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ABSTRACT 

An adaptive receiver is designed for transmissions through a 

time-varying multipath channel which may include both specular and 

diffuse components. The design is based on the theory of unsuper­

vised learning machines and the receiver is a recursive structure 

which. does not qrow in complex! ty with each new observation, but 

ii 

is Bayes' optimal at each instant of time. The multipath mediU!n is 

modelled as an aggregate of L conditionally independent transmission 

paths, each consisting of random and/or fixed reflections, and is 

identified in terms of three components: (1) indirect diffuse 

scatter, (2) indirect specular reflection, and (3) direct transmission. 

The channel parameters are time-varying and either independent from 

one signaling interval to the next or at most M-th order Markov 

dependent. A review of machines that learn without a teacher is 

presented and the learning receiver for three-component multipath is 

designed and modelled on the digital computer. A Monte Carlo simu­

lation is used to estimate the performance when the channel is either 

Rician or nonfading. This performance, in terms of probability of 

error, is shown to be consistent with the existing coherent receivers 

and improves on their performance When the correlation between obser­

vations is increased. 
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A. Introduction 

CHAPTER I 

INTRODUCTION AND SUMMARY 

1 

It is well known that the propagation phenomena one encounters in 

long-distance radio communication are statistical in nature. Whether 

the transmission of the signal from transmitter to receiver is attrib­

utable to refraction in the ionosphere or scattering in the troposphere 

or by the surface of the earth, unpredictable flucuations in the trans­

mission medium cause random perturbations , in the received signal. 

These perturbations are, for the most part, non-additive disturbances 

of the signal transmission and the analysis of their effects must be 

handled statistically, as must the design of systems to cope with the 

disturbances. 

In many communication channels the signal that is received is a 

combination of direct transmission and one or more additional compo­

nents received via reflections from objects or conditions within the 

channel. The totality of the transmission paths is ter.med multipath 

and may often be described by a combination of three components: 

(1) Direct; (2) Indirect specular reflections; (3) Diffuse scatter 

within the channel. In general, the statistical description of these 

components has been identified as a narrowband gaussian process for 

the diffuse component and extended to the Rician probability density 

when specular reflections are included (1-8]. This choice of sta­

tistics indeed determines the channel model, and consequently the 

resulting design of the receiver that is optimum in some sense. 



2 

Two explicit types of multipath channels that have received con­

siderable attention are termed "frequency selective" and "frequency 

non-selective". The frequency selective channel is characterized by 

constructive interference at some frequencies in the transmission band, 

and destructive interference at others. The individual paths in such 

a channel are separated in time by their respective delays and as such 

are resolvable. The non-selective channel is frequency flat and con­

sequently results in unresolvable paths such that the total multipath 

return appears to be one path in a fading channel. 

The condition of multipath interference is encountered in various 

situations associated with terrestrial, airborne, and spaceborne com­

munications. In the latter two cases, the multipath channel consists 

of a line-of-sight transmission path and possibly multiple extraneous 

reflected paths with well-defined differential delays. The nature of 

the reflecting surface determines, to a large extent, the character of 

these components. An example of a spaceborne communication environment 

is a data-relay satellite system consisting of several user satellites 

and a series of data-relay satellites in orbits such that there is 

always at least one in position to relay data to the earth station 

and commands to the users. A multipath scatter channel exists between 

each. user and the relay due to reflections from tha earth's surface 

and also transmissions through the ionosphere. When the reflecting 

surface is relatively smooth, the reflected ray is likely to be of a 

specular nature. On the other hand, when encountering a rough reflect­

ing surface, the reflected ray is found to have a highly diffuse nature. 

Baaed on the choice of a mathematical model of the transmission 

cbcuteJ., xeceiver dea:l.pa eld.st for each of the types of multipath 
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disturbances encountered [1-4]. All of these designs, however, are 

governed by the statistical description of the channel being at most 

Rician. As such they are either simplifications or extensions of the 

probability computing receiver [1]. While this receiver is in fact 

optimum (in the minimum probability of error sense) for the Rician 

channel it does have the limitation of not accounting for the corre-

lation between observations for the slowly fading phenomena. 

In order to account for and use this correlation, a receiver 

must be able to adapt its decision function as it "learns" more about 

the channel from the observations. It is the purpose of this disser-

tation to demonstrate the applicability of self-learning machines [9] 

to the problem of communication through a multipath/fading channel. 

B. Statement of the Problem 

A typical binary detection problem can be stated as follows: 

Choose WLthminimum cost (Bayes' optimal decision) between the hypo-

theses 

H1 : One of a given class of signals was transmitted 

H0 : No signal was transmitted 

based on observing the receiver output at a given instant of time. 

The N-ary decision problem, where an attempt is made to determine 

which signal was transmitted, is defined by the set of hypotheses 

H.: The i-th signal was transmitted, i = O,l, •• ,N 
l. 

where i = 0 corresponds to no signal. 

The signal is assumed to be transmitted through a channel which 

is modelled as a collection of L conditionally independent trans-

mission pa'ths,each consisting of one or both of a fixed and a random 
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component of gain (or more exactly, attenuation) defined by amplitude 

and phase. The fixed component can be considered the specular reflec­

tion (or the direct transmission in one case) and the random compo­

nent the diffuse scattering. The channel gain components are taken 

to be time-varying with a value dependence between observations that 

is at most M-th order Markov. 

The problem is stated as follows: Design a receiver for trans­

missions through a time-varying multipath/fading channel that is 

adaptive to the changing environment and is Bayes • optimal at each 

observation instant •. The approach to this design is based on the 

unsupervised learning machine of Fralick [9] as modified by Hilborn 

and Lainiotis [10]. 

c. Summary 

The multipath channel is modelled using in-phase and quadrature 

components tcomplex notation) and is developed following Turin's early 

development {4]. Using this model the probability computer is derived 

and presented as a basis for comparison. A review of the development 

of the unsupervised learning machine is presented and the optimum 

receiver, in the minimum probability of error sense, is shown to be 

one that calculates the a posteriori message probabilities, given all 

prior observations, and chooses that signal for which it is maximized. 

The following assumptions are used: 

1. The channel delays are known. 

2. The gains are slowly time-varying, i.e. , a change may occur 

on each new observation. 

3. The gains are value dependent between observations according 



to a (known) M-th order Markov process. 

4. The gains are independent of the transmitted signal and 

of each other. 

5 

5. The transmitted signals are independent with known a priori 

probabilities. 

With the exception of Assumption 3 these restrictions also apply 

to previously derived receivers with the addition of another limiting 

assumption, viz., the channel statistics are either known or are 

measurable with a given distribution. In this sense the unsupervised 

learning receiver developed in this dissertation is essentially dis­

tribution free. The only two physical requirements on this system are 

that the probability density of the additive receiver noise be known 

and the Markov transition mechanism is known and can be implemented. 

This latter requirement implies that the ranges of the gain variations 

are also known. 

The derived learning receiver is simulated on the digital computer 

for the purpose of investigating its performance. Monte Carlo tech­

niques are employed and the probability of error is determined for a 

binary frequency-shift-keyed (FSK) transmission. For the purpose of 

comparing with published optimum designs, the channel is simulated as 

conditional Rician. Some specific cases of selective and non-selective 

two-path channels are analyzed and compared with existing curves [5-B] 

and after matching parameter values the results are shown to be con­

sistent. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

A. Multipath Channels and Receivers 

Probably the first application of the probability computing 

receivers to the scattering channel was presented by Price [1] for 

the Rayleigh fading channel. He derived the statistical model of 

the channel as a narrowband process with known parameters and, using 

the maximum a posteriori decision criterion, developed a discrete 

system which computed these probabilities for each of the possible 

transmitted messages. A small signal-to-noise ratio approximation 

was also included. 

Price extended this work {2] to include additive white gaussian 

receiver noise, and showed that the optimum receiver would operate 

on the received waveforms with filter functions and biasing constants 

deter.mined by pairs of inhomogeneous and homogeneous integral equations, 

respectively. He concluded that the filter functions could be 

physically realizable and that for a single scatter path, the optimum 

receiver may be interpreted as the combination of a correlator with 

an optimum estimator of the Wiener type. 

Later, Price and Green [3] applied communication methods to derive 

the RAKE receiver. This technique uses wide band transmissions and 

isolates, at the receiver, those portions of the transmitted signal 

arriving with different delays by using correlation detection tech­

niques. Before being recombined by addition, these separated signals 

are processed by weighting coefficients and delays to bring them back 

into time coincidence. The appropriate weighting coefficients· are 
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shown to be measured by the system. 

In an earlier paper Turin [4] applied statistical methods of 

communication theory to develop the probability computer for the con­

ditional Rician channel. He first established both an a priori and 

a posteriori channel model and, using these, developed the operational 

form of the receiver. A few special cases were analyzed for the 

probability of error. This modelling procedure forms the basis for 

the multipath channel examined in this dissertation and is developed 

in detail in Chapters III and V. 

Using the models developed in his early paper [4] Turin presented 

extensive curves [5] showing performance estimates for the non­

selective coherent and non-coherent receivers. He further demonstrated 

similar estimates for the selective channel receiver [6]; however, 

this was limited to either the Rayleigh fading or nonfading channels. 

In both papers binary transmission was assumed. 

Lindsey [7] further investigated the Rician fading multichannel 

reception problem where the modes were a mixture of nonfading, Rayleigh 

fading, and Rician fading components. Some results presented in his 

paper are used for comparison in Chapter VI with the learning receiver. 

Jones [8] considered the three component multipath channel for 

non-coherent FSK and differentially coherent PSK systems for slow non­

selective fading. The three components consisted of two specular com­

ponents and one scatter (diffuse) component. Of interest here is the 

diversity combining teChnique he used for non-coherent FSK. The 

system analyzed was square-law envelope addition which is subopti~um. 

Scae of tha curves presented in this paper are us.ed for comparison with 

the learning receiver performance. 
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B. Learning Machines 

The original concept of learning machines was developed for the 

purpose of solving pattern recognition problems. It was only after 

much research was done in this respect that adaptive communication 

receivers were examined on this basis. 

The learning machine of interest in this dissertation is classed 

as "learning without a teacher" and one of the first to publish a 

good treatise on its development was Fralick 19]. He obtained a 

general solution which includes the solutions to the problems of 

learning without a teacher, learning with a teacher, and no learning. 

The solution was extended to include problems in which the unknown 

parameter is time-varying. The resulting systems were shown to be 

stable and to have performance which converges to the performance of 

systems which have a priori knowledge of the unknown parameters being 

learned. 

Hilborn and Lainiotis UOJ derived the unsupervised learning 

machine for time-varying parameters that are M-th order Markov de­

pendent between observations. This paper was written as a correction 

to the similar development given by Fralick. These two papers form 

the basis for the learning receiver that is reviewed in Chapter IV 

and used in Chapter V. 

One of the earliest papers that dealt with learning machines was 

by Abramson and Braverman [ll] in which the optimal use of a sequence 

of prior observations was made in order to recognize patterns. This 

was the classic "learning with a teacher" paper. Spragins [12] 

presented a review of the unsupervised learning machine by comparing 
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the different approaChes. 

Daly {13], Keehn [14], and Scudder [15] each applied the learn­

ing procedures to problems associated with communications. Applica­

tion of these learning techniques to solve the three-component 

multipath communication problem explicitly, has not yet been publi­

cized. 
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CHAPTER III 

DEVELOPMENT OF THE THEORY: MULTIPATH MODEL 

In order to design a receiver that is optimum is some sense, a 

model describing the transmission channel is desired. This model 

should be in the form of statistical knowledge of the channel avail­

able to the receiver (and transmitter). The one discussed in this 

chapter consists of identifying discrete parameters associated with 

probability density functions which can be used to describe a variety 

of physical phenomena [4]. The model is general enough to allow 

investigation of both frequency selective and non-selective channels. 

The following development is essentially the approach presented 

originally by Turin [4] with three alterations: (1) Three-component 

multipath is explicit1 (2) Quadrature component representations are 

used; and (3) Vector representation via time-domain sampling is used. 

A. The Composite Channel Model 

The transmission channel consists of an additive random distur­

bance and a non-additive disturbance in the form of multipath inter­

ference. For the purposes of developing the model define a trans­

mitted "sounding signal" by 

s(t) = Re[X(t)exp(j2~f 0 t)], 

where X(t) is the complex modulating waveform representing a possible 

message. The total received waveform is given by 

v{t)- Re[Z(t)exp(j2~f 0 t)l, 

(1) 

(2) 
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where Z(t) is the complex envelope. This waveform consists of two 

components, namely an additive noise component, n(t), and the multi-

path medium output, u{t), such that 

v(t) = u(t) + n(t). (3) 

The additive noise is assumed to be a stationary, gaussian, white 

process, independent of the multipath medium and bandlimited to 

WN (Hz), with a power spectral density of N0 (watts/Hz). The noise 

bandwidth is considered to at least cover the transmission bandwidth, 

w. Using complex representation this precess is represented by 

n(t) = ReiN(t)exp(j~f 0 t)]. 

According to the sampling theorem for complex waveforms [16] N(t) can 

be completely specified by its complex time samples, N., taken at 
~ 

(4) 

intervals of 1/WN' i.e., Ni = N(i/WN). Since n{t) is a gaussian process 

with. a flat power spectral density over WN (the autocorrelation function 

has zeros every 1/W,N seconds) the components of N. = N. - jN. are 
~ ~ ~ 

independent, as are the samples. Hence the joint probability density 

function (pdf) of the complex samples in a T-second interval (T>>l/WN) 

is* 

p {N ,N) 

where N and N are vectors whose rows are the TWN samples of the com­

ponents of N(t) and the superscript t denotes the transpose. 

* A waveform cannot be simultaneously of finite bandwidth and finite 
time duration; however, for T>>l/WN the approximation is very goodl 

(5) 
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The multipath medium is described in terms of elementary "sub-

paths" which group together to form "paths". When the sounding signal 

of Equation (1), with a bandwidth less than or equal to W, is applied 

to the channel, the complex output from the k-th sub-path of the 1-th 

path, defined by strength bR.k and delay tR.k' is given by 

(6) 

This assumes that the multipath medium is linear and that its physical 

properties do not vary appreciably across the transmission band. 

The 1-th path is defined as a group of sub-paths whose delays 

differ from one another by amounts much less that the reciprocal of 

the bandwidth, W, i.e., 

This is the condition of "frequency non-selective" sub-paths. The R.-th 

path output is found by summing Equation (6) over all k satisfying 

Equation (7): 

Equation (7) implies that X(t-t1k> ~ X(t-T1), where T1 may be set 

equal to any one of the t 1k' s. By defining a path gain, a 1 , and 

phase, e~ according to 

the complex envelope of the total L-path output is given by 

(8) 

(9) 
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L 

Y(t) = I a~ exp(-je~)X(t-•~>­
~=1 

The different types of multipath to be considered are determined by 

the characteristics of a~, et and •t' which, in general will contain 

random time-varying quantities. The individual paths are taken to 

be "frequency selective", i.e., the modulation delays differ by 

amounts greater than 1/W. This is defined by Turin as the "resolva-

bili ty condition" • 

(10) 

(11) 

It should be pointed out that this is not too restrictive in that the 

frequency non-selective case can be considered a priori as one path. 

The three types of multipath channels which are to be considered 

include: 

1. Single Component (Diffuse Scatterers). The at and e t are 

random variables that are Rayleigh and uniformly distributed, respec-

tively. 

2. Two Component (Diffuse plus Indirect Specular Reflectors). 

The terms in Equation (9) consist of two types: fixed and randomly 

time-varying. Thus 

(12) 

where at and oi are the fixed quantities corresponding to the specular 

components. The ~t and Et are Rayleigh and uniform, respectively. 

This is sometimes called the "Rician Channel". 

3. Three Component (Diffuse plus Indirect Specular Reflectors 

plus a Direct Path). This model is a direct extension of Equation (12) 



14 

by adding an additional specular component, i.e., a0 exp(-j~ 0 ). 

To expand Equation (10) into quadrature components, define the 

real and imaginary channel parameters by 

Equation (10) is then 

L "' "' 
Y(t) = L IaiX(t-T£) + a1X(t-T£)] 

£=0 

which clearly defines Y(t) and Y(t). In terms of vectors with the 

time samples for rows, Equation (14) is written as 

(13) 

(14) 

(15) 

The subscript£ on the X's denotes the signal delayed by Tt· In 

view of the resolvability condition, Equation (11), the time duration 

of Y(t) will be greater than that of X(t). Calling the channel out-

put time span T' (>T) the total number of samples in each of ! and Y 

must be at least T'W. Since WN > W th~to accurately represent the 

entire received wavefo~the components of Z(t) must have T'WN samples 

in their vector representation. The complete received vector of 

samples is 

Z + j!_ = (! + N) + j (! + N) • (16) 
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The description of the ~-th path is now reduced to that of three 

parameters: a~, a~, and T~. These are generally random processes 

and are described in terms of joint probability density functions. 

For the purposes of this analysis the medium will be completely 

described by the joint first-order distribution of the three sets of 

characteristics: (a~), (a~), and (T~) with (·)denoting a vector. 

The joint pdf on (T~) will be factored out to be considered separately: 

It is further assumed that all paths are conditionally independent 

L A ~ 

n p (a~ ,a~ h ~}. 
.t=O 

(17) 

{18) 

The output of a three-path medium described by Equation (10) and 

satisfying Equation (ll) is illustrated in Figure 1. 

Knowledge of the channel may be divided into two types: a priori 

and a posteriori. The former type may be based on a physical model 

of the channel; however it may reflect only ignorance of the channel. 

The latter is based on measurements of the channel parameters. The 

a priori knowledge is essentially the complete knowledge of the first­

order distribution of Equation (17). The a posteriori knowledge is 

associated with the computation of the joint first-order pdf condi-

tioned on the received waveform and the knowledge of the signal 

transmitted: 
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Figure l: Resolvable Three-Path Channel 

Using Baye's Rule, 

The first term in the numerator is the a ~riori distribution. The 

denominator becomes a normalizing factor insuring that the integral 

of the expression is unity. The remaining factor is evaluated from 

Equation (5) with N replaced by Z-Y for fixed values of (aR.), (aR.)' 

and (T fl.): 

This is called the conditional likelihood function of z. 

(20) 

(21) 
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B. A Priori Distribution 

For the channel parameters defined in Equation (12) , hence 

Equation (.13), the a priori quadrature components, aR. and aR., are 

independent gaussian random variables with variance oR. 2 and respective 

means at and at. The joint conditional pdf of Equation (18) is then 

L l 
II 2 

t=O 21TOt 
(22) 

a priori knowledge. The a priori pdf associated with each multipath 

channel model considered is determined from Equation (22) as follows: 

1. Diffuse Multipath1 at = at = O, all i. 

2. Diffuse plus Indirect Specular Multipath; Eliminate t = 0 

tenn. 

3. Diffuse plus Indirect Specular Multipath plus Direct Path; 

c. A Posteriori Distribution 

Using the resolvability condition, Equation (11) , the conditional 

likelihood function of Equation (21), derived in Appendix A, is 

" -
ptzl (at), (at), (Tt) ,X) 

(23) 
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The a posteriori pdf is found by substituting Equations (22) and (23) 

into Equation (20)... To he classified as a pdf it must integrate to 

unity. This operation is perfonned in Appendix B with the following 

res.ult: 

" -
Pl Cat l , (at l I {-r t) ,z ,X] 

L 1 
= rr ' 2 exp[-

t=O 2'11' {o t) 

where the primed parameters are given by 

"' ' 2 
G a 

a = (C19.,) c....&.+ 2> 
9., N0 2 

(19., 

.. , 
(o' > 2 

G9.. a9.. 
a9.. = CN+ 2>· 9., 

0 (19., 

The G9.. and G9.. are the quadrature components of the complex cross­

correlation of~ with~ as defined by Equation (A.S). 

It is observed from Equation (25) that the a posteriori para-

meters reflect the a priori knowledge as well as the measurement. 

The a priori ignorance is identified by at2 in that the larger a 

particular 09.. is, the more uncertain is the a priori knowledge of 

the complex path gain. In the limit (a R. -+ co) the a posteriori 

parameters are defined solely by measured quantities. 

It remains to detennine p[ (-r 9..) l!r!l in Equation (19). Using 

Baye's Rule and recognizing that (-r 9..) and X are independent 

(24) 

(25) 
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The conditional pdf Pl!l (Ti),X] is determined from Appendix B, 

Equations tB.3) and (B.S), to be 

-' 
aR. 2 aR. 2 
(-) + <-.> 
C1i C1i 

The a posteriori pdf on (Ti) is then determined by the a priori 

knowledge of (TR.) and the Channel measuraments. 

Since the derivation of Equation (24) is based on the resolv-

(26) 

(27) 

ability condition of Equation (ll) the a priori pdf, p [ (T R.) ] , cannot 

be an arbitrary distribution. Turin [4] points out, however, that if 

the total number of paths is small, or the range of values of the T i 

is large, most cases of interest will not be seriously affected by 

the contradiction of assuming the delays uniformly distributed and 

independent. Thus 

and 

L 

p[(Ti)] = TI p(Ti), 
R.=l 

(28) 

(29) 
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It should be pointed out that each of the joint pdf's as well 

as the conditional likelihood functions derived in this chapter can 

be converted to the fo~ given by Turin {4] via a stmple probability 

density transfo~tion. 
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CHAPTER IV 

DEVELOPMENT OF THE THEORY: LEARNING RECEIVERS 

The material presented in this chapter is by no means original 

but is included for the purpose of making the dissertation complete 

and self-contained. The developments that follow closely adhere to 

the original work of Fralick 19] with certain corrections attributed 

to Hilborn and Lainiotis !10]. 

A. Systems with Fixed Parameters 

Consider the multiple-hypothesis problem in which one of N 

possible signals, s1 , s 2, ••• , sN, is transmitted through a channel 

Which. corrupts it by some means that is represented by a parameter 

vector e .. , i = l, 2, ••• , N and by additive noise, represented by the 
""""l.. 

sample function n(ti. The parameter vector is assumed to be fixed, 

but unknown. After making a sequence of K observations, each of length 

T, of the received waveform, v(t), the receiver will be required to 

decide, with. minimum probability of error, which of the N signals was 

transmi.tted in the K-th interval. Restated, the receiver must choose 

among the hypotheses: 

i=l,2, ••• ,N, 

for (K-l)T ~ t ~ KT. 

Assuming a signal bandwidth of W, sK. {t, e . ) can be represented 
~ """"l. 

by the column vector ~i (~), i = 1,2, ••• ,N, which has for its rows 

the 2TW samples [16] in the K-th interval. Using this notation the 

hypotheses are written as 

(30) 
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Hi: ~ = ~it~) + !4c-, i = 1,2, ••• ,N. (31) 

Then, if the parameter vectors, e., the a priori signal probabilities, 
--:1. 

P., and the noise statistics were known the optimum system would com­
~ 

pute the weighted a posteriori probability density functions of ~ 

conditioned on e. and H. and choose H. corresponding to the largest, 
--1. ~ ~ 

i.e., choose the largest of [17] 

P.p<~le.,H.) = P.p. <Yv.le.> , i = 1,2, ••• ,N. 
~ ---;(\, --:1. ~ ~ ~ --;l'. --:1. 

If the parameters were random with known distribution, p(9.), the 
--:1. 

Bayes optimum system would average Equation (32) over each e .• If 
--:1. 

(32) 

the distribution on e . is unknown or if e . is not random but unknown, 
--1. --:1. 

then one standard procedure is to treat it as random and use the 

"least favorable distribution" for e. and average [18]. 
--:1. 

In order to take advantage of all priori information define the 

s·equence of all previous (K-1) observations as the matrix of column 

vectors: 

= ~-1, ~-2, ••• , v :1.. (33} 

The optimum system then computes the a posteriori probability density 

function conditioned on Hi and '-K-l and weighted by ~i. (This is 

shown in Appendix C). In the notation of Equation (32) this is 

(34) 

This is computed from Equation (32) using the conditional expectation: 

p. <~le.)p(e.I'-K 1 >de. 
~ --;l'. --1. --:1. - --1. 

(35) 



23 

(See Appendix D). The underlying assumption is conditional indepen-

dence of the ~- The synthesis of a system which will compute 

p. t~ I e . > is a standard problem of detection theory <assuming the 
~~~ 

statistics of~ are known). The problem here is to compute p(~IAK_ 1 ). 

Using Bayes• rule 

(36) 

The denominator of Equation (36) can be written in terms of the N 

conditional densities 

{37) 

The numerator can be expanded in a similar way; however, using the 

conditional independence assumption, the term corresponding to H. is 
~ 

free of AK_2 (knowing ~ precludes necessity of AK_2 > while the other 

N-1 terms do not need e .. The following equation results: 
~ 

N 

= Pipi (~-11~> + L Pjpj(YK-liAK-2). 
j=l 
,.ti 

Combining Equations (36) , (37) and {38) , the necessary recursive 

(38) 

relation obtains. The complete system is synthesized in Figure 2{a). 

In the event that the parameter vector is independent of the 

hypothesis; i.e., e. = 9 for all i, then Equation (38) becomes 
~ 

{39) 
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In this case knowledge of ! means that nothing is learned from ~'I<- 2 • 

This system is shown in Figure 2 (b). 

The recursive nature of these systems implies that each decision 

is based on the knowledge gained from all of the previous observa­

tions. The_ ).K-l is defined as the "learning sequence" and, since the 

correct classification of each member of the sequence is not given to 

the machine, it is said to "learn without a teacher." In order to 

"start" the machine some initial probability, p0 (,!) must be given. 

This distribution may be unifox:m over ! or it may have any convenient 

fox:m consistent with a priori knowledge of!· The two major assump­

tions used were: (i) the observations are conditionally independent 

(requiring _;ndependent noise samples) and (ii) the a priori signal 

probabilities were known. 

B. Systems with Time-Varying Parameters 

The multiple-hypothesis problem of the last section is modified 

to account for time varying parameters. These parameters are assumed 

to vary at a rate commensurate with the signal bandwidth previously 

establi_shed. To account for the possibility of more than one para­

meter, a vector is used with elements corresponding to each parameter; 

thus eacn signal sample is dependent on a parameter vector possibly 

unique to that sample. 

The i-th. h.ypothesis on the K-th observation with parameter 

vector ~ is 

Hi:~-~{~)+~,, i== l,2, ••• ,N. (40) 
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As for the fixed parameter case, an optimum system is desired which 

will decide which of the N signals is contained in the K-th observa­

tion by making use of the learning sequence AK_1 • Assuming that 

the statistical nature of the additive noise is known, a statistical 

model of the signal-parameter variations from observation to observa­

tion is required. This model should include a "value dependence" 

and a "time dependence." The former describes the way in which the 

current values depend on the past values while the latter is a des­

cription of the statistics of the times of occurrence of Changes. 

For the physical problem considered in this dissertation, it is assumed 

that a change can take place at the start of each observation. This 

is desi.gnated the "general random walk. " 

The value dependence will be described by the probability density 

of the K-th. realization of the parameter vector conditioned on all of 

the past realizations, p t~ I ~-l, ••• , e 1 ) • Using the entire past, as 

thia suggests, leads to a system which grows in size with K. For 

this reason the value dependence will be restricted to be at worst 

M-th order Markov; i.e. , 

The a posteriori probability density upon which a decision will be 

based is again given by Equations (34) and (35) but with subscript 

(41) 

K included on the parameter vector. Now p (~i I AK-l) can be found 

from the joint density of the parameter vectors on the K observations 

conditioned on AK-l by integrating out all ~· • s for k < K. Using 

the Markov-M dependence, this is written as 



Assuming conditional independence of the observation vectors, ~, 

a recursive relationship is derived in Appendix E to be 

For N-ary signalling 

p(Yf<-1~~-l,i) 
p(~-l~AK-2) = 

i 

N 

,L p .p. (~-11 AK-2) 
J=l J J 
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(44) 

If the parameter vectors are independent of the signals Equation (44) 

becomes 

p(~-1~~-1) 
p(YK-liAK-2) 

N 

= jil Pjpj(Yf<_l,~-1) 
N 

.L p ,p' (~-1~ AK-2) 
J=l J J 

(45) 

An N-ary learning receiver for Markov-M time-varying parameters 

is constructed as shown in Figure 2 with the sections inside of the 

dashed lines replaced by the system shown in Figure 3. This figure 

clearly shows why the parameter value dependence must be limited 

to the M-th order. 
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For the special case, M = 1, the multiple integration is removed with 

the following recursive relation resulting: 

(46) 

with Equations (44) and (45) applying accordingly. 



CHAPTER V 

THE UNSUPERVISED LEARNING RECEIVER 

In this chapter the multipath model presented in Chapter III 

is combined with. the unsupervised learning machine developed in 

Chapter IV to derive the receiver which learns the a posteriori 

probability density of the channel parameters conditioned on all of 

the previous received data. To lay necessary groundwork and be­

cause it was probably the first adaptive system to be used as a 

multipath receiver, the probability computer [4] is first discussed 

for quadrature channel reception. The learning receiver is then 

derived which removes some of the statistical restrictions imposed 

by the probability computer at the expense of increased complexity. 

The complexity of the learning receiver is greatly reduced by 

limiting the observation dependence of the parameters to be first­

order Markov. A storage and integration time problem is discussed 

and is considerably relaxed via a simplifying assumption, which, 

while not mathematically rigorous is rather appealing. 

29 

The chapter is concluded with a description of a digital computer 

simulation of the quadrature channel unsupervised learning receiver. 

Some of the simulation results are discussed in Chapter VI. 

A. The Probability C~uter 

The ideal receiver, according to Woodward and Davies [19], uses 

its knowledge of the transmittea signal and channel to derive from 

the received waveform the a posteriori probabilities of the possible 

transmitted message~avefozm sequences. The probability computer 
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discussed here is restricted to per-waveform operation. That is, the 

receiver considers each waveform as an event which is independent of 

each other waveform. This independence does not in fact exist, for 

although the transmitted waveforms may be independent, the perturbed 

waveforms of the received sequence are not. This follows from the 

fact that the characteristics of the multipath medium have been assumed 

to change very slowly fran one signaling baud to the next. (This 

restriction is removed in the learning receiver developed in Chapter 

IV.) The per-waveform operation assumption implies two other assump­

tions: that all message waveforms have the same duration and that 

enough time is allowed between the transmission of successive message 

waveforms so that no overlap of waveforms takes place at the multi­

path channel output. An additional restriction is that the message­

waveform durations are small enough so that the multipath character­

istics are essentially fixed during a signaling baud. 

The two restrictions just discussed allow the multipath medium to 

be completely described in terms of first-order joint distributions of 

the parameters. 

The problem is stated as follows: · The transmitter transmits a 

sequence of message waveforms chosen independently with probabilities 

Pn from a set of N message waveforms 

n = 1,2, ••• , N. These waveforms and probabilities are known to the 

receiver. The receiver receives a signal 

v(tl • ReiZ tt)exp(j2wf0t> l, 

(47) 

(48) 
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where Z (t) is the complex envelope and is the sum of a noise wave-

form, N {t), and the multipath output, Y(t) o The probability cauputer 

is asked to operate on Z(t), using its knowledge of the channel and 

a priori probabilities, P , in such a way as to obtain a posteriori n 

probabilities of the possible transmitted messages, P[X lzJ, n = 1,2, 
n 

• •• ,N. 

From Bayes • theorem 

Pp[zjxl 
I n n 

P [Xn ZJ = p (Z) (49) 

The P· are known and p(Z) is just a normalizing factor independent of n 

n, so the problem reduces to that of computing the likelihoods, 

p!Zix ]. Using vector notation these are n 

A ..., ,._ ...,. A """ 

I- .. I PI!I (aR.), CaR.), (TR.) ,~]p[ (aR.), (aR.), (TR.)]d(aR.)d(aR.)d(TR.) o 

(50) 

The conditional likelihood in the integrand is given by Equation (23) 

with the subscript n appropriately placed. 

Using the factorization of the probability densities given by 

Equations (17), (18), (22), (23) and (Ao9), the likelihood function 

becomes 

pizlx l = 
--n 

L 

II 

R.=O 

co 

I ~<!l't'~t•!n)p(~11T1)~i 
-oo 

00 

I ;<!l'i'~t•!n)p(;11'1)d;1)dT1. 
-oo 

(51) 
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If it is assumed that the (T~) are known then Equation (51) is reduced 

to 

(52) 

where 

co 

= ~ 1 ;<!IT~,;~,~)p(;~IT~)d;~, 
~=0 

(53) 

and similarly for p£!1 (T~) ,~]. The channel parameter pdf's are 

given by tha a priori pdf of Equation (22) or the a posteriori pdf of 

Equation (24l. Using the unprimed parameters for convenience the 

integration in Equation (53) is performed as in Appendix B. The 

following factors for the likelihood function result: 

(54) 
-T'W ~t-

~ N Z Z 

p[!_I(Tn),!_] = (2nWNNO) ~exp[- 2WN) 
~'- u N 0 
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(55) 

Gnn 1 (~t_~ - z-tx" ) 
N = WN -~~R, - -nt 

~WE.n 2 . 
and Bnt = Yo cr 1 WJ.th En the energy in the n-th message waveform 

and N0 the power spectral density of the white noise. 

From Equations (54) and (55) it is observed that the operations 

performed on the received signal by the probability computer consist 

in 1) the cross-correlation of this wavefor.m with the N (known) message 

waveforms, 2) sampling these correlations at (known) delays "C 1 , and 

3) the sampling of the envelopes of the correlations at delays "C 1• A 

digitized representation of this machine is illustrated by the block 

diagram of Figure 4. The boxes marked PC in Figure 4 (a) are ill us-

trated in ~igure 4 (b). The boxes marked C are the individual corre-

lators for the quadrature components. The unmarked amplifiers have 

gains consistent with. the constants in Equations (54) and (55) and 

are determined either by the a priori knowledge of the channel or 

the measurements indicated by Equations (25). 

The for.m of the receiver in Figure 4(a) is essentially that of 

the delayed reference version of the RAKE receiver [3]. While not 

explicitly carried out by Price and Green in their original paper [3], 

this derivation was indicated in a footnote. 

Two significant observations are apparent from inspection of 

Equations (54) and Figure 4 (b) • If the medium contains no random path 

components or the receiver has exact a posteriori knowledge of the 

medium then "C 1 • 0, all t, and the samples of the envelope of the 
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cross-correlations disappear. This makes sense as complete knowledge 

of the quadrature channel parameters (implying no phase uncertainity) 

precludes the necessity of envelope sampling. On the other hand if 

the receiver knows a priori that the channel oontains no fixed-path 

components and no channel measurements are made then the at's are 

all zero and only the envelope sampling remains. 

For the case of large additive noise (N0 + co) the receiver 

converges to the fixed-path case. This implies that, in the noise 

limited case, the information transferred through the channel is 

conveyed exclusively by the fixed-path components. 

B. The Learning Receiver 

:It is clear from inspection of Equations (50) through (54) that 

some knowledge of the channel parameters is necessary a priori in 

order to design the probability computer, the least of which is the 

fo:rm of the joint probability density function of the parameters. 

Based on a known tor assumed) form, the parameters are then measured 

prior to the observation upon which a decision is based. In a sense 

this is adaptive and the probability computer and the RAKE each 

exhibit this characteristic. 

The learning machine derived in Chapter IV, however, is designed 

to make a Bayes' optimal decision on each observation while retaining 

and using the information learned about the channel from all previous 

observations. What's more, the prior knowledge as to the form of the 

parameter vector pdf is not necessary so long as the initially assumed 

pdf encompasses the range of values of the parameters. With this (not 

too serious) restriction satisfied, the machine will adapt its structure 
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as it learns the correct probability density function of the channel 

parameters conditioned on past observations. 

Comparing Equation (49) with Equation (34) the learning receiver 

bases its decision on the weighted likelihood conditioned on the 

entire sequence of past observations rather than the present received 

waveform only. Using the vector envelope notation this is 

p p (~..,I:Av. 1) = p p{~l.hv l'X ) • 
n n ~ -- n ~ &\,- -n 

(56) 

The observation learning sequence is 

(57) 

where each. !_ is complex. The parameter vector used in Equation (35) is, 

for the mul tipath. channel, taken to be independent of the transmitted 

s·ignal and is slowly time-varying in the sense that it can change 

from one observation interval to the next but not during a given 

interval. It is further assumed that the parameters are value 

dependent from observation to observation and that the process is 

homogeneous Markov of order M {finite) [20]. Define the parameter 

vector by 

(58) 

The conditional likelihood of interest here is then, from Equation (35), 

P · tzi"'A I • 
n 'q{ K..-1 

(59) 

The integration in Equation (59) is of multiplicity 3L. The conditional 

pdf to be learned is p(~l.hK_ 1 >. 
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In order to design this learning receiver, it is required to 

have a priori knowledge of the form of pn (~~~) and the Markov-M 

transition mechanism. Assuming these are known then, from Equation 

(42) 1 

and from Equation (43) the recursive relationship is 

p (~-1,~-1) J 
= {Z lA ) p(~~~-1'· •. '~-M) 

p ;;...;_[(-1 K-2 -.-.. -.-.. ~ 

The integration in Equation (60) has multiplicity 3(M-l)L and in 

Equation (61) has 3L. The total number of integrations in Equations 

(591, (60) and {61) is then 3 (M+l)L, so it is easily seen why M is 

restricted. For the purposes of designing a receiver, no loss of 

generality will occur if M is chosen as 1. The recursive condi-

tional pdf to be learned is then given by Equation (46) and repeated 

here: 

It will be assumed that the parameters given in Equation (58) are 

conditionally independent, i.e., 

(61) 

(62) 



Using the factorization of p(Z 1 1e 1> shown in Equation (A.9) the 
~- ~-

conditional parameter pdf is then 

N ~ ~ - -

L P npn [~-11 ('t' R.) K-1' (at) K-1 1 Pn [~-11 ('t' R.) K-1' (at) K-1 1 
• n=l . 

N 

L Pnpn[~-liAK-2] 
n=l 

When the path delays are assumed known (or estimated) a priori 

the recursive conditional pdf of the parameters simplifies. The 

integrations over the ('t'R.) shown in Equation (64) and implied in 

Equation (59) are eliminated. The receiver will now be designed to 
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(64) 

learn only the quadrature gain parameters keeping in mind that learning 

the delay characteristics involves only the additional L-fold inte-

gration over the range of delays. The ('t'R.) will be dropped in the 

succeeding equations with the knowledge of its values understood. 

The recursive conditional pdf of the parameters is now 

,.. M 

•d{aR.)K-1} d(aR.)K-1" 

(65) 



39 

The conditional likelihood to be used in the decision process is 

where ~nr~l (;~)K] and ;n[~l (~~)K] are given by the factors of 

Equation (23) (See Equations A.9) with -rt implied. The learning 

receiver described by Equations (65) and (66) is shown in Fiqure 5. 

The computation of Equation (23) shown in Fiqure S(b) is similar 

to the probability computer counterpart of Fiqure 4 (b). The main 

difference lies in the absence of the computation of the sampled 

envelope of the cross-correlation from the learning receiver. 

In a similar problem associated with the Rayleigh fading 

channel Fralick [9] indicated (via a short proof) that the joint 

conditional parameter pdf that is learned can be factored, implying 

conditional independence. While an inspection of Equations (65) 

and t66) clearly indicates that this is not the case here, it never-

theless is a condition which, if assumed true, will greatly simplify 

the receiver structure by reducing the amount of storage and the 

number of integrations necessary. Assuming digital operation these 

requirements are determined by (1) the number of siqnals to be 

stored, N, (2) the number of time samples of each siqnal, N , and 
s 

received waveform, N , (3) the number of paths, L and (4) the 
z 

number of possible values of the parameters to be considered, NT. 

The storage budget is as follows: 

Markov Transition Mechanism 

Samples of Stored Signals: 

(66) 
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Samples of Received Waveform: 

Values of Parameters: 

Conditional PDF of Parameters: 

Conditional Likelihoods: 

2 N 
z 

NTL 

(N ) 2L 
T 

2NNTL 

The number of integrations is 2L each for the learned conditional pdf 

on the parameters and the computed conditional likelihoods. It is 

the inner L integrations performed in each of Equations (65) and (66) 

that require the most computations in a digital processor. In per­

forming this integration digitally a total of (NT) 2L computations 

are performed for Equation (65) and (NT) 4L for Equation (66). If 

it is assumed that the conditional parameter pdf can be factored, 

then 

A - A -

PI (at)K, (at>KI).K-1 J = p[ (at>KI AK-l]p( (at>KIAK-l]. 

The simplified learning receiver is then described by the following 

equations. 

= J 

A A 

• p! (at) K-l' A:K-2] d (at) K-1 

with similar equations for the quadrature component. The reduction 

in storage occurs in the conditional pdf of the parameters (which is 

the largest). The storage requirement changes from (NT) 2L to 2(NT)L 

(67) 

(68) 
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which is a substantial reduction for NT > 2. The reduction in the 

2L 4L L 
digital integration is similar: (NT) and (NT) become 2(NT) 

and 4 (NT)_L, respectively. 

Another assumption is. made which, while not as restrictive, does 

simplify the processing slightly. The transmitted modulation 

envelope Xn (t) is considered to be purely real. By making this 

assumption the problem simplifies to a multipath channel consisting 

of two quadrature components each operating independently on the 

transmitted signal. The Bayes' optimum learning receiver then 

consists of two quadrature channel processors, operating indepen-

dently, and computing conditional likelihoods that are then weighted 

by the a priori signal probabilities, multiplied together and com-

pared for the decision. 

The net result of these assumptions is illustrated by the 

following equations for the quadrature channel learning receiver: 

Similar equations can be written for the quadrature channel. A more 

usable form can be written by taking advantage of the factorization 

pe~itted by the independence of the L paths (see Equation (23)). 

Equations t69) are then written 
'""'' . 

(69) 
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(70) 

The receiver represented by these equations is shown in Figure 6. 

C. Digital Simulation of a ninary Learning Receiver 

In order to demonstrate the capabilities of the learning receiver 

a digital computer program has been developed to simulate the machine 

described by Equations (70). The special case of binary signaling 

is implemented using the historical representation of x1 being a 

Mark and x2 a Space. The program is flexible enough that the form of 

x1 and x2 is variable according to choice. For the purpose of comparing 

the perfonnance of this machine with those reported in the literature, 

the channel ismodelled as conditional Rician. While the computation 

time required by Equations (70) is not extensive for each observa-

tion, the total time required to perform the computations for the 

order of 100 observations in enough to require that some simplification 
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be employed. To avoid any further approximations on the machine 

itself the simplification used is to examine the multipath medium 

as a two-path frequency selective channel where each path can be 

any combination of the three components described in Chapter III. 

The frequency non-selective paths are then modelled as just one 

pa~ consisting of from one to three components. 

The binary decision process is given by 

H2 

P2P2<~1~K-l>P2<~1~K-l> ~ p1P1 <~I~K-l>Pl <~I~K-1>' 
Hl 

with the probability of error, P , being given by the total proba­
e 

bility of an incorrect decision. Due to the recursive nature of the 

learning procedure, the bit error rate computation is intractable in 

closed form. This necessitates the use of Monte Carlo techniques in 

the simulation~ that is, the transmitted signal is chosen randomly 

(71) 

with equal probabilities between x1 and x2 . The bit error probability 

is then approximated by the total number of incorrect decisions 

divided by the number of trials. 

Using two paths for the channel results in learned pdf's of the 

channel gain quadrature components that are each two dimensional 

arrays. In order to monitor the learning procedure the program is 

directed to output these pdf's at pre-specified observations. The 

decision variables as well as the decisions and transmission selections 

are printed at each observation to keep track of the errors as they 

occur. 

The first-order Gauss-Markov dependence between adjacent obser-

vations of the channel gain components is given by 



0 ~ b ~ 1, 

~ = b ~-1 + eK 

.... 

with the mutual independence of ~-l' aK-l' e:K, and s:K. The e:K's 

are random perturbations in the gain components and are distributed 

as N (11 , a ) • The transition pdf's are then of the fo:rm 
€ € 

2 
(a.__ -ba -11 ) 

K K-1 e: 
2 l, 

2a 
€: 

with the circumflex's appropriately placed. 
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(72) 

(73) 

From Equations (72) the parameters of the random perturbations' 

pdf are easily found to be 

(74) 

where the a's are mean values of the a's and V(•) represents the 

variance. If the mean and variance of the channel gains are constant 

at a and a2 respectively, then 

11 = (l - b)a 
e: 

Also, under this condition the correlation coefficient between 

observations is simply b. 

(75) 
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In illustrating the performance of the learning receiver via the 

graphs presented in Chapter VI the following parameters are defined 

2 
y = 

Twice the power in the. specular path component 
= Average power in the random path component 1 

where the subscript £ has been dropped because of the restricted 

number of paths examined. Also 

= Average power in the random path component 
Average power in the additive noise 1 

where a; ~ WNN0• The underlying normalization implied in Equations 

(76) and (77) is the unit power in the signals. 

t t 
x:L xi = x2 x2 = 1. 

(76) 

(77) 

(78) 



CHAPTER VI 

PERFORMANCE ESTIMATES 

48 

As with any communications receiver design, a good measure of 

quality, aside from its relative complexity, is the probability of 

error as a function of the signal-to-noise ratio. In the case of 

multipath interference, a trade-off between complexity and the ability 

of the receiver to utilize the entire received waveform in its 

decision process is necessary before selecting a design. The learning 

receiver discussed in this dissertation, while being rather complex 

in its structure, makes complete use of the total channel output. 

This quality is only realized if the performance of the learning 

receiver is at least as good as the non-learning optimum systems 

heretofore reported [1-4] when operated under similar conditions. 

It is the purpose of this chapter to present some results of a 

Monte Carlo s~ulation of the learning receiver when receiving 

signals at the output of a Rician channel and a specular reflective 

channel. To simplify the computation a binary symmetric FSK trans­

mission is used and a slow fading channel is assumed. Both selective 

and nonselective channels are considered. 

A. The Learned Probability Density Function 

The first of Equations (70) is the joint pdf that the learning 

receiver must learn in order to make the Bayes' optimal decision. 

For the two-path case modelled here, this joint density can be repre­

sented as a two dimensional array of its samples. For the two types 

of channels analyzed, the most interesting cases are those for which 
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the channel is frequency selective, giving resolvable paths. 

For the selective Rician channel, the direct specular component 

is assumed to be resolvable from the indirect diffuse component. 

Figures 7(al and ~) illustrate the center cuts in the joint pdf of 

the real components of the path gains. The parameters used for these 

graphs imply unity signal to receiver noise in each path. The machine 

is initiated with a uniform pdf containing the channel gains in its 

range I 9] , shown as K = 0, and the learned pdf is shown after the 

first and tenth observations. The reason for the apparent speed 

with which the machine "locks" onto the true pdf is that the channel 

is modelled as a Gauss-Markov process with b = .1 which suggests 

that the receiver's first estimate will be gaussian-like in shape. Of 

significance also is the relatively good estimate that is made of 

the standard deviation, the true value of which is 0.2 in this calcu­

lation. 

The receiver's learning ability is further illustrated by the 

learned pdf's for the two ray specular channel. The principal axis 

cuts are shown in Figures B (a) and (b) for the equal path gain situa­

tion. The tendency toward the gaussian shape is still prevalent, and 

the variance is rapidly decreasing with K. This channel is modelled 

with correlation coefficient b = .95. The reason for selecting the 

parameters· such that ey2 = 2 will become evident in the next section. 

B. Error Probability 

Before proceeding with the comparison of error rates for the 

various receivers same discussion of the literature is necessary. 

Turin originally defined the parameters B and y similarly to 
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Equations (76) and (77) [4]. His error probability plots in this and 

later papers IS, 6] employed the quantity y 2;2. This may have been 

what led Lindsey I7J to redefine y 2 as one-half of the original 

quantity when he analyzed the noncoherent and coherent Rician 

channel receiver. Van Trees [17], however, even though referencing 

Lindsey, reverted back to ':fllrin' s definition of y, but still plotted 

2 
versus y /2. His curves of error probability, incidentally, are 

mislabelled on the abscissa as B when, in fact, it should be e<l + y 2/2). 

Figure 9 illustrates the learning receivers performance in a non-

selective Rician channel as compared with the optimum coherent system 

(solid lines). The learning receiver (dashed lines) is seen to 

fmprove on what is already optimum! This can be explained by pointing 

out that the coherent receiver is designed to be optimum for a channel 

whose parameters are essentially independent from one observation to 

the next. The learning receiver, on the other hand, makes use of any 

knowledge it can gain as it receives each observation. When the obser-

vations are partially correlated (b = .1 here) the receiver must be 

redesigned to aocount for it. The curve labeled y = oo is the non-

fading case. 

Results for the selective Rician channel, in which the direct 

specular and indirect diffuse components are in separate paths, are 

given in Figure 10. No solid curve is shown as the writer was unable 

to find any published performance estimates for the coherent-diversity 

Rician-channel receiver. A comparison of the selective and non-

selective performance is shown. The improved performance with channel 

diversity is well known {7, 8] and the learning receiver is no excep-

tion. A curve forb= .707 is also shown which indicates the learning 
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improvement with increased observation correlation. 

The relative performance for the specular reflective channel is 

shown in Figures 11 and 12. The perfo:nnance of the learning receiver 

is generally between that of a coherent and a noncoherent system. 

The coherent system, in this case, implies a completely known signal. 

This would imply that b = 1. For a Gauss-Markov dependent channel, 

however, values of b less than 1 suggest a slight fading component 

which will degrade performance. A value of b close to 1 was run in 

the simulation. This curve is shown (b = . 999) and it seems to 

indicate an improvement in performance over the optimum system. This 

slight discrepancy may be accounted for by the limited number of 

observations used in determining the error probability for the specular 

channel. In any Monte Carlo simulation the number of trials determines 

the accuracy of the results. The data presented here is merely for the 

purpose of indicating the trend in performance. Naturally, had the 

results been in the other direction they would have been less appealing. 
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A receiver has been designed for canmunications in three-component 

mul tipath channals based on the theory of machines that learn without 

a taacher. As a step toward this design the multipath channel was 

modal led in tenns of quadrature gain components. The only knowledge 

required by the receiver is the value dependence of the Channel from 

one observation to the next (Gauss-Markov assumed), the possible 

si9nals transmitted, thair prior probabilities, and the receiver noise 

statistics-. Based on certain simplifying assumptions-, this unsuper­

vised learning receiver was modelled on tha digital computer and a 

Monte Carlo simulation was performed to determine an estimate of its 

error rate performance. It was then compared with the published per­

formance curves of some previously designed coherent and noncoherent 

receivers for Rician and nonfading channels. 

Both frequency selective and nonselective channels were analyzed. 

The learning receiver appears to improve on the performance of the 

"optimum" systems as the observation correlation increases. This is 

a reasonable result as the optimum designs are based on independent 

observations. According to the theory of unsupervised learning 

machines 19], the receiver that learns without a teacher should con­

verge in performance to the optimum system (which is designed for the 

9iven conditions) as the number of observations increases. 

While the learning receiver appears to improve on performance of 

existing systems, ita principal advantage is that it is not dependent 
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on statistical knowledge of the channel, as are presently designed 

systems.. Whatever type of channel model is employed, this receiver 

will learn the probability density functions of its parameters, 

conditioned on past observations, if the !. priori probability 

density function does not exclude possible values of the parameters. 

B. Suggestions for Further Work 

The original concept of learning machines was primarily oriented 

toward the pattern recognition problem. This dissertation extends the 

applic:ati.on of unsupervised learning systems to the well studied 

problem of multipath. interference. The particular channel models 

analyzed are Ric ian and nonfading. Further study could include such 

no~-gausaian applications as laser communications. 

One :ilnportant problem which requires considerable research is 

the. application of tha techniques described herein to the design of 

clutter rejection radar systems. With the advent of the Kalman filter, 

adaptive radar systems have recently come into existence. An unsuper­

vised learning radar would be an original research topic worthy of 

investigation. 
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APPENDIX A 

DERIVATION OF THE LIKELIHOOD FUNCTION FOR Z 

For Equations (5) and (21) it is desired to compute the inner 

products <z-i>t<z-i> and (z-i>t<z-i). Using Equation (15) this is done 

as follows: 

A A t A A A L A A - - . t· A L A A - -

(-Z-Y) (Z-Y)_ {Z \' {a X + X ] } {Z \' I X X ] } - = -- £ t=t at=t -- £ at=t+a!=t 
1=0 t=O 

(A.l) 

Performing a similar operation for the quadrature term and then com-

bining with Equation (A.l) results in 

ll!-YJ I 1!-Yl )_ = cz-i> t cz-i> + cz-i> t (Z-Y) 

(A. 2) 

The last set of inner products in Equation (A.2) can be shown to be 

the real autocorrelation function of the sounding signal as follows: 



T' 

(~ .;,> - W I x• (t-T ~)X(t-Tm)dt 
0 

T' 

= W J (X(t-T1 )X(t-Tm) + X(t-T!)X(t-Tm)]dt 

0 

T' 

+ jW I [X(t-T1)X(t-Tm) - X(t-T1)X(t-Tm)]dt. 

0 

Equation (A.3) is seen to be the complex autocorrelation of X(t) 

evaluated at 'tm -'t t, defined by F ('tm --r t) = F ('tm -Tt) + jF ('tm -'t 9..) , so 

" 
Re!(~ 1 ~)] = W F(Tm-T9..) 
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(A. 3) 

(A.4) 

Now, since F(O) = 2E, and using the resolvability condition, Equation 

(11), it is seen that 

Therefore the off-diagonal terms in Equation (A.2) are negligible. 

Using this result and Equation (A.2) in Equations (21) and (5) the 

likelihood function for z is written 

L 

n exp{ 

R.=O 

"t" -t­
z z + z z 

2WNNO 
] 

(A. 5) 

(A.6) 
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This can be factored according to the quadrature components of the 

channel gain. 

Defining the complex cross-correlation, G, between ~and X by the inner 

product 

G = (Z,X)/WN 

= G + jG, (A.8) 

the factors in Equation (A.7) are written as 

(A. 9) 

- -
p[Z I (a~), (-r R.) ,X] 



APPENDIX B 

DERIVATION OF THE A POSTERIORI PDF 

Substituting Equations (22) and (23) into Equation (20) gives 

"' -
PI C.aR.), (aR.) I (T 1> ,!,X] 

L 1 
• II ~ exp[­

R.•O 2'1TaR. 
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(B.l) 

where the definition of Equation (A.8) has been used. In order that 

Equation (B.l) be a pdf it must be shown that 

L L p[ (;l), (~l) I (<1 ) ,z,x) d(a~) d(a1 ) = 1. 

(aR.) (aR.) 

The integrations over the qradrature components can be performed 

independently. The followinq integral is evaluated: 

~ 2 2 

I 
(aR.-aR.) 2WEa1-2a1WNGR. 

exp[- 2 2W N ~ daR. 
2cr1 N 0 

-co 

-~ 

where 

(B. 2) 

(B. 3) 



Defining 
L+l --2 

, 

and setting the integral of Equation (B.l) to unity, it is easily 

shown·using Equation (B.3) that 

Using the definitions in Equation (25) and factoring Equation (B.6) 

gives 

L 

= II 
_ _..;:;1;......_ exp [-

R.=O t2'11' (a~) 2 

69 

(B. 4) 

(B. 5) 

(B.6) 

(B. 7) 
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APPENDIX C 

CONDITIONAL MAP TEST: MULTIPLE OBSERVATIONS 

The average cost or risk for the N hypotheses - single measure-

ment case is 

R. 
l. 

p. (V)dV , 
J- -

where Pj is the a priori signaling probability, c .. is the cost of 
l.J 

(C.l) 

choosing hypothesis H~ When actually H. is true and Ri is the region 
l. J 

in the domain of v where Hi is considered to be true. The Bayes 

optimum test simply varies the R. to minimize c. When there are 
l. 

multiple observation&, to take advantage of all previous experience 

the observation sequence AK = ~, ~-l, ••• ,vi is used in place of 

y in Equation (C.l). The integration, then, is taken over a region 

defined by !R.J K' a matrix extension of R. • Interchanging the in te-
l. l. 

gration and summation over j , c becomes 

c"" 

where d{A) = dV dVv 1 ••• dV~ • 
. K ~- ...... - - ... 

If the cost assignment is dete~ined by cij = 1 - oij Where oij is 

the Kronecker delta, then c is the probability of error 

p -• 

(C.2) 

(C. 3) 



The summation is easily seen to be 

Now the error probability is 

p = l­
e 

N 

}; 
i=l I P .p. (A,.,) 

l. l. "" 

[~]X 

(C.4) 

(C.S) 

The AK will be included in only one integral, therefore it should be 

assiqned to the region IR.] where it will make the smallest contribu­
l. 

tion to P e.. This is done by choosing the larqest P ipi (),X). Maximizing 

this quantity as it stands implies waiting for all of the data in the 

sequence to be received and then performing the computation, followed 

by a decision. A computation can be performed on each new observa-

tion and a decision made which is Bayes optimal. Note that 

Substituting this into Equation (C.S) 

p = 1-
e 

N 

~ 
i=l I 

[R.] 
1 X-1 

I Pipi<YKIAK-lldYKip(AK-l)d('x-1). 

R. 
l. 

:It is seen from this that P e is minimized by choosing the Ri for 

whi.ch. p n ~. (Y. I~ ) is largest since p (A,.,. 1) is independent of H .• 
1!=' l.. ~ K.-1 . I.'.- l. 

(C.6) 

(C. 7) 



If the P. are unknown then Equation (C.6) is replaced by 
l. 

and the Bayes optimum system will compute P(HiiAK-l)pi <~IAK-l) 

and choose H. for which it is the largest. 
l. 
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(C.B) 



APPENDIX 0 

OE~ION OF EQUATION (35) 

According to the rules of conditional probability: 

The conditional joint density in the numerator can be found by 

integrating !:J. out on the conditional joint pdf pi (Ytc,).K-l •4>. 
Hence 

J Pi ~·~x-l'~ld!, 
4 

The integrand can be written 

When divided by p().K-l) there resUlts 

Pi ~~~x-1> • J Pi ~~~x-l'~lpC~I~x-lld!, · 

e. 
-:1. 

73 

(0.1) 

(0.2) 

(0.3) 

(0.4) 

Now e. is assumed to be the only unknown parameter and assuming that 
-:1. 

the v are independent conditioned on e. then 
~ -:1. 

(D. 5) 

sUbstituting Equation (0.5) into (D.4) results in Equation (35). 
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APPENDIX E 

DERIVATION OF EQUATION (43) 

The conditional probability density function in the integrand of 

Equation (42) can be modified as follows: 

p(YK-li~, .•• ,~-M+l'AK-2)p(~, ••• ,aK-M+liAK-2) 

= p(~-l,AK-2) 

{E.l) 

Now, invoking the conditional independence of the ~ (conditioned on 

~) and recognizing that, given the parameter vector the previous obser­

vations are unnecessary, the following is true: 

(E. 2) 

so Equation (E.l) becomes 

This is not yet a recursive relation as the right hand side needs 

Observe that 
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The integrand here is, according to Bayes' rule, 

(E. 5) 

This is the Markov-M dependence relationship needed. Substituting 

Equation (E.S) into (E.4) and this result into Equation (E.3) results 

in Equation (43). 
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