
However, the manager should optimize his/her decision with learning. By analyzing
the literature review on the keywords such as all-unit discount facility, retail inventory in
imprecise environments, learning impact on decision-making for inventory control, the
following points were identified:

• A beneficial approach to examine the ambiguous decision-making scenario under
self-optimization involves the scientific measurement of experience-based learning
undertaking repetitive tasks using dense fuzzy sets [46,48–50]. The outcomes of
experience-based learning might be more realistic.

• Apart from the papers [49,50], we have yet to come across many works in the literature
that use learning as a dense fuzzy set to define an EOQ model. The fuzzy setup in
this study incorporates the concept of learning in terms of TDFS and uncertainty with
related factors and variables. The TDFS theory explains how the degree of ambiguity
regarding demand patterns decreases over time (because of repeated experiences with
similar types of decision-making phenomena).

• The selling price has a great impact on the design of consumption. The retailers may
offer a low price to boost consumer demand and thus the average turnover. However,
the loosely supervised decisions to lower the selling price may cause high demand
locally. Therefore, the demand is negatively proportionate to the unit retailing price.

• The demand, as well as the retail price, may not always be accurate to the retailer. As
a result, we considered the unit selling price and hence the demand pattern of the
customer as a triangular dense fuzzy number to maximize the average turnover.

• Another critical point is the all-units discount policy. All-unit discount facilities are
crucial for competitive business because of the globalization of the marketing strategy.
Until now, almost all the works [20–22,24,25,28–30] considering this fact have been
completed in a crisp environment.

• It is noticed that in the literature, no studies (except [26,32]) have discussed the
price discount facility in a fuzzy uncertain environment. This study considers the
price discount facility offered from the supplier’s perspective as a triangular dense
fuzzy number.
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To fulfill the mentioned gaps, this article considers an inventory model with price-
dependent demand, time-dependent purchase costs, and holding cost dependence in an
uncertain situation. The unit purchase cost according to the order amount in this article
incorporates the all-units discount policy. In this study, treating the unit selling price as
a triangular dense fuzzy number allows for learning through a dense fuzzy set, which
reduces the model’s imprecision. Here, four fuzzy optimization techniques are used to find
the best purchase cost and selling price to get the typical extreme profit. The scenario of
buying and selling cannot always be exact and predictable. Due to changes in the actual
market condition, imprecision in this decision-making scenario is probably inevitable.
Although, the management should learn to make better decisions. This paper implies that
learning through repetitions dilutes the impreciseness as well as fits the optimal discount
opportunity while purchasing. Thus, learning scenarios on the retail price and purchasing
cost per unit produces the best profit compared to the deterministic and learning-free
uncertain scenarios. This paper does not address a specific business. Most of the retail
enterprises experience the selling price dependency of the demand rate. Discount on
purchasing costs for a large order is also very frequent in supply–retail scenarios. This study
will present a creative decision-making process that generates the most significant gain in
an imprecise management scenario. This is the main contribution of the proposed study.

3. Preliminaries

This section contains useful definitions and formulae for the proposed model. The
notion of the dense fuzzy number is discussed briefly.

Definition 1 ([33]). A set
∼
Z is said to be a fuzzy set when

∼
Z is expressed as

(
ζ, µ∼

Z
(ζ)
)

, where ζ is
a point in the universe of discourse χ and µ∼

Z
(ζ) denotes the membership, i.e., grade of belongingness

of ζ in χ with 0 ≤ µ∼
Z
(ζ) ≤ 1.

Definition 2 ([33]). A Triangular fuzzy number
∼
Z is represented by the triplet

∼
Z = (ζ1, ζ2, ζ3)

with ζ1 < ζ2 < ζ3, and the membership function is defined as follows:

µZ̃(x) =


x−ζ1
ζ2−ζ1

, ζ1 ≤ x ≤ ζ2
ζ3−x
ζ3−ζ2

, ζ2 ≤ x ≤ ζ3

0, Othetwise
(1)

Figure 1 represents the membership function for a triangular fuzzy set on a graph.
The existing literature on fuzzy theory contains a graph of fuzzy membership functions in
a different context. However, we used the graph in Figure 1 as it is need for the discussion
in this manuscript.
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Definition 3 ([53]). The α − cut of a triangular fuzzy number
∼
Z = (ζ1, ζ2, ζ3) is given by

Zα = [ZL(α), ZR(α)], where ZL(α) = ζ1 + α(ζ2 − ζ1) and ZR(α) = ζ3 − α(ζ3 − ζ2) for

0 ≤ α ≤ 1. Then, the ranking index of
∼
Z is defined as:

I
(

Z̃
)
=

1
2N ∑N

n=1

∫ 1

0
{ZL + ZR}dα (2)

Definition 4 ([48]). Suppose
∼
Z denotes a fuzzy set and the components of

∼
Z are the elements of

the ordered pair R×N (R denotes the set of real numbers and N denotes the set of natural number).

Furthermore, let µ∼
Z
(x, n) : R×N→ [0, 1] be the membership grade for the member of

∼
Z. Fuzzy

set
∼
Z is said to be a dense fuzzy set if µ∼

Z
(x, n)→ 1 as n→ ∞ for some x ∈ R and n ∈ N. It is

said to be a triangular dense fuzzy set if
∼
Z is a triangular fuzzy set. Again, TDFS is said to be a

“Normalised Triangular Dense Fuzzy set (NTDFS)” if µ∼
Z
(z, n) gives its maximum membership

grade of 1 for some n ∈ N.

Definition 5 ([48]). Suppose there is a fuzzy number
∼
Z = (ζ1, ζ2, ζ3), in which ζ1 and ζ3 are

taken as ζ1 = ζ2αn and ζ3 = ζ2βn where αn and βn are a sequence of functions. We take αn and

βn in such a way that both tend to 1, corresponding to n→ ∞ , and in this case,
∼
Z converges to

the set {ζ2}. This type of fuzzy set is known as a triangular dense fuzzy set. Figure 2 depicts a
normalized triangular fuzzy set. Figure 2 is adopted from De and Beg [46].
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Example 1. If we assume a TDFS as
∼
Z = 〈< ζ

(
1− ρ1

n+1
)
, ζ, ζ

(
1 + σ1

n+1
)
〉, where ρ1, σ1 ∈ (0, 1)

and n is a positive integer, then the membership function of
∼
F is as follows:

µ∼
Z
(x, n) =


0, if x < ζ

(
1− ρ1

n+1
)

or x > ζ
(
1 + σ1

n+1
)

x−ζ(1− ρ1
n+1 )

ζρ1
n+1

, if ζ
(
1− ρ1

n+1
)
≤ x ≤ ζ

ζ(1+ σ1
n+1 )−x
ζσ1
n+1

, if ζ ≤ x ≤ ζ
(
1 + σ1

n+1
) (3)

Defuzzification of TDFS [48] The parametric representation (i.e., r− cut) of a TDFS
∼
Z =

〈< ζ
(
1− ρ1

n+1
)
, ζ, ζ

(
1 + σ1

n+1
)
〉 is given by [ZL, ZR], where ZL = ζ + (r− 1) ζρ1

n+1 and ZR =

ζ + (1− r) ζσ1
n+1 . Then, the defuzzification value, i.e., index value of

∼
Z is given as:

I
(∼

Z
)
=

1
2N

N

∑
n=1

1∫
0

{ZL + ZR}dr

I
(∼

Z
)
=

1
2N

N

∑
n=1

1∫
0

{
ζ + (r− 1)

ζρ1

n + 1
+ ζ + (1− r)

ζσ1

n + 1

}
dr

Therefore:

I
(∼

Z
)
= ζ − ζ(ρ1 − σ1)

4N ∑N
n=1

1
n + 1

(4)

Remark 1. 1
N ∑N

n=1
1

n+1 → 0 as N → ∞ and then I
(∼

Z
)

converges to the crisp value ζ. This is

the actual implication of a dense fuzzy number. In TDFS, we assume the degree of fuzziness varies
with n, the number of turn overs (shift, quality, and process time), and using knowledge gained
through learning experiences, the system’s final degree of uncertainty starts to vanish as n increases.
That is, performing the same activity repeatedly can help someone perceive a judgement on a set of
parameters more clearly than they might otherwise. The system moves closer to a clear decision with
zero variation as it learns more.

4. Different Notations and Assumptions

The model was developed using the notations and presumptions that are listed below:

4.1. Notations

The notations for different parameters and decision variables are listed in Table 3.

Table 3. Notations and their corresponding descriptions.

Notations Description

a Fixed part of the demand function (a > 0)

b Coefficient of the price in the demand function (b > 0)

p Unit selling price (decision variable) ($/unit)
∼
p Triangular dense fuzzy valued unit selling price (decision variable) ($/unit)

g Fixed part of the per unit holding cost ( g > 0)

h Coefficient of time in the per unit holding cost ( h > 0)



Systems 2023, 11, 235 11 of 34

Table 3. Cont.

Notations Description

n Number of repetitions that dilute fuzzy impreciseness in the dense fuzzy variable
(non-negative integer)

cm Function of the per unit purchasing cost (decision variable) ($/unit)

pc Per unit crisp purchasing cost (decision variable) ($/unit)

m Number of repetitions for adjusting and scaling cm (non-negative integer) for a
given lot size

µ Scaling parameter in cm ( µ > 0)
∼

cm,n Triangular dense fuzzy valued unit purchasing cost (decision variable) ($/unit)

qm Quantities that determine the price breaks in the discount environment

∼
qm,n

Triangular dense fuzzy valued quantities that determine the price breaks in the
discount environment

ρ1, σ1 Deviation indicator of the triangular dense fuzzy-valued unit price

ρ2, σ2 Deviation indicator of triangular dense fuzzy-valued unit purchasing cost

ρ3, σ3
Deviation indicator of triangular dense fuzzy-valued quantities that determines

the price breaks

D Demand function (unit/cycle)

C Per cycle ordering cost ($/cycle)

q(t) Level of stock at any time t

Q Ordering size (decision variable) (unit/cycle)

T Total cycle length (decision variable) (months)

TAP Total average profit (objective function) ($/cycle)

I(#) Index value, i.e., the defuzzified value of the #
(

# =
∼
p,
∼

cm,n,
∼

qm,n,
∼
D,
∼
Q,

∼
TAP

)

4.2. Assumptions

The following are the assumptions regarding the proposed EOQ model:

(a) We consider straightforward fact while formulating the demand function. The de-

mand rate (
∼
D) is dependent on the unit selling price

∼
p. Generally, the demand for

certain commodities can be boosted by lowering the retail price. In a retail market
with fluctuations in demand and the retail price, the uncertainty can be adjusted by
using a fuzzy equation as follows. Thus, mathematically, the uncertain fuzzy demand

can be viewed as, i.e.,
∼
D = a− b

∼
p, where

∼
p is taken as triangular dense fuzzy number,

a is the fixed demand, and b is the coefficient of price in the demand function. We
assume a decision-making phenomenon where the unit selling price becomes precise
gradually due to learning experience gained through repeating the same kind of tasks.
Thus, we consider the uncertain unit selling price as a triangular dense fuzzy number.
As the number of repetitions (n) increase, more information is collected, and the
analysis will provide a more precise prediction, and thus, the uncertainty will start
to disappear.

(b) We consider that the discount facility is available while the retailer is purchasing from
a supplier. The discount is availing on the order quantity of the purchasing commodi-
ties, and the interacting situation contains impreciseness. The purchasing cost per
unit decreases as the order size increases. To trace the uncertainty, we assume a fuzzy

unit purchase cost
∼

cm,n as a discrete step function for the fuzzy ordering quantities
∼
Q

as follows:
∼

cm,n

(∼
Q
)

=< pc
(

1− m
µ

)(
1− ρ2

n+1
)
, pc
(

1− m
µ

)
, pc
(
1 + σ2

n+1
)(

1− m
µ

)
>,
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for Index
( ∼

qm,n

)
≤ Index

(∼
Q
)
≤ Index

( ∼
qm+1,n

)
and

∼
qm,n =< 100m

(
1− ρ3

n+1
)
, 100m,

100m
(
1 + σ3

n+1
)
>. In above equations, n represents the number of repetitions re-

quired to lessen the fuzzy uncertainty regarding the purchasing cost per unit through
repetitive tasks. In addition, m represents the number of repetitions required to adjust
perfect combinations of the purchasing cost and order size, since discretely related
combinations of them are available in the purchasing scenario.

(c) The carrying cost per unit increases as time increases, as the maintenance ability of
the carrying machineries deteriorate over time. In addition, carrying costs depend
on order size and thus on the purchasing cost per unit. Therefore, the holding cost is
proportional the unit purchasing cost and it is also linear function of time. Thus, the

unit holding cost is
∼
hc
( ∼

cm,n, t
)
=

∼
cm,n(g + ht).

(d) The lead time is zero.
(e) Shortages are not allowed.
(f) Replenishment is instantaneous.

5. Mathematical Modeling of the Fuzzy EOQ Model

This section describes the model formulation and analysis of the proposed model in
different fuzzy setups. We fragmented this section into the following subsections.

5.1. Crisp Model

Before describing the fuzzy environment-based analysis, let us describe the EOQ
model in a crisp environment. The retailing scheme starts with the lot size Q, and with
meeting the customer demand at the rate D = a− bp, the stock is going through gradual
decay. The retailing cycle is ended at time t = T, fulfilling the total demand during the
span of the retailing cycle without any shortage. In the literature on inventory models,
there are similar types of schematic diagrams depicting the inventory level across the retail
cycle or manufacturing cycle. The whole lot sizing procedure is presented in Figure 3. We
designed this figure to illustrates the scenario approximately. Then, the inventory level at
any time in the retailing time interval [0, T] is given as follows:

q(t) = (a− bp)(T − t) (5)

Since shortages are not permissible, the lot size is equal to the total consumptions of
the product during the whole retail cycle. Therefore, the lot size Q is given as follows:

Q = DT (6)

Then, the cost and earned revenue will be obtained as follows:

(i) The replenishment cost is constant and is taken to be C.

(ii) Suppose the purchase cost (cm) per unit is a crisp number pc
(

1− m
µ

)
fitted for the

ordering size Q (qm ≤ Q < qm+1). Then, the total purchase cost for lot size Q is
obtained as:

PC = pc
(

1− m
µ

)
Q = pc

(
1− m

µ

)
(a− bp)T (7)

(iii) The holding cost per unit is a function of the purchase cost per unit (cm) and time.
Therefore, the total holding cost during all the retail activities is obtained as:

HC =
T∫
0

pc
(

1− m
µ

)
(g + ht)(a− bp)(T − t)dt

= pc
(

1− m
µ

)
(a− bp)

T∫
0
{gT + (hT − g)t− ht2}dt
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HC = pc
(

1− m
µ

)
(a− bp)

(
gT2

2
+

hT3

6

)
(8)

(iv) Suppose the selling price per unit p is also a crisp number. Then, the total earned
revenue can be calculated multiplying the consumed amount of product by the selling
price per unit. Therefore, the earned revenue from the retail activities is obtained as:

SR = p(a− bp)T (9)

(v) The total profit is the difference between the earned revenue and the sum of all
possible costs. The total average profit is obtained dividing the total profit by the cycle
time as follows:

TAP =

[
p− pc

(
1− m

µ

)]
(a− bp)− pc

(
1− m

µ

)
(a− bp)

(
gT
2

+
hT2

6

)
− C

T
(10)

In this model, the total average profit is the required function to be maximized. Thus,
the optimization problem with constraints will be of following form:

Max TAP
TAP =

[
p− pc

(
1− m

µ

)]
(a− bp)− pc

(
1− m

µ

)
(a− bp)

(
gT
2 + hT2

6

)
− C

T ;
Q = (a− bp)T;

cm(Q) = pc
(

1− m
µ

)
, while qm ≤ Q < qm+1;

qm = 100m;
T > 0

(11)
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5.2. Fuzzification of the Crisp Objective Function Implementing TDFS in Decision-Making

The demand, unit selling price, or any other parameter for a specific item is unfamiliar
because of non-experience and ignorance of the customer’s needs. Yet, as time goes on, the
decision-maker will realize the reality. The notion of fuzzy sets has been used in inventory
models throughout the years to deal with uncertainty. As soon as an inventory system
is implemented, there is much uncertainty due to the need for knowledge on consumer
demand, lot size, product preferences, etc. When the number of turnovers (n) (frequency
of negotiations to reach a concluding agreement) rises, more information is gathered and
examined, leading to a more precise prediction and reduced ambiguity. So, we consider
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a triangular dense fuzzy set (TDFS) to tackle the system’s uncertainty. To consider the
proposed model in fuzzy form, we replace the crisp quantity with TAP, Q, qm, cm, and p

with
∼

TAP,
∼
Q,

∼
qm,n,

∼
cm,n, and

∼
p, respectively.



Max
∼

TAP
∼

TAP =
(∼

p − ∼
cm,n

)(
a− b

∼
p
)
− ∼

cm,n

(
a− b

∼
p
)(

gT
2 + hT2

6

)
− C

T ;
∼
Q =

(
a− b

∼
p
)

T;
∼
p =< p

(
1− ρ1

n+1
)
, p, p

(
1 + σ1

n+1
)
>

∼
cm,n

(∼
Q
)
=< pc

(
1− m

µ

)(
1− ρ2

n+1
)
, pc
(

1− m
µ

)
, pc
(
1 + σ2

n+1
)(

1− m
µ

)
>,

while I
( ∼

qm,n

)
≤ I
(∼

Q
)
< I
( ∼

qm+1,n

)
and qm,n =< 100m

(
1− ρ3

n+1
)
, 100m, 100m

(
1 + σ3

n+1
)
>;

T > 0

(12)

In this subsection, we discuss different methods to obtain optimal results from the
system given by Equation (12).

5.2.1. Using the Direct Index Value of Each Fuzzy Parameter (Method 1)

We analyzed the above model in a dense fuzzy environment by putting the defuzzified
value of each dense fuzzy parameter

∼
p,

∼
cm,n, and

∼
qm,n directly into the fuzzy optimization

model (4). The index value of the following three fuzzy quantities is obtained as:

(i) The α-cut of a TDFS
∼

qm,n =< 100m
(
1− ρ3

n+1
)
, 100m, 100m

(
1 + σ3

n+1
)
> is given by

[qm,nL, qm,nR] =

[
100m + (α− 1)

100mρ3

n + 1
, 100m + (1− α)

100mσ3

n + 1

]
(13)

and the index value of
∼

qm,n is obtained as follows:

I
( ∼

qm,n

)
=

1
2N ∑N

n=1

∫ 1

0
{qm,nL + qm,nR}dα = 100m− 100m(ρ3 − σ3)

4N ∑N
n=1

1
n + 1

(14)

(ii) The α-cut of a TDFS
∼

cm,n

(∼
Q
)

=< pc
(

1− m
µ

)(
1− ρ2

n+1
)
, pc
(

1− m
µ

)
, pc
(
1 + σ2

n+1
)

(
1− m

µ

)
> is given by

[cm,nL, cm,nR] =

[
pc
(

1− m
µ

)
+ (α− 1)pc

(
1− m

µ

)
ρ2

n + 1
, pc
(

1− m
µ

)
+ (1− α)pc

(
1− m

µ

)
σ2

n + 1

]
(15)

and the index value of
∼

cm,n is obtained as follows:

I
( ∼

cm,n

)
= pc

(
1− m

µ

)
−

pc
(

1− m
µ

)
(ρ2 − σ2)

4N ∑N
n=1

1
n + 1

(16)

(iii) The α-cut of a TDFS
∼
p =< p

(
1− ρ1

n+1
)
, p, p

(
1 + σ1

n+1
)

> is given by [pL, pR] =[
p + (α− 1) pρ1

n+1 , p + (1− α)
pσ1
n+1

]
, and the index value of

∼
p is obtained as follows:

I
(∼

p
)
= p− p(ρ1 − σ1)

4N ∑N
n=1

1
n + 1

(17)
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So, the optimization problem (12) takes the form as mentioned below:

Max = Zde f uzz1

Zde f uzz1 =
(

I
(∼

p
)
− I
( ∼

cm,n

))(
a− bI

(∼
p
))
− I
( ∼

cm,n

)(
a− bI

(∼
p
))(

gT
2 + hT2

6

)
− C

T ;
∼
Q =

(
a− bI

(∼
p
))

T;

I
(∼

p
)
= p− p(ρ1−σ1)

4N ∑N
n=1

1
n+1 ;

I
( ∼

cm,n

)
= pc

(
1− m

µ

)
−

pc
(

1− m
µ

)
(ρ2−σ2)

4N ∑N
n=1

1
n+1 ;

while I
( ∼

qm,n

)
≤ I
(∼

Q
)
< I
( ∼

qm+1,n

)
and I

( ∼
qm,n

)
= 100m− 100m(ρ3−σ3)

4N ∑N
n=1

1
n+1 ;

T > 0

(18)

5.2.2. Using Fuzzy Arithmetic Operation and the Index Value Concept (Method 2)

In this subsection, we discuss the model using fuzzy arithmetic operation after taking
the parametric representation of each fuzzy parameter and variable

∼
p,
∼

cm,n, and
∼

qm,n instead
of using the defuzzified value directly.

The parametric representation, i.e., the α-cut of the total average profit
∼

TAP are
given as:

[TAPL, TAPR] = ([pL, pR]− [cm,nL, cm,nR])(a− b[pL, pR])− [cm,nL, cm,nR](a− b[pL, pR])

(
gT
2

+
hT2

6

)
− C

T

i.e.,  TAPL = (pL − cm,nR)(a− bpR)− cm,nR(a− bpR)
(

gT
2 + hT2

6

)
− C

T

TAPR = (pR − cm,nL)(a− bpL)− cm,nL(a− bpL)
(

gT
2 + hT2

6

)
− C

T

(19)

Therefore, the defuzzified value of the total average profit (see Appendix A) is:

I
( ∼

TAP
)

= 1
2N

N
∑

n=1

1∫
0
{TAPL + TAPR}dα

= 1
2N

{
N
∑

n=0

1∫
0
[{a(pL + pR)− 2bpL pR}

−{a(cm,nL + cm,nR)− b(cm,nL pL + cm,nR pR)}
(

gT
2 + hT2

6 + 1
)
− C

T

]
dα}

That is:

I
( ∼

TAP
)
= ap

{
1− (ρ 1−σ1)

4N ∑N
n=0

1
(n+1)

}
− 2bp2

{
1
2 −

(ρ1−σ1)
4N ∑N

n=0
1

(n+1) −
ρ1σ1
6N ∑N

n=0
1

(n+1)2

}
−[

apc
(

1− m
µ

){
1− (ρ 2−σ2)

4N ∑N
n=0

1
(n+1)

}
− bpc

(
1− m

µ

)
p
{

1− (ρ2+ρ1−σ2−σ1)
4N ∑N

n=0
1

(n+1) +
(ρ1ρ2+σ1σ2)

6N ∑N
n=0

1
(n+1)2

}](
gT
2 + hT2

6 + 1
)
− C

T

(20)

The α-cut of the order quantity
∼
Q is given as:

[QL, QR] = (a− b[pL, pR])T

i.e., {
QL = (a− bpR)T
QR = (a− bpL)T

(21)

i.e.,
QL + QR = {a− b(pL + pR)} (22)

Therefore, the defuzzified value of the order quantity (see Appendix A) is:

I
(∼

Q
)
=

1
2N ∑N

n=0

∫ 1

0
{QL + QR}dα = a− bp

{
1− (ρ 1 − σ1)

4N ∑N
n=0

1
(n + 1)

}
(23)
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The defuzzified value of the fuzzy optimization model (12) is given by:

Max = Zde f uzz2

Zde f uzz2 = I
( ∼

TAP
)

given by Equation (9);

I
(∼

Q
)
= a− bp

{
1− (ρ 1−σ1)

4N ∑N
n=0

1
(n+1)

}
;

I
( ∼

cm,n

)
= pc

(
1− m

µ

)
−

pc
(

1− m
µ

)
(ρ2−σ2)

4N ∑N
n=0

1
n+1 ;

while I
( ∼

qm,n

)
≤ I
(∼

Q
)
< I
( ∼

qm+1,n

)
and I

( ∼
qm,n

)
= 100m− 100m(ρ3−σ3)

4N ∑N
n=0

1
n+1 ;

T > 0

(24)

5.3. Fuzzy Differential Equation Approach

In this section, we solve the above EOQ model using the fuzzy Laplace transform
method instead of using fuzzification of the optimization model. The following fuzzy
differential equation and its boundary conditions represent the mathematical counterpart
of the fuzzy EOQ model: 

d
∼
q(t)
dt = −

∼
D, 0 ≤ t ≤ T

∼
q(0) =

∼
Q

∼
q(T) =

∼
0

i.e., 
d
∼
q(t)
dt = −

(
a− b

∼
p
)

, 0 ≤ t ≤ T
∼
q(0) =

∼
Q

∼
q(T) =

∼
0

(25)

Now, the parametric representation of the fuzzy parameters and variables
∼
q(t),

∼
D,
∼
Q,

and
∼
p are given as:
∼
q(t,α) = [qL(t), qR(t)];

∼
D(p) = [DL, DR];

∼
Q(r) = [QL, QR] = [qL(0), qR(0)]; and

∼
p(r) = [pL, pR].

Since
∼
D(p) = a− b

∼
p, the components of

∼
D are DL = a− bpR and DR = a− bpL.

After using the fuzzy Laplace transform, Equation (25) becomes:

L
{

d
∼
q(t)
dt

; s

}
= −L{

∼
D; s} (26)

Depending upon the fuzzy differentiability of the inventory level
∼
q(t), we get two

different cases:

Case I: when
∼
q(t) is (1)-gH differentiable.

The discussion under Case I is named method 3. In this case, we used the generalized
Hukuhara derivative of

∼
q(t) of type 1. Then, Equation (26) becomes:

sL{∼q(t); s} 	gH
∼
q(0) = −L{

∼
D; s} (27)

The parametric representation is given as follows:{
s`{qL(t); s} − qL(0) = −`{DR; s}
s`{qR(t); s} − qR(0) = −`{DL; s}{

`{qL(t); s} = QL
s −

{a−bpL}
s2

`{qR(t); s} = QR
s −

{a−bpR}
s2

(28)
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Using the inverse Laplace transform on each of the equations in (28), we get:{
qL(t) = QL − (a− bpL)t
qR(t) = QR − (a− bpR)t

(29)

Using the initial condition
∼
q(t) = 0, i.e., qL(t) = 0 and qR(t) = 0, we get:{

QL = (a− bpL)T
QR = (a− bpR)T

(30)

Hence, Equation (29) becomes:{
qL(t) = (a− bpL)(T − t)
qR(t) = (a− bpR)(T − t)

(31)

Then, the cost and earned revenue will be obtained as follows:
Holding Cost: We denote the parametric form of the fuzzy holding cost during a

whole cycle by
∼

HC = [HCL, HCR], where:

HCL =
∫ T

0 cm,nL(g + ht)(a− bpL)(T − t)dt
= cm,nL(a− bpL)

∫ T
0 {gT + (hT − g)t− ht2}dt

∴ HCL = cm,nL(a− bpL)
(

gT2

2 + hT3

6

)
HCR =

∫ T
0 cm,nR(g + ht)(a− bpR)(T − t)dt

= cm,nR(a− bpR)
∫ T

0 {gT + (hT − g)t− ht2}dt

(32)

∴ HCR = cm,nR(a− bpR)

(
gT2

2
+

hT3

6

)
(33)

Purchase Cost: We denote the parametric value of the purchasing cost during a whole

cycle by
∼

PC = [PCL, PCR], where:

PCL = cm,nLQL = cm,nL(a− bpL)T (34)

PCR = cm,nRQR = cm,nR(a− bpR)T (35)

Sales Revenue: The parametric value of the total earned revenue is given by
∼

SR =
[SRL, SRR], where:

SRL = pL(a− bpR)T (36)

SRR = pR(a− bpL)T (37)

Then, the total average profit
∼

TAP = 1
T [TAPL, TAPR] =

[SRL ,SRR ]−[HCL ,HCR ]−[PCL ,PCR ]−C
T ,

where:
TAPL = SRL−HCR−PCR−C

T

=
pL(a−bpR)T−cm,n R(a−bpR)

(
gT2

2 + hT3
6

)
−cm,n R(a−bpR)T−C

T

TAPL = pL(a− bpR)− cm,nR(a− bpR)

(
gT
2

+
hT2

6

)
− cm,nR(a− bpR)−

C
T

(38)

and:
TAPR = SRR−HCL−PCL−C

T

=
pR(a−bpL)T−cm,n L(a−bpL)

(
gT2

2 + hT3
6

)
−cm,n L(a−bpL)T−C

T
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TAPR = pR(a− bpL)− cm,nL(a− bpL)

(
gT
2

+
hT2

6

)
− cm,nL(a− bpL)−

C
T

(39)

Therefore:

TAPL + TAPR = {a(pL + pR)− 2bpL pR − a(cm,nL + cm,nR) + b(cm,nL pL + cm,nR pR)}
−{a(cm,nL + cm,nR)− b(cm,nL pL + cm,nR pR)}

(
gT
2 + hT2

6

)
− C

T
(40)

Therefore, the index value of the total average profit (see Appendix A) is:

I
( ∼

TAP
)

= 1
2N ∑N

n=1
∫ 1

0 {TAPL + TAPR}dα

= 1
2N

{
∑N

n=0
∫ 1

0 [{a(pL + pR)− 2bpL pR} − {a(cm,nL + cm,nR)

−b(cm,nL pL + cm,nR pR)}
(

gT
2 + hT2

6 + 1
)
− C

T

]
dα}

I
( ∼

TAP
)
= ap

{
1− (ρ 1−σ1)

4N ∑N
n=0

1
(n+1)

}
− 2bp2

{
1
2 −

(ρ1−σ1)
4N ∑N

n=0
1

(n+1) −
ρ1σ1
6N ∑N

n=0
1

(n+1)2

}
−[

apc
(

1− m
µ

){
1− (ρ 2−σ2)

4N ∑N
n=0

1
(n+1)

}
− bpc

(
1− m

µ

)
p
{

1− (ρ2+ρ1−σ2−σ1)
4N ∑N

n=0
1

(n+1) +
(ρ1ρ2+σ1σ2)

6N ∑N
n=0

1
(n+1)2

}](
gT
2 + hT2

6 + 1
)
− C

T

(41)

Therefore, the index value of the order quantity (see Appendix A) is:

I
(∼

Q
)
=

1
2N ∑N

n=1

∫ 1

0
{QL + QR

}
dα = a− bp

{
1− (ρ 1 − σ1)

4N ∑N
n=0

1
(n + 1)

}
(42)

The defuzzified value of the fuzzy optimization model is given by:



Max = Zde f uzz3

Zde f uzz3 = I
( ∼

TAP
)

given by Equation (41);

I
(∼

Q
)
= a− bp

{
1− (ρ 1−σ1)

4N ∑N
n=0

1
(n+1)

}
;

I
( ∼

cm,n

)
= pc

(
1− m

µ

)
−

pc
(

1− m
µ

)
(ρ2−σ2)

4N ∑N
n=1

1
n+1 ;

while I
( ∼

qm,n

)
≤ I
(∼

Q
)
< I
( ∼

qm+1,n

)
and I

( ∼
qm,n

)
= 100m− 100m(ρ3−σ3)

4N ∑N
n=1

1
n+1 ;

T > 0

(43)

Remark 2. The expressions for the decisions variable, associated constraints, and objective functions
in method 2 (using fuzzy arithmetic operation and the index value concept) and method 3 regarding
the dynamical solution by Laplace transform using the generalized Hukuhara derivative of

∼
q(t)

of type 1 ((1)-gH derivative) approach is same. So, we discuss only method 2 in the remainder
this paper.

Case II: when
∼
q(t) is (2)-gH differentiable.

The discussion under Case II is named as method 4. In this case, we used the general-
ized Hukuhara derivative of

∼
q(t) of type 2. Then, Equation (26) becomes:

sL
{∼

q(t); s
}
	gH

∼
q(0) = −L

{∼
D; s

}
(44)

The parametric representation is:{
s`{qL(t); s} − qL(0) = −`{DL; s}
s`{qR(t); s} − qR(0) = −`{DR; s}
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{
`{qL(t); s} = QL

s −
{a−bpR}

s2

`{qR(t); s} = QR
s −

{a−bpL}
s2

(45)

Using the inverse Laplace transform on each of the equations in (24) we get:{
qL(t) = QL − (a− bpR)t
qR(t) = QR − (a− bpL)t

(46)

Using the initial condition
∼
q(t) = 0, i.e., qL(t) = 0 and qR(t) = 0, we get:{

QL = (a− bpR)T
QR = (a− bpL)T

(47)

Hence, Equation (29) becomes:{
qL(t) = (a− bpR)(T − t)
qR(t) = (a− bpL)(T − t)

(48)

Then, the cost and earned revenue will be obtained as follows:
Holding Cost: We denote the parametric form of the fuzzy holding cost during a

whole cycle by
∼

HC = [HCL, HCR], where:

HCL =
∫ T

0 cm,nL(g + ht)(a− bpR)(T − t)dt
= cm,nL(a− bpR)

∫ T
0

{
gT + (hT − g)t− ht2}dt

HCL = cm,nL(a− bpR)
(

gT2

2 + hT3

6

)
HCR =

∫ T
0 cm,nR(g + ht)(a− bpL)(T − t)dt

= cm,nR(a− bpL)
∫ T

0

{
gT + (hT − g)t− ht2}dt

(49)

HCR = cm,nR(a− bpL)

(
gT2

2
+

hT3

6

)
(50)

Purchase Cost: We denote the parametric value of the purchasing cost during a whole

cycle by
∼

PC = [PCL, PCR], where:

PCL = cm,nLQL = cm,nL(a− bpR)T (51)

PCR = cm,nRQR = cm,nR(a− bpL)T (52)

Sales Revenue: The parametric value of the total earned revenue is given by
∼

SR =
[SRL, SRR], where:

SRL = pL(a− bpL)T (53)

SRR = pR(a− bpR)T (54)

The total average profit
∼

TAP = 1
T [TAPL, TAPR] =

[SRL ,SRR ]−[HCL ,HCR ]−[PCL ,PCR ]−C
T ,

where:

TAPL = SRL−HCR−PCR−C
T

=
pL(a−bpL)T−cm,n R(a−bpL)

(
gT2

2 + hT3
6

)
−cm,n R(a−bpL)T−C

T
TAPL = pL(a− bpL)− cm,nR(a− bpL)

(
gT
2 + hT2

6

)
− cm,nR(a− bpL)− C

T

TAPR = SRR−HCL−PCL−C
T

=
pR(a−bpR)T−cm,n L(a−bpR)

(
gT2

2 + hT3
6

)
−cm,n L(a−bpR)T−C

T

(55)
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TAPR = pR(a− bpR)− cm,nL(a− bpR)

(
gT
2

+
hT2

6

)
− cm,nL(a− bpR)−

C
T

(56)

Therefore:

TAPL + TAPR =
{

a(pL + pR)− b
(

pL
2 + pR

2)− a(cm,nL + cm,nR) + b(cm,nL pR + cm,nR pL)
}
−

{a(cm,nL + cm,nR)− b(cm,nL pR + cm,nR pL)}
(

gT
2 + hT2

6

)
− C

T
(57)

Therefore, the index value of the total average profit (see Appendix A) is:

I
( ∼

TAP
)

= 1
2N ∑N

n=1
∫ 1

0 {TAPL + TAPR

}
dα

= 1
2N

{
∑N

n=0
∫ 1

0

[{
a(pL + pR)− b

(
pL

2 + pR
2)}− {a(cm,n L + cm,nR)− b(cm,n L pR + cm,nR pL)}

(
gT
2 + hT2

6 + 1
)
− C

T

]
dα
}

I
( ∼

TAP
)
= ap

{
1− (ρ 1−σ1)

4N ∑N
n=0

1
(n+1)

}
−

bp2
{

1− (ρ1−σ1)
2N ∑N

n=0
1

(n+1) +
(ρ1

2+σ1
2)

6N ∑N
n=0

1
(n+1)2

}
−[

apc
(

1− m
µ

){
1− (ρ 2−σ2)

4N ∑N
n=0

1
(n+1)

}
− bpc

(
1− m

µ

)
p
{

1− (ρ2+ρ1−σ2−σ1)
4N ∑N

n=0
1

(n+1) −
(ρ2σ1+ρ1σ2)

6N ∑N
n=0

1
(n+1)2

}]
(

gT
2 + hT2

6 + 1
)
− C

T

(58)

Therefore, the index value of the order quantity (see Appendix A) is:

I
(∼

Q
)
=

1
2N ∑N

n=1

∫ 1

0
{QL + QR}dα = a− bp

{
1− (ρ 1 − σ1)

4N ∑N
n=0

1
(n + 1)

}
(59)

The defuzzified value of the fuzzy optimization model is given by:

Max = Zde f uzz4

Zde f uzz4 = I
( ∼

TAP
)

given by Equation (58);

I
(∼

Q
)
= a− bp

{
1− (ρ 1−σ1)

4N ∑N
n=0

1
(n+1)

}
;

I
( ∼

cm,n

)
= pc

(
1− m

µ

)
−

pc
(

1− m
µ

)
(ρ2−σ2)

4N ∑N
n=1

1
n+1 ;

while I
( ∼

qm,n

)
≤ I
(∼

Q
)
< I
( ∼

qm+1,n

)
and I

( ∼
qm,n

)
= 100m− 100m(ρ3−σ3)

4N ∑N
n=1

1
n+1 ;

T > 0

(60)

6. Numerical Exploration

The impact of experience-based learning in decision-making for an inventory control
problem, where demand depends on the selling price and the supplier offers a price dis-
count facility on lot size, is examined in this part using the analysis of numerical instances.

6.1. Solution Algorithm

The impact of learning experiences is measured using the Algorithm 1. Algorithm 1 is
visualized by flowchart in Figure 4.
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Algorithm 1. Algorithm for optimal feasible solution in different scenarios.

1: Inputs: the value of the parameters C, pc, p, a, b, g, h, and µ.
2: Outputs: total average profit (TAP), optimal order size (Q), and total cycle length (T).
3: Step 1. Set m = 0.
4: Step 2. Solve the crisp optimization problem (11).

5:
Step 3. If Q /∈ [qm, qm+1], this solution is infeasible. Set m = m + 1 and go to step 2.
Otherwise, go to step 4.

6:
Step 4. If Q ∈ [qm, qm+1], this solution is feasible. Set TAP = TAP∗, and T = T∗ for a crisp
problem and go to step 5.

7:
Step 5. Consider the unit selling price (p) and unit purchase cos (cm) as a triangular dense
fuzzy number.

8: Step 6. Input ρ1σ1, ρ2, σ2, ρ3, and σ3.
9: Step 7. Set m = 0.

10: Step 8. Solve the fuzzy optimization problem (18), (24), and (60) for N = 0 and N = 1.

11: Step 9. If I
( ∼

qm,n

)
≤ Q ≤ I

( ∼
qm+1,n

)
, then the solution is feasible. Go to step 11. Otherwise,

go to step 10.
12: Step 10. Set m = m + 1, and go to step 7.

13:
Step 11. Obtain the maximum TAP among the optimization problem (18), (24), and (60), and
corresponding to this TAP, set TAP = TAP*, Q = Q*, and T = T*.

14: Step 12. End

6.2. Numerical Simulation of the Crisp Model

For the numerical illustration of the above discussed crisp model, we use the fol-
lowing inputs p = 20 $/unit/month, pc = 5 $/unit/month, C = 500 $/month, µ =
10, a = 200, b = 4, g = 0, and h = 0.05. Then, the purchasing cost per unit, cm(Q) =
5
(
1− m

10
)
, while 100m ≤ Q < 100(m + 1). Therefore, the permissible combination order

quantity size and purchasing cost per unit for different m is given in Table 4.

Table 4. Permissible combination of order quantity size and purchasing cost.

Repeat (m) 0 1 2 3 4 5

Order quantity size [0, 100] [100, 200] [200, 300] [300, 400] [400, 500] [500, 600]

Purchasing cost per unit 5.00 4.50 4.00 3.50 3.00 2.50

Figure 5 shows different purchasing costs per unit in different intervals of associated
order size. The figure shows that the purchasing cost per unit is a decreasing discrete
function of order size. The optimization problem is solved using LINGO 17.0 software, and
the results are presented in Table 5. On the other hand, the supplier is offering a quantity
discount to the retailer, so price breaks are calculated for different values of m, i.e., for
m = 0, 1, 2, 3, 4, and 5.

Our objective is to find the best average profit for the proposed model. The results
in Table 5 suggest that average profit increases as the numeric values of the trial increase.
However, the purchase cost per unit is closed with order quantity breaks. So, the maximum
average profit is feasible only if the order quantity size lies in the permissible range. It
is clear from Table 5 that the solution is feasible for m = 3 as the corresponding value
of the lot size Q belongs to the range of the quantity break [300, 400]. Although TAP is
maximum for m = 5 and may increase for higher values of m, we cannot take this value
because, in that case, Q does not lie in the quantity break. If we take these results, it
may create various problems such as over stocking. Therefore, the optimal and feasible
solution for the decision variables and the objective function in the crisp EOQ model are
TAP = USD 1656.43, T = 2.842 months, and Q = 341.065 units.
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Table 5. Optimal crisp solution for the chosen values of m using the trial-and-error method.

Repeat (m) cm(Q) = pc
(

1−m
µ

)
p Q T TAP Observation

0 5.00 20 292.17 2.435 1418.91 Q is not matched

1 4.50 20 305.90 2.549 1496.96 Q is not matched

2 4.00 20 321.95 2.683 1576.06 Q is not matched

3 3.50 20 341.06 2.842 1656.43 Q is matched

4 3.00 20 364.41 3.037 1738.36 Q is not matched

5 2.50 20 393.87 3.282 1822.26 Q is not matched

6.3. Numerical Simulation of the Fuzzy Model

Here, we take the selling price (p = 20) and purchase cost (pc = 5) as triangular dense
fuzzy numbers as:

∼
p =< 20

(
1− ρ1

n + 1

)
, 20, 20

(
1 +

σ1

n + 1

)
>

∼
cm,n

(∼
Q
)
=< 5

(
1− m

µ

)(
1− ρ2

n + 1

)
, 5
(

1− m
µ

)
, pc
(

1 +
σ2

n + 1

)(
1− m

µ

)
>

In the case of a supplier quantity discount, quantity breaks are also taken as triangular
dense fuzzy numbers as:

qm,n =< 100m
(

1− ρ3

n + 1

)
, 100m, 100m

(
1 +

σ3

n + 1

)
>

where n represents the degree of experience-based learning. When n increases, the decision-
maker will obtain more knowledge about the uncertain parameter selling price, purchase
cost demand pattern, etc., which will reduce the fuzziness in the model. Particularly, when
n = 0, the dense fuzzy number becomes a general fuzzy number. We use similar inputs
as crisp. Additionally, we consider the fuzzy inputs ρ1 = 0.3; σ1 = 0.4; ρ2 = 0.2; σ2 = 0.3;
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ρ3 = 0.3; and σ3 = 0.5. In the case of the triangular dense fuzzy model, the ends of each
order quantity interval are triangular dense fuzzy numbers and the purchasing cost per
unit is a triangular dense fuzzy number. The fundamental relationship between purchasing
cost per unit and order quantity for the fuzzy case is similar to the crisp model. Here, we
used the defuzzified value for the triangular dense fuzzy valued ends of the intervals for
the order quantity and purchasing cost. The permissible range for the purchasing cost
per unit and ranges of order quantity are contrasted with the obtained order quantity in
the optimal results after numerical optimization in terms of the defuzzified values. The
optimal result is taken as an optimal feasible solution when its purchasing cost per unit
and order quantity are in acceptable ranges. The triangular dense fuzzy set is displayed
in Figure 2. After defuzzification, it is turned into a crisp quantity. Now, the details of all
unit discount facilities are described in Table 4 and Figure 5. So, the details are not repeated
in the case of the fuzzy model. However, the trials for optimal feasible solutions are also
executed in the fuzzy models, and the defuzzified results are displayed in Table 6. Then,
the problem is solved for three methods using the above-said software. The optimal results
are listed in Table 6.

Table 6. Learning through m in different environments and methods.

Repeat (m) Method Repeat (N) [qm,qm+1] cm(Q) = pc
(

1−m
µ

)
p Q T TAP Observation

0

Crisp [0, 100] 5.00 20 292.17 2.435 1418.92 Q is not
matched

Method 1

General
Fuzzy [0, 105] 5.125 20.5 286.31 2.426 1431.78 Q is not

matched

Dense fuzzy
(n = 1) [0, 107.5] 5.188 20.25 283.44 2.422 1437.71 Q is not

matched

Method 2

General
Fuzzy [0, 105] 5.125 20.5 288.77 2.447 1511.97 Q is not

matched

Dense fuzzy
(n = 1) [0, 107.5] 5.188 20.25 286.43 2.448 1538.62 Q is not

matched

Method 4

General
Fuzzy [0, 105] 5.125 20.5 283.94 2.406 1484.50 Q is not

matched

Dense fuzzy
(n = 1) [0, 107.5] 5.188 20.25 280.48 2.397 1504.30 Q is not

matched

1

Crisp [100, 200] 4.500 20 305.90 2.549 1496.96 Q is not
matched

Method 1

General
Fuzzy [105, 210] 4.613 20.5 313.81 2.659 1582.00 Q is not

matched

Dense fuzzy
(n = 1) [107.5, 215] 4.669 20.25 310.66 2.655 1588.40 Q is not

matched

Method 2

General
Fuzzy [105, 210] 4.613 20.5 302.34 2.562 1589.21 Q is not

matched

Dense fuzzy
(n = 1) [107.5, 215] 4.669 20.25 299.89 2.563 1615.80 Q is not

matched

Method 4

General
Fuzzy [105, 210] 4.613 20.5 297.31 2.519 1564.42 Q is not

matched

Dense fuzzy
(n = 1) [107.5, 215] 4.669 20.25 293.68 2.510 1584.82 Q is not

matched
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Table 6. Cont.

Repeat (m) Method Repeat (N) [qm,qm+1] cm(Q) = pc
(

1−m
µ

)
p Q T TAP Observation

2

Crisp [200, 300] 4.000 20 321.95 2.683 1576.06 Q is not
matched

Method 1

General
Fuzzy [210, 315] 4.100 20.5 347.38 2.944 1720.22 Q is not

matched

Dense fuzzy
(n = 1) [215, 322.5] 4.150 20.25 343.90 2.939 1727.06 Q is not

matched

Method 2

General
Fuzzy [210, 315] 4.100 20.5 318.20 2.696 1667.51 Q is not

matched

Dense fuzzy
(n = 1) [215, 322.5] 4.150 20.25 315.62 2.698 1694.04 Q is matched

Method 4

General
Fuzzy [210, 315] 4.100 20.5 312.92 2.652 1645.40 Q is matched

Dense fuzzy
(n = 1) [215, 322.5] 4.150 20.25 309.11 2.642 1666.42 Q is matched

3

Crisp [300, 400] 3.500 20 341.06 2.842 1656.04 Q is matched

Method 1

General
Fuzzy [315, 420] 3.588 20.5 389.34 3.299 1846.48 Q is matched

Dense fuzzy
(n = 1) [322.5, 430] 3.631 20.25 385.45 3.294 1853.71 Q is matched

Method 2

General
Fuzzy [315, 420] 3.588 20.5 337.08 2.856 1747.06 Q is matched

Dense fuzzy
(n = 1) [322.5, 430] 3.631 20.25 334.34 2.858 1773.54 Q is matched

Method 4

General
Fuzzy [315, 420] 3.588 20.5 331.52 2.810 1727.68 Q is matched

Dense fuzzy
(n = 1) [322.5, 430] 3.631 20.25 327.50 2.799 1749.32 Q is matched

Table 6 reveals the following facts:

• The feasible solution cannot be obtained before the trial for m = 2. For m = 2, we
obtain feasible as well as non-feasible solutions using different methods. The crisp
solution and the solution for method 1 of the fuzzy model is not feasible for m = 2.
Method 2 shows different results on feasibility for the general and dense fuzzy case.
After that, all the results in Table 6 are feasible.

• As the repetition of the trial to fix the purchase cost–order quantity combination
advances, the total average profit in the respective methods and fuzzy environments
increase initially and again decrease for trials after m = 3. The best results for profit
maximization goal are obtained for m = 3.

• The ordering of the best phenomena for maximizing average profit for every choice of
m is as follows:

Crisp < Method 4 < Method 2 < Method 1

• The dense fuzzy is perceived to be superior to the general fuzzy as decision-making
phenomena to maximize the average profit irrespective of the methods and choices
of m.

Figure 6 is the graphical representation of Table 6. The bar diagram shows total
average profits in the different decision-making phenomena and adopted methods.
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The facts revealed by Table 6 are also reflected in Figure 6. Figure 6 shows that the
optimal feasible is TAP∗ = USD 1846.48, Q∗ = 389.34 units and T∗ = 3.299 months, which
corresponds to method 1 in the dense fuzzy environment for m = 3. In the preceding
subsection, we discussed the sensitivity of the optimal results with respect to the intensity
of the dense sense and how learning impacts the decision-making for the price discount
facility in the proposed model.

6.4. Learning Sensitivity in the Dense Fuzzy Environment

Learning through experience is an essential concept in inventory control policy. Uncer-
tainty over the demand pattern can be decreased by repeating the same task and predicting
uncertain measures. In this section, we discuss how the learning experience affects the
inventory model. The optimal solutions for all the methods are feasible corresponding to
m = 3. Now, the impacts of learning are examined using three different methods corre-
sponding to m = 3 through a triangular dense fuzzy number with the learning index N.
Table 7 presents the learning sensitivity with respect to the learning index N for method 1,
method 2, and method 4.

Figures 7–9 present the variance in method 1, method 2, and method 4 for the lot size,
total cycle time, and total average profit, respectively, with respect to the experience indexes.

Table 7 and Figures 7–9 reveal the following points:

• The lot increases with the learning index when using each method. The largest lot size
is obtained using method 1, while the smallest corresponds to method 4.

• The total cycle length increases with the learning index when using method 1 and
method 4. The graph of the total cycle length shows the reverse pattern for method
2. The largest lot size is obtained using method 1, while the smallest corresponds to
method 4.

• The total average profit decreases with the learning index when using each method.
The best result corresponds to method 1.
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Table 7. Sensitivity of the optimal results to learning through a dense fuzzy environment.

m = 3 Repeat (n) [qm,qm+1] cm(Q) p Q T TAP

Method 1

1 [322.50, 430.00] 3.631 20.25 385.45 3.294 1853.70

2 [313.75, 418.33] 3.580 20.21 389.99 3.301 1845.23

3 [310.42, 413.89] 3.561 20.18 391.74 3.303 1841.86

4 [308.56, 411.42] 3.550 20.16 392.72 3.304 1839.94

5 [307.35, 409.80] 3.543 20.14 393.36 3.305 1838.68

Method 2

1 [322.50, 430.00] 3.631 20.25 334.34 2.858 1773.54

2 [313.75, 418.33] 3.580 20.21 336.72 2.850 1721.72

3 [310.42, 413.89] 3.561 20.18 337.66 2.847 1702.80

4 [308.56, 411.42] 3.550 20.16 338.19 2.845 1692.72

5 [307.35, 409.80] 3.543 20.14 338.55 2.844 1686.39

Method 4

1 [322.50, 430.00] 3.631 20.25 327.49 2.799 1749.32

2 [313.75, 418.33] 3.580 20.21 332.93 2.817 1708.52

3 [310.42, 413.89] 3.561 20.18 334.10 2.824 1693.59

4 [308.56, 411.42] 3.550 20.16 336.14 2.828 1685.62

5 [307.35, 409.80] 3.543 20.14 336.87 2.830 1680.61
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7. Discussion on Numerical Results and Their Managerial Insights

This section revisits the research objectives and hypotheses involved in the proposed
model before mentioning the numerical outcomes with their managerial insights. The
following research objectives inspired the authors to propose the concept in this paper:

• To design a strategy that should be used in an EOQ-driven marketing situation where
consumers’ unpredictable demands rely on the unit selling price.

• To measure the impact of the unpredictable demand pattern on the decision-making
process.

• To trace the sensitivity of the profit-maximizing policy on the all-unit price discount
facility during purchasing.
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• To address the question: how much can the decision-maker learn by doing repetitive
tasks to implement a more effective plan and accomplish his/her goal?

The uncertainty regarding the selling price dependency of the demand rate was fixed
by assuming the selling price per unit to be fuzzy numbers. This makes the demand a
fuzzy-valued function of price. The next step questioned the impact of fuzzy demand on
the profit maximization objective. To address this question, we discussed four different
fuzzy models associated with the hypotheses. An all-unit discount facility while purchasing
is assumed in this paper. A discrete relevance between the purchasing cost per unit and the
order size is taken into the fuzzy environment to address the indeterminacy. To incorporate
the learning effect on the profitability due to repetitive tasks, we utilized a triangular
dense fuzzy environment. We assumed the selling price and purchasing cost per unit were
triangular dense fuzzy numbers.

Next, some significant observations from the numerical analysis in the other sub-
sections of this present section are interpreted as follows:

• The purchase cost per unit is connected to lot size. It is observed that the lot size in-
creases as the purchase cost per unit decrease. The decision-maker can be successfully
persuaded to place larger orders using the planned all-unit discount policy on the
purchase price per unit. As a result, the decision-maker should select the supplier that
permits a plan for all-unit discounts on the purchase price. A trial to fix the purchase
cost–order quantity combination using repetition is necessary for the feasible optimal
solution. Feasibility does not occur before a specific trial. The decision-maker must
first complete trial-and-error tasks to obtain a viable solution.

• After obtaining feasible solutions, the decision-makers will find the best one favoring
their goal. As the number of trials increases, the average profit increases initially and,
after reaching a peak, it then decreases. So, there will be an optimal choice for the trial
number for profit maximization.

• The demand pattern of an item is not at all predictable, and uncertainties are involved
with it. Fuzzy decision-making techniques are preferable to predict the demand
pattern as well. The decision-makers must self-learn by performing repetitive tasks in
a specific retailing cycle to pursue precision in the optimal retailing policy. Because
the tasks are repeated frequently, the decision-maker can more precisely understand
the demand rate. Thus, the dense fuzzy phenomenon is superior to the general fuzzy
phenomenon for the profit maximization objective.

• However, the total cycle length and lot size increase with the learning index. That is,
too much repetition causes the decision cycle to be unnecessarily large, which results
in a deduction in the average profit. So, learning through repetition is necessary, but
uncontrolled exercises may cause a backlash.

This paper does not address a specific business. Most of the retail enterprises experi-
ence the selling price dependency of the demand rate. Discount on purchasing costs for
large order is also very frequent in supply–retail scenarios. This paper enlightens an inno-
vative decision-making procedure that obtains the best profit in an uncertain managerial
situation. The managerial implications of the obtained results are as follows.

Insight 1: The retailer can reduce costs by lowering purchasing and holding costs. The
purchasing cost per unit can be reduced by making the order large. Furthermore, large
orders can earn more revenue for retailing commodities. Thus, more profit can be reached
by making large orders. However, the purchasing cost per unit and order quantity are
constrained by a given discrete chart from the supplier. In this situation, the decision-maker
can utilize the trial-and-error method as prescribed in this paper to make a feasible choice
for the duo that provides the optimal profit.

Insight 2: A low retail price per unit can create demand, and consumer demand leads
toward profitability. However, the relationship is not transitive well. A low retail price
harms the earning revenue from retailing. So, the best profit may not be obtained at a
lower retail price. The direct impact of retail price on the earned revenue is more sensitive
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compared to that of the demand rate in this model. The manager should consider this fact
while strategizing to increase customer demand.

Insight 3: The numerical results in this paper reveal that learning through repetitive
tasks can provide better profit by diluting the impreciseness involved in the decision-
making process. Earned managerial experiences by handling similar tasks can boost the
retailer’s profitability.

8. Conclusions and Future Research Scopes

This study had the following objectives. First, the demand variability on the selling
price has to be traced. Second, the purchasing cost dependency on the order size must
be analyzed. Several previous papers had the same objectives. The present investigation
differs from existing works as uncertainties are considered during such deals, and a policy
that can dilute such uncertainty by learning is designed. Finally, the ultimate objective
was to find the best profit in uncertain environments. With the mentioned objectives, this
study developed a learning-based EOQ model under the assumption of price-dependent
demand with a price discount facility. The experience of learning is incorporated into the
theory regarding triangular dense fuzzy numbers. The selling price is a triangular dense
fuzzy set that includes learning experience and decision-making. Three methods were
proposed to solve the problem: directly inputting the index value of the fuzzy parameters,
using the parametric representation (α-cut approach) of the undefined parameter, and
lastly, an analytical approach using fuzzy Laplace transform. The critical outcomes of
this investigation are as follows. First, through more learning experience, the decision
will be matured, and thus it will lead the system toward more profits. Second, excessive
repetition to gain experience about vague data may reduce profit by enlarging the cycle and
lot size. Furthermore, the decision-maker can be persuaded to place larger orders using
the planned all-unit discount policy on the purchase price per unit. This study illuminates
an intelligent decision-making process that generates the most significant profit in a hazy
management scenario. The majority of retail businesses encounter selling price dependence
on a demand rate. In supply–retail contexts, discounts on purchase expenses for large
orders are also reasonably typical. The scenario of buying and selling could only sometimes
be exact and deterministic. Due to changes in the actual market condition, imprecision
in this decision-making scenario is probably inevitable. However, the manager should
discover how to use their choice best. This study claims that practice makes perfect and
provides the best potential for a purchasing discount. This is the main usefulness of the
proposed study.

Learning through trials and repetitive tasks is used in an economic order quantity
model in this paper. The approach is new. However, the limitation of this study is that
the analysis was performed on mathematical results and artificial data. Raw data from
real retail bodies can be used to examine the theory accurately. So, we recommend scopes
to complete data-specific research following the proposed approach. The future research
scopes in this direction are as follows.

First, the introduced formula depicting the discrete relationship between purchasing
cost per unit and order quantity can be modified in the future to address the dependency
more accurately.

Second, the carrying cost per unit is considered an increasing function of time for an
owned warehouse. In the case of a rented warehouse, the phenomena should be changed.
The owner of the rented warehouse may offer discounts on carrying costs for inventory
size and long-time deals. So, the present study can be extended in this direction.

Third, the diluteness of impreciseness through repetition is addressed in this study
using the concept of triangular dense fuzzy numbers. The dense fuzzy number is formu-
lated in terms of repetition number discretely. A better decision-making scenario may be
obtained to deal with such an inventory model, where time can be included in the fuzzy
function and can be interpreted as the diluteness of impreciseness as time increases.
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Fourth, the learning-based decision-making scenario for all unit discount policies may
be replaced with memory-based decision-making using fractional calculus.
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µ

)2
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1
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4N

N
∑
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1
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ρ2σ2
6N
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∑
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1
(n+1)2

}
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µ
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1− m

µ

)
ρ2
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(
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µ
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µ

)
σ2
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(
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)
p + (α− 1)pc
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ρ2 p
n+1
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)
(α− 1) pρ1
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)
p + (1− α)pc
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σ2 p
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(
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)
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(
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p σ1σ2
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(
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µ

)
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}
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µ
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∑
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1
(n+1) +
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N
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1
(n+1)2
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p + (α− 1) pρ1

n+1
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+
{

p + (1− α)
pσ1
n+1
}2

= 2p2 + 2p2(α− 1) ρ1
n+1 + 2p2(1− α)

p2σ1
n+1 + (α− 1)2 p2(ρ1

2+σ1
2)

(n+1)2

= p2
{

2 + 2(α−1)(ρ1−σ1)
n+1 +

(α−1)2(ρ1
2+σ1

2)
(n+1)2

}
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2}dα
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∑
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1
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+

(
ρ1

2 + σ1
2)

6N
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1

(n + 1)2

}

cm,nL pR + cm,nR pL = pc
(

1− m
µ

)
p + (α− 1)pc

(
1− m

µ

)
ρ2 p
n+1

+pc
(
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µ

)
(1− α)

pσ1
n+1 − (α− 1)2 pc

(
1− m

µ

)
p ρ2σ1

(n+1)2

+pc
(

1− m
µ

)
p + (1− α)pc

(
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µ

)
σ2 p
n+1

+pc
(
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µ

)
(α− 1) pρ1

n+1 − (α− 1)2 pc
(

1− m
µ

)
p ρ1σ2

(n+1)2

= pc
(

1− m
µ

)
p
{

2 + (α−1)(ρ2+ρ1−σ2−σ1)
(n+1) − (α−1)2(ρ2σ1+ρ1σ2)

(n+1)2

}

∴ 1
2N

[
N
∑

n=0
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0
{cm,nL pR + cm,nR pL}dα

]
= 1

2N

[
∑N

n=0

1∫
0

pc
(

1− m
µ

)
p
{

2 + (α−1)(ρ2+ρ1−σ2−σ1)
(n+1)

− (α−1)2(ρ2σ1+ρ1σ2)

(n+1)2

}
dα]

= pc
(

1− m
µ

)
p
{

1− (ρ2+ρ1−σ2−σ1)
4N

N
∑

n=0

1
(n+1)

− (ρ2σ1+ρ1σ2)
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N
∑
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1
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}

Therefore, [cm,nL, cm,nR] = [pc
(

1− m
µ

)
+ (α− 1)pc

(
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µ

)
ρ2

n+1 , pc
(
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µ

)
+

(1− α)pc
(
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µ

)
σ2

n+1 ] and TAPL + TAPR = {a(pL + pR)− 2bpL pR − a(cm,nL + cm,nR)+

b(cm,nL pL + cm,nR pR)} − {a(cm,nL + cm,nR)− b(cm,nL pL + cm,nR pR)}
(

gT
2 + hT2

6

)
− C

T .
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