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Abstract

Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that
could explain how behaviorally relevant adaptive changes in complex networks of spiking neurons could be achieved in a
self-organizing manner through local synaptic plasticity. However, the capabilities and limitations of this learning rule could
so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-
modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning
effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but
also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns
with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems,
where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system,
can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental
experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for
increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment
problem. Our model for this experiment relies on a combination of reward-modulated STDP with variable spontaneous
firing activity. Hence it also provides a possible functional explanation for trial-to-trial variability, which is characteristic for
cortical networks of neurons but has no analogue in currently existing artificial computing systems. In addition our model
demonstrates that reward-modulated STDP can be applied to all synapses in a large recurrent neural network without
endangering the stability of the network dynamics.
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Introduction

Numerous experimental studies (see [1] for a review; [2]

discusses more recent in-vivo results) have shown that the efficacy

of synapses changes in dependence of the time difference

Dt= tpost2tpre between the firing times tpre and tpost of the pre- and

postsynaptic neurons. This effect is called spike-timing-dependent

plasticity (STDP). But a major puzzle for understanding learning

in biological organisms is the relationship between experimentally

well-established rules for STDP on the microscopic level, and

adaptive changes of the behavior of biological organisms on the

macroscopic level. Neuromodulatory systems, which send diffuse

signals related to reinforcements (rewards) and behavioral state to

several large networks of neurons in the brain, have been identified

as likely intermediaries that relate these two levels of plasticity. It is

well-known that the consolidation of changes of synaptic weights

in response to pre- and postsynaptic neuronal activity requires the

presence of such third signals [3,4]. In particular, it has been

demonstrated that dopamine (which is behaviorally related to

novelty and reward prediction [5]) gates plasticity at corticostriatal

synapses [6,7] and within the cortex [8]. It has also been shown

that acetylcholine gates synaptic plasticity in the cortex (see for

example [9] and [10,11] contains a nice review of the literature).

Corresponding spike-based rules for synaptic plasticity of the

form

d

dt
wji tð Þ~cji tð Þd tð Þ ð1Þ

have been proposed in [12] and [13] (see Figure 1 for an

illustration of this learning rule), where wji is the weight of a

synapse from neuron i to neuron j, cji(t) is an eligibility trace of this

synapse which collects weight changes proposed by STDP, and

d(t) = h(t)2h̄ results from a neuromodulatory signal h(t) with mean

value h̄. It was shown in [12] that a number of interesting learning

tasks in large networks of neurons can be accomplished with this

simple rule in Equation 1. It has recently been shown that quite

similar learning rules for spiking neurons arise when one applies

the general framework of distributed reinforcement learning from

[14] to networks of spiking neurons [13,15], or if one maximizes

the likelihood of postsynaptic firing at desired firing times [16].

However no analytical tools have been available, which make it

possible to predict for what learning tasks, and under which

parameter settings, reward-modulated STDP will be successful.

This article provides such analytical tools, and demonstrates their

PLoS Computational Biology | www.ploscompbiol.org 1 October 2008 | Volume 4 | Issue 10 | e1000180



applicability and significance through a variety of computer

simulations. In particular, we identify conditions under which

neurons can learn through reward-modulated STDP to classify

temporal presynaptic firing patterns, and to respond with

particular spike patterns.

We also provide a model for the remarkable operant

conditioning experiments of [17] (see also [18,19]). In the simpler

ones of these experiments the spiking activity of single neurons (in

area 4 of the precentral gyrus of monkey cortex) was recorded, the

deviation of the current firing rate of an arbitrarily selected neuron

from its average firing rate was made visible to the monkey

through the displacement of an illuminated meter arm, whose

rightward position corresponded to the threshold for the feeder

discharge. The monkey received food rewards for increasing (or in

alternating trials for decreasing) the firing rate of this neuron. The

monkeys learnt quite reliably (within a few minutes) to change the

firing rate of this neuron in the currently rewarded direction.

Adjacent neurons tended to change their firing rate in the same

direction, but also differential changes of directions of firing rates

of pairs of neurons are reported in [17] (when these differential

changes were rewarded). For example, it was shown in Figure 9 of

[17] (see also Figure 1 in [19]) that pairs of neurons that were

separated by no more than a few hundred microns could be

independently trained to increase or decrease their firing rates.

Obviously the existence of learning mechanisms in the brain which

are able to solve this extremely difficult credit assignment problem

provides an important clue for understanding the organization of

learning in the brain. We examine in this article analytically under

what conditions reward-modulated STDP is able to solve such

learning problem. We test the correctness of analytically derived

predictions through computer simulations of biologically quite

realistic recurrently connected networks of neurons, where an

increase of the firing rate of one arbitrarily selected neuron within

a network of 4000 neurons is reinforced through rewards (which

are sent to all 142813 synapses between excitatory neurons in this

recurrent network). We also provide a model for the more

complex operant conditioning experiments of [17] by showing that

pairs of neurons can be differentially trained through reward-

modulated STDP, where one neuron is rewarded for increasing its

firing rate, and simultaneously another neuron is rewarded for

decreasing its firing rate. More precisely, we increased the reward

signal d(t) which is transmitted to all synapses between excitatory

neurons in the network whenever the first neuron fired, and

decreased this reward signal whenever the second neuron fired

(the resulting composed reward corresponds to the displacement of

the meter arm that was shown to the monkey in these more

complex operant conditioning experiments).

Our theory and computer simulations also show that reward-

modulated STDP can be applied to all synapses within a large

network of neurons for long time periods, without endangering the

stability of the network. In particular this synaptic plasticity rule

keeps the network within the asynchronous irregular firing regime,

which had been described in [20] as a dynamic regime that

resembles spontaneous activity in the cortex. Another interesting

aspect of learning with reward-modulated STDP is that it requires

spontaneous firing and trial-to-trial variability within the networks

of neurons where learning takes place. Hence our learning theory

for this synaptic plasticity rule provides a foundation for a

functional explanation of these characteristic features of cortical

network of neurons that are undesirable from the perspective of

most computational theories.

Results

We first give a precise definition of the learning rule in Equation 1

for reward-modulated STDP. The standard rule for STDP, which

specifies the change W(Dt) of the synaptic weight of an excitatory

synapse in dependence on the time difference Dt= tpost2tpre between

the firing times tpre and tpost of the pre- and postsynaptic neuron, is

Figure 1. Scheme of reward-modulated STDP according to
Equations 1–4. (A) Eligibility function fc(t), which scales the
contribution of a pre/post spike pair (with the second spike at time
0) to the eligibility trace c(t) at time t. (B) Contribution of a pre-before-
post spike pair (in red) and a post-before-pre spike pair (in green) to the
eligibility trace c(t) (in black), which is the sum of the red and green
curves. According to Equation 1 the change of the synaptic weight w is
proportional to the product of c(t) with a reward signal d(t).
doi:10.1371/journal.pcbi.1000180.g001

Author Summary

A major open problem in computational neuroscience is to
explain how learning, i.e., behaviorally relevant modifica-
tions in the central nervous system, can be explained on
the basis of experimental data on synaptic plasticity. Spike-
timing-dependent plasticity (STDP) is a rule for changes in
the strength of an individual synapse that is supported by
experimental data from a variety of species. However, it is
not clear how this synaptic plasticity rule can produce
meaningful modifications in networks of neurons. Only if
one takes into account that consolidation of synaptic
plasticity requires a third signal, such as changes in the
concentration of a neuromodulator (that might, for
example, be related to rewards or expected rewards),
then meaningful changes in the structure of networks of
neurons may occur. We provide in this article an analytical
foundation for such reward-modulated versions of STDP
that predicts when this type of synaptic plasticity can
produce functionally relevant changes in networks of
neurons. In particular we show that seemingly inexplicable
experimental data on biofeedback, where a monkey learnt
to increase the firing rate of an arbitrarily chosen neuron in
the motor cortex, can be explained on the basis of this
new learning theory.

Reward-Modulated STDP
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based on numerous experimental data (see [1]). It is commonly

modeled by a so-called learning curve of the form

W Dtð Þ~
Aze{Dt=tz , if Dt§0

{A eDt=t , if Dtv0

(

, ð2Þ

where the positive constants A+ and A2 scale the strength of

potentiation and depression respectively, and t+ and t2 are positive

time constants defining the width of the positive and negative

learning window. The resulting weight change at time t of synapse ji

for a presynaptic spike train S
pre
i and a postsynaptic spike train S

post
j

is usually modeled [21] by the instantaneous application of this

learning rule to all spike pairings with the second spike at time t

d

dt
wji tð Þ

� �

STDP

~

ð

?

0

drW rð ÞSpost
i tð ÞSpre

i t{rð Þ

z

ð

?

0

drW {rð ÞSpost
j t{rð ÞSpre

i tð Þ:

ð3Þ

The spike train of a neuron i which fires action potentials at times

t
1ð Þ
i , t

2ð Þ
i , t

3ð Þ
i ,… is formalized here by a sum of Dirac delta functions

Si tð Þ~
P

nd t{t
nð Þ
i

� �

.

The model analyzed in this article is based on the assumption

that positive and negative weight changes suggested by STDP for

all pairs of pre- and postsynaptic spikes at synapse ji (according to

the two integrals in Equation 3) are collected in an eligibility trace

cji(t) at the site of the synapse. The contribution to cij(t) of all spike

pairings with the second spike at time t2s is modeled for s.0 by a

function fc(s) (see Figure 1A); the time scale of the eligibility trace is

assumed in this article to be on the order of seconds. Hence the

value of the eligibility trace of synapse ji at time t is given by

cji tð Þ~

ð

?

0

dsfc sð Þ
d

dt
wji t{sð Þ

� �

STDP

, ð4Þ

see Figure 1B. The actual weight change d
dt
wji tð Þ at time t for

reward-modulated STDP is the product cij(t)?d(t) of the eligibility

trace with the reward signal d(t) as defined by Equation 1. Since

this simple model can in principle lead to unbounded growth of

weights, we assume that weights are clipped at the lower boundary

value 0 and an upper boundary wmax.

The network dynamics of a simulated recurrent network of

spiking neurons where all connections between excitatory neurons

are subject to STDP is quite sensitive to the particular STDP-rule

that is used. Therefore we have carried out our network

simulations not only with the additive STDP-rule in Equation 3,

whose effect can be analyzed theoretically, but also with the more

complex rule proposed in [22] (which was fitted to experimental

data from hippocampal neurons in culture [23]), where the

magnitude of the weight change depends on the current value of

the weight. An implementation of this STDP-rule (with the

parameters proposed in [22]) produced in our network simulations

of the biofeedback experiment (computer simulation 1) as well as

for learning pattern classification (computer simulation 4)

qualitatively the same result as the rule in Equation 3.

Theoretical Analysis of the Resulting Weight Changes
In this section, we derive a learning equation for reward-

modulated STDP. This learning equation relates the change of a

synaptic weight wji over some sufficiently long time interval T to

statistical properties of the joint distribution of the reward signal

d(t) and pre- and postsynaptic firing times, under the assumption

that the weight and correlations between pre- and postsynaptic

spike times are slowly varying in time. We treat spike times as well

as the reward signal d(t) as stochastic variables. This mathematical

framework allows us to derive the expected weight change over

some time interval T (see [21]), with the expectation taken over

realizations of the stochastic input- and output spike trains as well

as stochastic realizations of the reward signal, denoted by the

ensemble average Æ?æE

Swji tzTð Þ{wji tð ÞTE
T

~
1

T
S

ðtzT

t

d

dt
wji t

0ð Þdt0TE

~SS
d

dt
wji tð ÞTTTE ,

ð5Þ

where we used the abbreviation Sf tð ÞTT~T{1
Ð tzT

t
f t0ð Þ dt0. If

synaptic plasticity is sufficiently slow, synaptic weights integrate a

large number of small changes. In this case, the weight wji can be

approximated by its average ÆwjiæE (it is ‘‘self-averaging’’, see [21]).

We can thus drop the expectation on the left hand side of

Equation 5 and write it as d
dt
Swji tð ÞTT . Using Equation 1, this

yields (see Methods)

d

dt
Swji tð ÞTT~

ð

?

0

drW rð Þ

ð

?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTT

z

ð0

{?

drW rð Þ

ð

?

rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT :

ð6Þ

This formula contains the reward correlation for synapse ji

Dji t,s,rð Þ~

Sd tð Þ Neuron j spikes at t{s, and neuron i spikes at t{s{rj TE ,

ð7Þ

which is the average reward at time t given a presynaptic spike at

time t2s2r and a postsynaptic spike at time t2s. The joint firing

rate nji(t,r) = ÆSj(t)Si(t2r)æE describes correlations between spike

timings of neurons j and i, i.e., it is the probability density for

the event that neuron i fires an action potential at time t2r and

neuron j fires an action potential at time t. For synapses subject to

reward-modulated STDP, changes in efficacy are obviously driven

by co-occurrences of spike pairings and rewards within the time

scale of the eligibility trace. Equation 6 clarifies how the expected

weight change depends on how the correlations between the pre-

and postsynaptic neurons correlate with the reward signal.

If one assumes for simplicity that the impact of a spike pair on

the eligibility trace is always triggered by the postsynaptic spike,

one gets a simpler equation (see Methods)

d

dt
Swji tð ÞTT~

ð

?

0

ds fc sð Þ

ð

?

{?

drW rð ÞSDji t,s,rð Þnji t{s,rð ÞTT : ð8Þ

The assumption introduces a small error for post-before-pre spike

pairs, because for a reward signal that arrives at some time dr after

the pairing, the weight update will be proportional to fc(dr) instead

of fc(dr+r). The approximation is justified if the temporal average is

performed on a much longer time scale than the time scale of the

learning window, the effect of each pre-post spike pair on the

reward signal is delayed by an amount greater than the time scale

of the learning window, and fc changes slowly compared to the

time scale of the learning window (see Methods for details). For the

Reward-Modulated STDP
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analyzes presented in this article, the simplified Equation 8 is a

good approximation for the learning dynamics. Equation 8 is a

generalized version of the STDP learning equation
d
dt
wji tð Þ~

Ð

?

{?
drW rð ÞSnji t{s,rð ÞTT in [21] that includes the

impact of the reward correlation weighted by the eligibility

function. To see the relation between standard STDP and reward-

modulated STDP, consider a constant reward signal d(t) = d0.

Then also the reward correlation is constant and given by

D(t,s,r) = d0. We recover the standard STDP learning equation

scaled by d0 if the eligibility function is an instantaneous delta-

pulse fc(s) = d(s). Furthermore, if the statistics of the reward signal

d(t) is time-independent and independent from the pre- and

postsynaptic spike statistics of some synapse ji, then the reward

correlation is given by Dji(t,s,r) = Æd(t)æE= d0 for some constant d0.

Then, the weight change for synapse ji is
d
dt
Swji tð ÞTT~d0

Ð

?

{?
drW rð Þ

Ð

?

0
dsfc sð ÞSnji t{s,rð ÞTT . The tem-

poral average of the joint firing rate Ænji(t2s,ræT is thus filtered by

the eligibility trace. We assumed in the preceding analysis that the

temporal average is taken over some long time interval T. If the

time scale of the eligibility trace is much smaller than this time

interval T, then the weight change is approximately
d
dt
Swji tð ÞTT&d0

Ð

?

0
dsfc sð Þ

� � Ð

?

{?
drW rð ÞSnji t,rð ÞTT , and the

weight wji will change according to standard STDP scaled by a

constant proportional to the mean reward and the integral over

the eligibility function. In the remainder of this article, we will

always use the smooth time-averaged weight change d
dt
Swji tð ÞTT ,

but for brevity, we will drop the angular brackets and simply write
d
dt
wji tð Þ.

The learning Equation 8 provides the mathematical basis for

our following analyses. It allows us to determine synaptic weight

changes if we can describe a learning situation in terms of reward

correlations and correlations between pre- and postsynaptic spikes.

Application to Models for Biofeedback Experiments
We now apply the preceding analysis to the biofeedback

experiment of [17] that were described in the introduction. These

experiments pose the challenge to explain how learning mecha-

nisms in the brain can detect and exploit correlations between

rewards and the firing activity of one or a few neurons within a

large recurrent network of neurons (the credit assignment

problem), without changing the overall function or dynamics of

the circuit.

We show that this phenomenon can in principle be explained by

reward-modulated STDP. In order to do that, we define a model

for the experiment which allows us to formulate an equation for

the reward signal d(t). This enables us to calculate synaptic weight

changes for this particular scenario. We consider as model a

recurrent neural circuit where the spiking activity of one neuron k

is recorded by the experimenter (Experiments where two neurons

are recorded and reinforced were also reported in [17]. We tested

this case in computer simulations (see Figure 2) but did not treat it

explicitly in our theoretical analysis). We assume that in the

monkey brain a reward signal d(t) is produced which depends on

the visual feedback (through an illuminated meter, whose pointer

deflection was dependent on the current firing rate of the

randomly selected neuron k) as well as previously received liquid

rewards, and that this signal d(t) is delivered to all synapses in large

areas of the brain. We can formalize this scenario by defining a

reward signal which depends on the spike rate of the arbitrarily

selected neuron k (see Figure 3A and 3B). More precisely, a reward

pulse of shape er(r) (the reward kernel) is produced with some delay

dr every time the neuron k produces an action potential

d tð Þ~

ð

?

0

dr S
post
k t{dr{rð Þer rð Þ: ð9Þ

Note that d(t) = h(t)2h̄ is defined in Equation 1 as a signal with zero

mean. In order to satisfy this constraint, we assume that the reward

kernel er has zero mass, i.e., er~
Ð

?

0
dr er rð Þ~0. For the analysis,

we use the linear Poisson neuron model described in Methods.

The mean weight change for synapses to the reinforced neuron k is

then approximately (see Methods)

d

dt
wki tð Þ&

ð

?

0

ds fc szdrð Þer sð Þ

ð

?

{?

drW rð ÞSnki t{dr{s,rð ÞTT :

ð10Þ

This equation describes STDP with a learning rate proportional to
Ð

?

0
ds fc szdrð Þer sð Þ. The outcome of the learning session will

strongly depend on this integral and thus on the form of the

reward kernel er. In order to reinforce high firing rates of the

reinforced neuron we have chosen a reward kernel with a positive

bump in the first few hundred milliseconds, and a long negative

tail afterwards. Figure 3C shows the functions fc and er that were

used in our computer model, as well as the product of these two

functions. One sees that the integral over the product is positive

and according to Equation 10 the synapses to the reinforced

neuron are subject to STDP. This does not guarantee an increase

of the firing rate of the reinforced neuron. Instead, the changes of

neuronal firing will depend on the statistics of the inputs. In

particular, the weights of synapses to neuron k will not increase if

that neuron does not fire spontaneously. For uncorrelated Poisson

input spike trains of equal rate, the firing rate of a neuron trained

by STDP stabilizes at some value which depends on the input rate

(see [24,25]). However, in comparison to the low spontaneous

firing rates observed in the biofeedback experiment [17], the stable

firing rate under STDP can be much higher, allowing for a

significant rate increase. It was shown in [17] that also low firing

rates of a single neuron can be reinforced. In order to model this,

we have chosen a reward kernel with a negative bump in the first

few hundred milliseconds, and a long positive tail afterwards, i.e.

we inverted the kernel used above to obtain a negative integral
Ð

?

0
ds fc szdrð Þer sð Þ. According to Equation 10 this leads to anti-

STDP where not only inputs to the reinforced neuron which have

low correlations with the output are depressed (because of the

negative integral of the learning window), but also those which are

causally correlated with the output. This leads to a quick firing rate

decrease at the reinforced neuron.

The mean weight change of synapses to non-reinforced neurons

j?k is given by

d

dt
wji tð Þ&

ð

?

0

ds fc sð Þ

ð

?

{?

drW rð Þ

ð

?

0

dr0er r
0ð Þ

S
nkj t{dr{r0,s{dr{r0ð Þ

nj t{sð Þ
nji t{s,rð ÞTT ,

ð11Þ

where nj(t) = ÆSj(t)æE is the instantaneous firing rate of neuron j at time

t. This equation indicates that a non-reinforced neuron is trained by

STDP with a learning rate proportional to its correlation with the

reinforced neuron given by nkj(t2dr2r9,s2dr2r9)/nj(t2s). In fact, it

was noted in [17] that neurons nearby the reinforced neuron tended

to change their firing rate in the same direction. This observation

might be explained by putative correlations of the recorded neuron

Reward-Modulated STDP
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with nearby neurons. On the other hand, if a neuron j is uncorrelated

with the reinforced neuron k, we can decompose the joint firing rate

into nkj(t2dr2r9,s2dr2r9) = nk(t2dr2r9)nj(t2s). In this case, the

learning rate for synapse ji is approximately zero (see Methods).

This ensures that most neurons in the circuit keep a constant firing

rate, in spite of continuous weight changes according to reward-

modulated STDP.

Altogether we see that the weights of synapses to the reinforced

neuron k can only change if there is spontaneous activity in the

network, so that in particular also this neuron k fires spontane-

ously. On the other hand the spontaneous network activity should

not consist of repeating large-scale spatio-temporal firing patterns,

since that would entail correlations between the firing of neuron k

and other neurons j, and would lead to similar changes of synapses

to these other neurons j. Apart from these requirements on the

spontaneous network activity, the preceding theoretical results

predict that stability of the circuit is preserved, while the neuron

which is causally related to the reward signal is trained by STDP, if
Ð

?

0
ds fc szdrð Þer sð Þ is positive.

Computer Simulation 1: Model for Biofeedback
Experiment
We tested these theoretical predictions through computer

simulations of a generic cortical microcircuit receiving a reward

signal which depends on the firing of one arbitrarily chosen

neuron k from the circuit (reinforced neuron). The circuit was

composed of 4000 LIF neurons, with 3200 being excitatory and

800 inhibitory, interconnected randomly by 228954 conductance

based synapses with short term dynamics (All computer simula-

tions were also carried out as a control with static current based

synapses, see Methods and Suppl.). In addition to the explicitly

modeled synaptic connections, conductance noise (generated by

Figure 2. Differential reinforcement of two neurons (within a simulated network of 4000 neurons, the two rewarded neurons are
denoted as A and B), corresponding to the experimental results shown in Figure 9 of [17] and Figure 1 of [19]. (A) The spike response
of 100 randomly chosen neurons at the beginning of the simulation (20 sec–23 sec, left plot), and at the middle of simulation just before the
switching of the reward policy (597 sec–600 sec, right plot). The firing times of the first reinforced neuron A are marked by blue crosses and those of
the second reinforced neuron B are marked by green crosses. (B) The dashed vertical line marks the switch of the reinforcements at t= 10 min. The
firing rate of neuron A (blue line) increases while it is positively reinforced in the first half of the simulation and decreases in the second half when its
spiking is negatively reinforced. The firing rate of the neuron B (green line) decreases during the negative reinforcement in the first half and increases
during the positive reinforcement in the second half of the simulation. The average firing rate of 20 other randomly chosen neurons (dashed line)
remains unchanged. (C) Evolution of the average weight of excitatory synapses to the rewarded neurons A and B (blue and green lines, respectively),
and of the average weight of 1744 randomly chosen excitatory synapses to other neurons in the circuit (dashed line).
doi:10.1371/journal.pcbi.1000180.g002

Reward-Modulated STDP
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an Ornstein-Uhlenbeck process) was injected into each neuron

according to data from [26], in order to model synaptic

background activity of neocortical neurons in-vivo (More precise-

ly, for 50% of the excitatory neurons the amplitude of the noise

injection was reduced to 20%, and instead their connection

probabilities from other excitatory neurons were chosen to be

larger, see Methods and Figure S1 and Figure S2 for details. The

reinforced neuron had to be chosen from the latter population,

since reward-modulated STDP does not work properly if the

postsynaptic neuron fires too often because of directly injected

noise). This background noise elicited spontaneous firing in the

circuit at about 4.6 Hz. Reward-modulated STDP was applied

continuously to all synapses which had excitatory presynaptic and

postsynaptic neurons, and all these synapses received the same

reward signal. The reward signal was modeled according to

Equation 9. Figure 3C shows one reward pulse caused by a single

postsynaptic spike at time t=0 with the parameters used in the

experiment. For several postsynaptic spikes, the amplitude of the

reward signal follows the firing rate of the reinforced neuron, see

Figure 3B.

This model was simulated for 20 minutes of biological time.

Figure 4A, 4B, and 4D show that the firing rate of the reinforced

neuron increases within a few minutes (like in the experiment of

[17]), while the firing rates of the other neurons remain largely

unchanged. The increase of weights to the reinforced neuron

shown in Figure 4C can be explained by the correlations between

its presynaptic and postsynaptic spikes shown in panel E. This

panel shows that pre-before-post spike pairings (black curve) are in

general more frequent than post-before-pre spike pairings. The

reinforced neuron increases its rate from around 4 Hz to 12 Hz,

which is comparable to the measured firing rates in [15] before

and after learning.

In Figure 9 of [17] and Figure 1 of [19] the results of another

experiment were reported where the activity of two adjacent

neurons was recorded, and high firing rates of the first neuron and

low firing rates of the second neuron were reinforced simulta-

neously. This kind of differential reinforcement resulted in an

increase and decrease of the firing rates of the two neurons

correspondingly. We implemented this type of reinforcement by

letting the reward signal in our model depend on the spikes of the

two randomly chosen neurons (we refer to these neurons as neuron

A and neuron B), i.e. d tð Þ~dA
z

tð ÞzdB
{

tð Þ, where dA
z

tð Þ is the

component that positively rewards spikes of neuron A, and dB
{

tð Þ
negatively rewards spikes of neuron B. Both parts of the reward

signal, dA
z

tð Þ and dB
{

tð Þ, were defined as in Equation 9 for the

corresponding neuron. For dA
z

tð Þ we used the reward kernel er as

defined in Equation 29, whereas for dB
{

tð Þ we used er2=2er (note

that the integral over er2 is still zero). At the middle of the

simulation (simulation time t=10 min), we changed the direction

of the reinforcements by negatively rewarding the firing of neuron

A and positively rewarding the firing of neuron B (i.e.,

d tð Þ~dA
{

tð ÞzdB
z

tð Þ). The results are summarized in Figure 2.

With a reward signal modeled in this way, we were able to

independently increase and decrease the firing rates of the two

neurons according to the reinforcements, while the firing rates of

the other neurons remained unchanged. Changing the type of

reinforcement during the simulation from positive to negative for

neuron A and from negative to positive for neuron B resulted in a

corresponding shift in their firing rate change in the direction of

the reinforcement.

The dynamics of a network where STDP is applied to all

synapses between excitatory neurons is quite sensitive to the

specific choice of the STDP-rule. The preceding theoretical

analysis (see Equations 10 and 11) predicts that reward-modulated

STDP affects in the long run only those excitatory synapses where

the firing of the postsynaptic neuron is correlated with the reward

signal. In other words: the reward signal gates the effect of STDP

in a recurrent network, and thereby can keep the network within a

Figure 3. Setup of the model for the experiment by Fetz and Baker [17]. (A) Schema of the model: The activity of a single neuron in the
circuit determines the amount of reward delivered to all synapses between excitatory neurons in the circuit. (B) The reward signal d(t) in response to a
spike train (shown at the top) of the arbitrarily selected neuron (which was selected from a recurrently connected circuit consisting of 4000 neurons).
The level of the reward signal d(t) follows the firing rate of the spike train. (C) The eligibility function fc(s) (black curve, left axis), the reward kernel er(s)
delayed by 200 ms (red curve, right axis), and the product of these two functions (blue curve, right axis) as used in our computer experiment. The
integral of fc(s+dr)er(s) is positive, as required according to Equation 10 in order to achieve a positive learning rate for the synapses to the selected
neuron.
doi:10.1371/journal.pcbi.1000180.g003

Reward-Modulated STDP

PLoS Computational Biology | www.ploscompbiol.org 6 October 2008 | Volume 4 | Issue 10 | e1000180



given dynamic regime. This prediction is confirmed qualitatively

by the two panels of Figure 4A, which show that even after all

excitatory synapses in the recurrent network have been subject to

20 minutes (in simulated biological time) of reward-modulated

STDP, the network stays within the asynchronous irregular firing

regime. It is also confirmed quantitatively through Figure 5. These

figures show results for the simple additive version of STDP

(according to Equation 3). Very similar results (see Figure S3 and

Figure S4) arise from an application of the more complex STDP-

rule proposed in [22] where the weight-change depends on the

current weight value.

Rewarding Spike-Times
The preceding model for the biofeedback experiment of Fetz

and Baker focused on learning of firing rates. In order to explore

the capabilities and limitations of reward-modulated STDP in

Figure 4. Simulation of the experiment by Fetz and Baker [17] for the case where an arbitrarily selected neuron triggers global
rewards when it increases its firing rate. (A) Spike response of 100 randomly chosen neurons within the recurrent network of 4000 neurons at
the beginning of the simulation (20 sec–23 sec, left plot), and at the end of the simulation (the last 3 seconds, right plot). The firing times of the
reinforced neuron are marked by blue crosses. (B) The firing rate of the positively rewarded neuron (blue line) increases, while the average firing rate
of 20 other randomly chosen neurons (dashed line) remains unchanged. (C) Evolution of the average weight of excitatory synapses to the reinforced
neuron (blue line), and of the average weight of 1663 randomly chosen excitatory synapses to other neurons in the circuit (dashed line). (D) Spike
trains of the reinforced neuron before and after learning. (E) Histogram of the time-differences between presynaptic and postsynaptic spikes (bin size
0.5 ms), averaged over all excitatory synapses to the reinforced neuron. The black curve represents the histogram values for positive time differences
(when the presynaptic spike precedes the postsynaptic spike), and the red curve represents the histogram for negative time differences.
doi:10.1371/journal.pcbi.1000180.g004
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contexts where the temporal structure of spike trains matters, we

investigated another reinforcement learning scenario where a

neuron should learn to respond with particular temporal spike

patterns. We first apply analytical methods to derive conditions

under which a neuron subject to reward-modulated STDP can

achieve this.

In this model, the reward signal d(t) is given in dependence on

how well the output spike train S
post
j of a neuron j matches some

rather arbitrary spike train S* (which might for example represent

spike output from some other brain structure during a develop-

mental phase). S* is produced by a neuron m* that receives the

same n input spike trains S1,…,Sn as the trained neuron j, with

some arbitrarily chosen weights w
1

~ w
1

1, . . . ,w
1

n

� �T
, w

1

i [ 0,wmaxf g.
But in addition the neuron m* receives n92n further spike trains

Sn+1,…,Sn9 with weights w
1

nz1, . . . ,w
1

n0~wmax. The setup is

illustrated in Figure 6A. It provides a generic reinforcement

learning scenario, when a quite arbitrary (and not perfectly

realizable) spike output is reinforced, but simultaneously the

performance of the learner can be evaluated clearly according to

how well its weights wj1,…,wjn match those of the neuron m* for

those n input spike trains which both of them have in common.

The reward d(t) at time t depends in this task on both the timing of

action potentials of the trained neuron and spike times in the

target spike train S*

d tð Þ~

ð

?

{?

dr k rð ÞSpost
j t{drð ÞS

1

t{dr{rð Þ, ð12Þ

where the function k(r) with k~
Ð

?

{?
ds k sð Þw0 describes how the

reward signal depends on the time difference r between a

Figure 5. Evolution of the dynamics of a recurrent network of 4000 LIF neurons during application of reward-modulated STDP. (A)
Distribution of the synaptic weights of excitatory synapses to 50 randomly chosen non-reinforced neurons, plotted for 4 different periods of
simulated biological time during the simulation. The weights are averaged over 10 samples within these periods. The colors of the curves and the
corresponding intervals are as follows: red (300–360 sec), green (600–660 sec), blue (900–960 sec), magenta (1140–1200 sec). (B) The distribution of
average firing rates of the non-reinforced excitatory neurons in the circuit, plotted for the same time periods as in (A). The colors of the curves are the
same as in (A). The distribution of the firing rates of the neurons in the circuit remains unchanged during the simulation, which covers 20 minutes of
biological time. (C) Cross-correlogram of the spiking activity in the circuit, averaged over 200 pairs of non-reinforced neurons and over 60 s, with a
bin size of 0.2 ms, for the period between 300 and 360 seconds of simulated biological time. It is calculated as the cross-covariance divided by the
square root of the product of variances. (D) As in (C), but between seconds 1140 and 1200. (Separate plots of (B), (C), and (D) for two types of
excitatory neurons that received different amounts of noise currents are given in Figure S1 and Figure S2.)
doi:10.1371/journal.pcbi.1000180.g005
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postsynaptic spike and a target spike, and dr.0 is the delay of the

reward.

Our theoretical analysis (see Methods) predicts that under the

assumption of constant-rate uncorrelated Poisson input statistics

this reinforcement learning task can be solved by reward-

modulated STDP for arbitrary initial weights if three constraints

are fulfilled:

{n
post
minWwwmaxW e ð13Þ

ð

?

{?

drW rð Þe rð Þek rð Þ§{npostmaxW

ð

?

0

dr e rð Þek rð Þ ð14Þ

ð

?

{?

drW rð Þek rð Þw{Wk
n
1
npostmax

wmax

�ffc

fc drð Þ
z

n
1

wmax

zn
1

znpostmax

� �

ð15Þ

The following parameters occur in these equations: n* is the output

rate of neuron m*, n
post
min is the minimal output rate, npostmax is the

maximal output rate of the trained neuron, f c~
Ð

?

0
dr fc rð Þ is the

integral over the eligibility trace, W~
Ð

?

{?
drW rð Þ is the integral

over the STDP learning curve (see Equation 2),

ek rð Þ~
Ð

?

{?
dr0 k r0ð Þe r{r0ð Þ is the convolution of the reward

kernel with the shape of the postsynaptic potential (PSP) e(s), and

W e~
Ð

?

{?
dr e rð ÞW rð Þ is the integral over the PSP weighted by the

learning window.

If these inequalities are fulfilled and input rates are larger than

zero, then the weight vector of the trained neuron converges on

average from any initial weight vector to w* (i.e., it mimics the

weight distribution of neuron m* for those n inputs which both

have in common). To get an intuitive understanding of these

inequalities, we first examine the idea behind Constraint 13. This

constraint assures that weights of synapses i with w
1

i ~0 decay to

zero in expectation. First note that input spikes from a spike train

Si with w
1

i ~0 have no influence on the target spike train S*. In the

linear Poisson neuron model, this leads to weight changes similar

to STDP which can be described by two terms. First, all synapses

are subject to depression stemming from the negative part of the

learning curve W and random pre-post spike pairs. This weight

change is bounded from below by an
pre
i n

post
minW for some positive

constant a. On the other hand, the positive influence of input

spikes on postsynaptic firing leads to potentiation of the synapse

bounded from above by an
pre
i wmaxW e. Hence the weight decays to

zero if{an
pre
i n

post
minWwan

pre
i wmaxW e, leading to Inequality 13. For

synapses i with w
1

i ~wmax, there is an additional drive, since each

presynaptic spike increases the probability of a closely following

spike in the target spike train S*. Therefore, the probability of a

delayed reward signal after a presynaptic spike is larger. This

additional drive leads to positive weight changes if Inequalities 14

and 15 are fulfilled (see Methods).

Note that also for the learning of spike times spontaneous spikes

(which might be regarded as ‘‘noise’’) are important, since they

may lead to reward signals that can be exploited by the learning

rule. It is obvious that in reward-modulated STDP, a silent neuron

cannot recover from its silent state, since there will be no spikes

which can drive STDP. But in addition, Condition 13 shows that

in this learning scenario, the minimal output rate n
post
min—which

increases with increasing noise—has to be larger than some

positive constant, such that depression is strong enough to weaken

synapses if needed. On the other hand, if the noise is too strong

also synapses i with wi=wmax will be depressed and may not

converge correctly. This can happen when the increased noise

leads to a maximal postsynaptic rate npostmax such that Constraints 14

and 15 are not satisfied anymore.

Conditions 13–15 also reveal how parameters of the model

influence the applicability of this setup. For example, the eligibility

trace enters the equations only in the form of its integral and its

value at the reward delay in Equation 15. In fact, the exact shape

of the eligibility trace is not important. The important property of

an ideal eligibility trace is that it is high at the reward delay and

low at other times as expressed by the fraction in Condition 15.

Interestingly, the formulas also show that one has quite some

freedom in choosing the form of the STDP window, as long as the

reward kernel ek is adjusted accordingly. For example, instead of a

standard STDP learning window W with W(r)$0 for r.0 and

Figure 6. Setup for reinforcement learning of spike times. (A) Architecture. The trained neuron receives n input spike trains. The neuron m*
receives the same inputs plus additional inputs not accessible to the trained neuron. The reward is determined by the timing differences between the
action potentials of the trained neuron and the neuron m*. (B) A reward kernel with optimal offset from the origin of tk=26.6 ms. The optimal offset
for this kernel was calculated with respect to the parameters from computer simulation 1 in Table 1. Reward is positive if the neuron spikes around
the target spike or somewhat later, and negative if the neuron spikes much too early.
doi:10.1371/journal.pcbi.1000180.g006
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W(r)#0 for r,0 and a corresponding reward kernel k, one can use

a reversed learning window W9 defined by W9(r);W(2r) and a

reward kernel k9 such that ek9(r) = ek(2r). If Condition 15 is

satisfied for W and k, then it is also satisfied for W9 and k9 (and in

most cases also Condition 14 will be satisfied). This reflects the fact

that in reward modulated STDP the learning window defines the

weight changes in combination with the reward signal.

For a given STDP learning window, the analysis reveals what

reward kernels k are suitable for this learning setup. From

Condition 15, we can deduce that the integral over k should be

small (but positive), whereas the integral
Ð

?

{?
drW rð Þek rð Þ should

be large. Hence, for a standard STDP learning window W with

W(r)$0 for r.0 and W(r)#0 for r,0, the convolution ek(r) of the

reward kernel with the PSP should be positive for r.0 and

negative for r,0. In the computer simulation we used a simple

kernel depicted in Figure 6B, which satisfies the aforementioned

constraints. It consists of two double-exponential functions, one

positive and one negative, with a zero crossing at some offset tk
from the origin. The optimal offset tk is always negative and in the

order of several milliseconds for usual PSP-shapes e. We conclude

that for successful learning in this scenario, a positive reward

should be produced if the neuron spikes around the target spike or

somewhat later, and a negative reward should be produced if the

neuron spikes much too early.

Computer Simulation 2: Learning Spike Times
In order to explore this learning scenario in a biologically more

realistic setting, we trained a LIF neuron with conductance based

synapses exhibiting short term facilitation and depression. The

trained neuron and the neuron m* which produced the target spike

train S* both received inputs from 100 input neurons emitting spikes

from a constant rate Poisson process of 15 Hz. The synapses to the

trained neuron were subject to reward-modulated STDP. The

weights of neuron m* were set to w
1

i ~wmax for 0#i,50 and w
1

i ~0
for 50#i,100. In order to simulate a non-realizable target response,

neuron m* received 10 additional synaptic inputs (with weights set to

wmax/2). During the simulations we observed a firing rate of 18.2 Hz

for the trained neuron, and 25.2 Hz for the neuron m*. The

simulations were run for 2 hours simulated biological time.

We performed 5 repetitions of the experiment, each time with

different randomly generated inputs and different initial weight

values for the trained neuron. In each of the 5 runs, the average

synaptic weights of synapses with w
1

i ~wmax and w
1

i ~0

approached their target values, as shown in Figure 7A. In order

to test how closely the trained neuron reproduces the target spike

train S* after learning, we performed additional simulations where

the same spike input was applied to the trained neuron before and

after the learning. Then we compared the output of the trained

neuron before and after learning with the output S* of neuron m*.

Figure 7B shows that the trained neuron approximates the part of

S* which is accessible to it quite well. Figure 7C–F provide more

detailed analyses of the evolution of weights during learning. The

computer simulations confirmed the theoretical prediction that the

neuron can learn well through reward-modulated STDP only if a

certain level of noise is injected into the neuron (see preceding

discussion and Figure S6).

Both the theoretical results and these computer simulations

demonstrate that a neuron can learn quite well through reward-

modulated STDP to respond with specific spike patterns.

Computer Simulation 3: Testing the Analytically Derived
Conditions
Equations 13–15 predict under which relationships between the

parameters involved the learning of particular spike responses

through reward-modulated STDP will be successful. We have

tested these predictions by selecting 6 arbitrary settings of these

parameters, which are listed in Table 1. In 4 cases (marked by light

gray shading in Figure 8) these conditions were not met (either for

the learning of weights with target value wmax, or for the learning of

weights with target value 0. Figure 8 shows that the derived

learning result is not achieved in exactly these 4 cases. On the

other hand, the theoretically predicted weight changes (black bar)

predict in all cases the actual weight changes (gray bar) that occur

for the chosen simulation times (listed in the last column of Table 1)

remarkably well.

Pattern Discrimination with Reward-Modulated STDP
We examine here the question whether a neuron can learn

through reward-modulated STDP to discriminate between two

spike patterns P and N of its presynaptic neurons, by responding

with more spikes to pattern P than to pattern N. Our analysis is

based on the assumption that there exist internal rewards d(t) that

could guide such pattern discrimination. This reward based

learning architecture is biologically more plausible than an

architecture with a supervisor which provides for each input

pattern a target output and thereby directly produces the desired

firing behavior of the neuron (since the question becomes then

how the supervisor has learnt to produce the desired spike

outputs).

We consider a neuron that receives input from n presynaptic

neurons. A pattern X consists of n spike trains, each of time length

T, one for each presynaptic neuron. There are two patterns, P and

N, which are presented in alternation to the neuron, with some

reset time between presentations. For notational simplicity, we

assume that each of the n presynaptic spike trains consists of

exactly one spike. Hence, each pattern can be defined by a list of

spike times: P~ tP1 , . . . ,t
P
n

� �

, N~ tN1 , . . . ,t
N
n

� �

, where tXi is the

time when presynaptic neuron i spikes for pattern XM{P,N}. A

generalization to the easier case of learning to discriminate spatio-

temporal presynaptic firing patterns (where some presynaptic

neurons produce different numbers of spikes in different patterns)

is straightforward, however the main characteristics of the learning

dynamics are better accessible in this conceptually simpler setup. It

had already been shown in [12] that neurons can learn through

reward-modulated STDP to discriminate between different spatial

presynaptic firing patterns. But in the light of the analysis of [27] it

is still open whether neurons can learn with simple forms of

reward-modulated STDP, such as the one considered in this

article, to discriminate temporal presynaptic firing patterns.

We assume that the reward signal d(t) rewards—after some

delay dr—action potentials of the trained neuron if pattern P was

presented, and punishes action potentials of the neuron if pattern

N was presented. More precisely, we assume that

d tð Þ~

aP
Ð

?

0
dr er rð ÞSpost t{dr{rð Þ,

if a pattern P was presented

aN
Ð

?

0
dr er rð ÞSpost t{dr{rð Þ,

if a pattern N was presented

8

>

>

>

<

>

>

>

:

ð16Þ

with some reward kernel er and constants aN,0,aP. The goal of

this learning task is to produce many output spikes for pattern P,

and few or no spikes for pattern N.

The main result of our analysis is an estimate of the expected

weight change of synapse i of the trained neuron for the

presentation of pattern P, followed after a sufficiently long time

T9 by a presentation of pattern N
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Dwi~

ðT 0

0

dt S
dwi tð Þ

dt
TE Pj zS

dwi tð Þ

dt
TE Nj

� �

,

where Æ?æE|X is the expectation over the ensemble given that

pattern X was presented. This weight change can be estimated as

(see Methods)

Dwi~

ð

?

{?

drW rð Þ nP tPi zr
� �

AP
i znN tNi zr

� �

AN
i

� �

, ð17Þ

Figure 7. Results for reinforcement learning of exact spike times through reward-modulated STDP. (A) Synaptic weight changes of the
trained LIF neuron, for 5 different runs of the experiment. The curves show the average of the synaptic weights that should converge to w

1

i ~0
(dashed lines), and the average of the synaptic weights that should converge to w

1

i ~wmax (solid lines) with different colors for each simulation run.
(B) Comparison of the output of the trained neuron before (top trace) and after learning (bottom trace). The same input spike trains and the same
noise inputs were used before and after training for 2 hours. The second trace from above shows those spike times S* which are rewarded, the third
trace shows the realizable part of S* (i.e. those spikes which the trained neuron could potentially learn to reproduce, since the neuron m* produces
them without its 10 extra spike inputs). The close match between the third and fourth trace shows that the trained neuron performs very well. (C)
Evolution of the spike correlation between the spike train of the trained neuron and the realizable part of the target spike train S*. (D) The angle
between the weight vectorw of the trained neuron and the weight vector w* of the neuron m* during the simulation, in radians. (E) Synaptic weights
at the beginning of the simulation are marked with6, and at the end of the simulation with N, for each plastic synapse of the trained neuron. (F)
Evolution of the synaptic weights w/wmax during the simulation (we had chosen w

1

i ~wmax for i,50, w
1

i ~0 for i$50).
doi:10.1371/journal.pcbi.1000180.g007

Reward-Modulated STDP

PLoS Computational Biology | www.ploscompbiol.org 11 October 2008 | Volume 4 | Issue 10 | e1000180



where nX(t) is the postsynaptic rate at time t for pattern X, and the

constants AX
i for XM{P,N} are given by

AX
i ~

aX
ð

?

0

dr0er r0ð Þ fc drzr0ð Þz

ðT 0

0

dtfc t{tXi
� �

nX t{dr{r0ð Þ

" #

:
ð18Þ

As we will see shortly, an interesting learning effect is achieved if

AP
i is positive and AN

i is negative. Since fc(r) is non-negative, a

natural way to achieve this is to choose a positive reward kernel

er(r)$0 for r.0 and er(r) = 0 for r,0 (also, fc(r) and er(r) must not be

identical to zero for all r).

We use Equation 17 to provide insight on when and how the

classification of temporal spike patterns can be learnt with reward-

modulated STDP. Assume for the moment that AN
i ~{AP

i . We

first note that it is impossible to achieve through any synaptic

plasticity rule that the time integral over the membrane potential

of the trained neuron has after training a larger value for input

pattern P than for input pattern N. The reason is that each

presynaptic neuron emits the same number of spikes in both

patterns (namely one spike). This simple fact implies that it is

impossible to train a linear Poisson neuron (with any learning

method) to respond to pattern P with more spikes than to pattern

N. But Equation 17 implies that reward-modulated STDP

increases the variance of the membrane potential for pattern P,

and reduces the variance for pattern N. This can be seen as

follows. Because of the specific form of the STDP learning curve

W(r), which is positive for (small) positive r, negative for (small)

negative r, and zero for large r, Dwi~
Ð

?

{?
drW rð ÞnP tPi zr

� �

AP
i

has a potentiating effect on synapse i if the postsynaptic rate for

pattern P is larger (because of a higher membrane potential)

shortly after the presynaptic spike at this synapse i than before that

spike. This tends to further increase the membrane potential after

that spike. On the other hand, since AN
i is negative, the same

situation for pattern N has a depressing effect on synapse i, which

Figure 8. Test of the validity of the analytically derived conditions 13–15 on the relationship between parameters for successful
learning with reward-modulated STDP. Predicted average weight changes (black bars) calculated from Equation 22 match in sign and
magnitude the actual average weight changes (gray bars) in computer simulations, for 6 different experiments with different parameter settings (see
Table 1). (A) Weight changes for synapses with w

1

i ~wmax. (B) Weight changes for synapses with w
1

i ~0. Four cases where constraints 13–15 are not
fulfilled are shaded in light gray. In all of these four cases the weights move into the opposite direction, i.e., a direction that decreases rewards.
doi:10.1371/journal.pcbi.1000180.g008

Table 1. Parameter values used for computer simulation 3 (see Figure 8).

Ex. te [ms] wmax u
post

min [Hz] A+ 106 A2/A+ t+ [ms] Ak

+, A
k

2 t
k

2 [ms] tsim [h]

1 10 0.012 10 16.62 1.05 20 3.34, 23.12 20 5

2 7 0.020 5 11.08 1.02 15 4.58, 24.17 16 10

3 20 0.010 6 5.54 1.10 25 1.50, 21.39 40 19

4 7 0.020 5 11.08 1.07 25 4.67, 24.17 16 13

5 10 0.015 6 20.77 1.10 25 3.75, 23.12 20 2

6 25 0.005 3 13.85 1.01 25 3.34, 23.12 20 18

doi:10.1371/journal.pcbi.1000180.t001
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counteracts the increased membrane potential after the presyn-

aptic spike. Dually, if the postsynaptic rate shortly after the

presynaptic spike at synapse i is lower than shortly before that

spike, the effect on synapse i is depressing for pattern P. This leads

to a further decrease of the membrane potential after that spike. In

the same situation for pattern N, the effect is potentiating, again

counteracting the variation of the membrane potential. The total

effect on the postsynaptic membrane potential is that the

fluctuations for pattern P are increased, while the membrane

potential for pattern N is flattened.

For the LIF neuron model, and most reasonable other non-

linear spiking neuron models, as well as for biological neurons in-

vivo and in-vitro [28–30], larger fluctuations of the membrane

potential lead to more action potentials. As a result, reward-

modulated STDP tends to increase the number of spikes for

pattern P for these neuron models, while it tends to decrease the

number of spikes for pattern N, thereby enabling a discrimination

of these purely temporal presynaptic spike patterns.

Computer Simulation 4: Learning Pattern Classification
We tested these theoretical predictions through computer

simulations of a LIF neuron with conductance based synapses

exhibiting short-term depression and facilitation. Both patterns, P

and N, had 200 input channels, with 1 spike per channel (hence

this is the extreme where all information lies in the timing of

presynaptic spikes). The spike times were drawn from an uniform

distribution over a time interval of 500 ms, which was the duration

of the patterns. We performed 1000 training trials where the

patterns P and N were presented to the neuron in alternation. To

introduce exploration for this reinforcement learning task, the

neuron had injected 20% of the Ornstein-Uhlenbeck process

conductance noise (see Methods for further details).

The theoretical analysis predicted that the membrane potential

will have after learning a higher variance for pattern P, and a

lower variance for pattern N. When in our simulation of a LIF

neuron the firing of the neuron was switched off (by setting the

firing threshold potential too high) we could observe the

membrane potential fluctuations undisturbed by the reset

mechanism after each spike (see Figure 9C and 9D). The variance

of the membrane potential did in fact increase for pattern P from

2.49 (mV)2 to 5.43 (mV)2 (Figure 9C), and decrease for pattern N

(Figure 9D), from 2.34 (mV)2 to 1.33 (mV)2. The corresponding

plots with the firing threshold included are given in panels E and

F, showing an increased member of spikes of the LIF neuron for

pattern P, and a decreased number of spikes for pattern N.

Furthermore, as Figure 9A and 9B show, the increased variance of

the membrane potential for the positively reinforced pattern P led

to a stable temporal firing pattern in response to pattern P.

We repeated the experiment 6 times, each time with different

randomly generated patterns P and N, and different random initial

synaptic weights of the neuron. The results in Figure 9G and 9H

show that the learning of temporal pattern discrimination through

reward-modulated STDP does not depend on the temporal patterns

that are chosen, nor on the initial values of synaptic weights.

Computer Simulation 5: Training a Readout Neuron with
Reward-Modulated STDP To Recognize Isolated Spoken
Digits
A longstanding open problem is how a biologically realistic

neuron model can be trained in a biologically plausible manner to

extract information from a generic cortical microcircuit. Previous

work [31–35] has shown that quite a bit of salient information

about recent and past inputs to the microcircuit can be extracted

by a non-spiking linear readout neuron (i.e., a perceptron) that is

trained by linear regression or margin maximization methods.

Here we examine to what extent a LIF readout neuron with

conductance based synapses (subject to biologically realistic short

term synaptic plasticity) can learn through reward-modulated

STDP to extract from the response of a simulated cortical

microcircuit (consisting of 540 LIF neurons), see Figure 10A, the

information which spoken digit (transformed into spike trains by a

standard cochlea model) is injected into the circuit. In comparison

with the preceding task in simulation 4, this task is easier because

the presynaptic firing patterns that need to be discriminated differ

in temporal and spatial aspects (see Figure 10B; Figure S10 and

S11 show the spike trains that were injected into the circuit). But

this task is on the other hand more difficult, because the circuit

response (which creates the presynaptic firing pattern for the

readout neuron) differs also significantly for two utterances of the

same digit (Figure 10C), and even for two trials for the same

utterance (Figure 10D) because of the intrinsic noise in the circuit

(which was modeled according to [26] to reflect in-vivo conditions

during cortical UP-states). The results shown in Figure 10E–H

demonstrate that nevertheless this learning experiment was

successful. On the other hand we were not able to achieve in

this way speaker-independent word recognition, which had been

achieved in [31] with a linear readout. Hence further work will be

needed in order to clarify whether biologically more realistic

models for readout neurons can be trained through reinforcement

learning to reach the classification capabilities of perceptrons that

are trained through supervised learning.

Methods

We first describe the simple neuron model that we used for the

theoretical analysis, and then provide derivations of the equations

that were discussed in the preceding section. After that we describe

the models for neurons, synapses, and synaptic background

activity (‘‘noise’’) that we used in the computer simulations.

Finally we provide technical details to each of the 5 computer

simulations that we discussed in the preceding section.

Linear Poisson Neuron Model
In our theoretical analysis, we use a linear Poisson neuron

model whose output spike train S
post
j tð Þ is a realization of a

Poisson process with the underlying instantaneous firing rate

Rj(t). The effect of a spike of presynaptic neuron i at time t9 on

the membrane potential of neuron j is modeled by an increase in

the instantaneous firing rate by an amount wji(t9)e(t2t9), where e

is a response kernel which models the time course of a

postsynaptic potential (PSP) elicited by an input spike. Since

STDP according to [12] has been experimentally confirmed

only for excitatory synapses, we will consider plasticity only for

excitatory connections and assume that wji$0 for all i and

e(s)$0 for all s. Because the synaptic response is scaled by the

synaptic weights, we can assume without loss of generality that

the response kernel is normalized to
Ð

?

0
ds e sð Þ~1. In this linear

model, the contributions of all inputs are summed up linearly:

Rj tð Þ~
X

n

i~1

ð

?

0

ds wji t{sð Þe sð ÞSi t{sð Þ, ð19Þ

where S1,…,Sn are the n presynaptic spike trains. Since the

instantaneous firing rate R(t) is analogous to the membrane

potential of other neuron models, we occasionally refer to R(t) as

the ‘‘membrane potential’’ of the neuron.

Reward-Modulated STDP
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Figure 9. Training a LIF neuron to classify purely temporal presynaptic firing patterns: a positive reward is given for firing of the neuron
in response to a temporal presynaptic firingpattern P, and a negative reward for firing in response to another temporal pattern N. (A)
The spike response of the neuron for individual trials, during 500 training trials when pattern P is presented. Only the spikes from every 4-th trial are
plotted. (B) As in (A), but in response to pattern N. (C) The membrane potential Vm(t) of the neuron during a trial where pattern P is presented, before
(blue curve) and after training (red curve), with the firing threshold removed. The variance of the membrane potential increases during learning, as
predicted by the theory. (D) As in (C), but for pattern N. The variance of the membrane potential for pattern N decreases during learning, as predicted
by the theory. (E) The membrane potential Vm(t) of the neuron (including action potentials) during a trial where pattern P is presented before (blue
curve) and after training (red curve). The number of spikes increases. (F) As in (E), but for trials where pattern N is given as input. The number of spikes
decreases. (G) Average number of output spikes per trial before learning, in response to pattern P (gray bars) and pattern N (black bars), for 6
experiments with different randomly generated patterns P and N, and different random initial synaptic weights of the neuron. (H) As in (G), for the
same experiments, but after learning. The average number of spikes per trial increases after training for pattern P, and decreases for pattern N.
doi:10.1371/journal.pcbi.1000180.g009
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Figure 10. A LIF neuron is trained through reward-modulated STDP to discriminate as a ‘‘readout neuron’’ responses of generic
cortical microcircuits to utterances of different spoken digits. (A) Circuit response to an utterance of digit ‘‘one’’ (spike trains of 200 out of
540 neurons in the circuit are shown). The response within the time period from 100 to 200 ms (marked in gray) is used as a reference in the
subsequent 3 panels. (B) The circuit response from (A) (black) for the period between 100 and 200 ms, and the circuit response to an utterance of
digit ‘‘two’’ (red). (C) The circuit spike response from (A) (black) and a circuit response for another utterance of digit ‘‘one’’ (red), also shown for the
period between 100 and 200 ms. (D) The circuit spike response from (A) (black), and another circuit response to the same utterance in another trial
(red). The responses differ due to the presence of noise in the circuit. (E) Spike response of the LIF readout neuron for different trials during learning,
for trials where utterances of digit ‘‘two’’ (left plot) and digit ‘‘one’’ (right plot) are presented as circuit inputs. The spikes from each 4th trial are
plotted. (F) Average number of spikes in the response of the readout during training, in response to digit ‘‘one’’ (blue) and digit ‘‘two’’ (green). The
number of spikes were averaged over 40 trials. (G) The membrane potential Vm(t) of the neuron during a trial where an input pattern corresponding
to an utterance of digit ‘‘two’’ is presented, before (blue curve) and after training (red curve), with the firing threshold removed. (H) As in (G), but for
an input pattern corresponding to an utterance of digit ‘‘one’’. The variance of the membrane potential increases during learning for utterances of the
rewarded digit, and decreases for the non-rewarded digit.
doi:10.1371/journal.pcbi.1000180.g010
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Learning Equations
In the following, we denote by SxTE Sj

post

k
tð Þ,Spre

i
t0ð Þ the ensemble

average of a random variable x given that neuron k spikes at time t

and neuron i spikes at time t9. We will also sometimes indicate the

variables Y1,Y2,… over which the average of x is taken by writing

SxTY1,Y2,... ...j .

Derivation of Equation 6. Using Equations 5, 1, and 4, we

obtain the expected weight change between time t and t+T

Swji tzTð Þ{wji tð ÞTE
T

~

ð

?

0

dsfc sð Þ

ð

?

0

drW rð ÞSSd tð ÞSpost
j t{sð ÞSpre

i t{s{rð ÞTTTEz

ð

?

0

ds fc sð Þ

ð0

{?

drW rð ÞSSd tð ÞSpost
j t{szrð ÞSpre

i t{sð ÞTTTE

~

ð

?

0

drW rð Þ

ð

?

0

ds fc sð ÞSSd tð ÞSpost
j t{sð ÞSpre

i t{s{rð ÞTETTz

ð0

{?

drW rð Þ

ð

?

rj j

ds fc szrð ÞSSd tð ÞSpost
j t{sð ÞSpre

i t{s{rð ÞTETT

~

ð

?

0

drW rð Þ

ð

?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTTz

ð0

{?

drW rð Þ

ð

?

rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT ,

with Dji(t,s,r) = Æd(t)|Neuron j spikes at t2s, and neuron i spikes at

t2s2ræE, and the joint firing rate nji(t,r) = ÆSj(t)Si(t2r)æE describes

correlations between spike timings of neurons j and i. The joint

firing rate nji(t2s,r) depends on the weight at time t2s. If the

learning rate defined by the magnitude of W(r) is small, the

synaptic weights can be assumed constant on the time scale of T.

Thus, the time scales of neuronal dynamics are separated from

the slow time scale of learning. For slow learning, synaptic

weights integrate a large number of small changes. We can then

expect that averaged quantities enter the learning dynamics. In

this case, we can argue that fluctuations of a weight wji about its

mean are negligible and it can well be approximated by its

average ÆwjiæE (it is ‘‘self-averaging’’, see [21,36]). To ensure that

average quantities enter the learning dynamics, many

presynaptic and postsynaptic spikes as well as many

independently delivered rewards at varying delays have to

occur within T. Hence, in general, the time scale of single spike

occurrences and the time scale of the eligibility trace is required

to be much smaller than the time scale of learning. If time scales

can be separated, we can drop the expectation on the left hand

side of the last equation and write

Swji tzTð Þ{wji tð ÞTE
T

~
wji tzTð Þ{wji tð Þ

T

~
1

T

ðtzT

t

d

dt
wji t

0ð Þdt0~
d

dt
Swji tð ÞTT :

We thus obtain Equation 6:

d

dt
Swji tð ÞTT~

ð

?

0

drW rð Þ

ð

?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTT

z

ð0

{?

drW rð Þ

ð

?

rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT :

Simplification of Equation 6. In order to simplify this

equation, we first observe that W(r) is vanishing for large |r|.

Hence we can approximate the integral over the learning

window by a bounded integral
Ð

?

{?
drW rð Þ&

Ð TW

{TW
drW rð Þ for

some TW.0 and TW%T. In the analyzes of this article, we

consider the case where reward is delivered with a relatively

large temporal delay. To be more precise, we assume that a pre-

post spike pair has an effect on the reward signal only after some

minimal delay dr and that we can write Dji t,s,rð Þ~
d0zD

pre,post
ji t,s,rð Þ for some baseline reward d0 and a part

which depends on the timing of pre-post spike pairs with

D
pre,post
ji t,s,rð Þ~0 for s,dr and dr.TW. We can then

approximate the second term of Equation 6:

ð0

{?

drW rð Þ

ð

?

rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT

&

ð0

{TW

drW rð Þ

ð

?

rj j

ds fc szrð ÞS d0zD
pre,post
ji t,s,rð Þ

� �

nji t{s,rð ÞTT

&

ð0

{TW

drW rð Þ

ð

?

0

ds fc sð Þd0Snji t{s,rð ÞTT

�

z

ð

?

rj j

ds fc szrð ÞSDpre,post
ji t,s,rð Þnji t{s,rð ÞTT

#

because Ænji(t2s2r,r)æT<Ænji(t2s,r)æT for rM[2TW,TW] and

TW%T. Since D
pre,post
ji t,s,rð Þ~0 for s#TW, the second term in

the brackets is equivalent to
Ð

?

0
ds fc szrð ÞSDpre,post

ji t,s,rð Þ

nji t{s,rð ÞTT which in turn is approximately given by
Ð

?

0
ds fc sð ÞSDpre,post

ji t,s,rð Þnji t{s,rð ÞTT if we assume that

fc(s+r)<fc(s) for s$dr and |r|,TW. We can thus approximate

the second term of Equation 6 as

ð0

{?

drW rð Þ

ð

?

rj j

ds fc szrð ÞSDji t,s,rð Þnji t{s,rð ÞTT

&

ð0

{TW

drW rð Þ

ð

?

0

ds fc sð Þd0Snji t{s,rð ÞTT

�

z

ð

?

0

ds fc sð ÞSDpre,post
ji t,s,rð Þnji t{s,rð ÞTT

�

&

ð0

?

drW rð Þ

ð

?

0

ds fc sð ÞSDji t,s,rð Þnji t{s,rð ÞTT :

With this approximation, the first and second term of Equation 6

can be combined in a single integral to obtain Equation 8.

Derivations for the Biofeedback Experiment
We assume that a reward with the functional form er is delivered

for each postsynaptic spike with a delay dr. The reward as time t is

therefore

d tð Þ~

ð

?

0

dr S
post
k t{dr{rð Þer rð Þ:

Weight change for the reinforced neuron (derivation of
Equation 10)
The reward correlation for a synapse ki afferent to the

reinforced neuron is

Reward-Modulated STDP
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Dki t,s,rð Þ~Sd tð ÞTE Sj
post

k
t{sð Þ,S

pre

i
t{s{rð Þ

~

ð

?

0

dr0 er r0ð ÞSSpost
k t{dr{r0ð ÞTE S

post

k
t{sð Þ,Spre

i
t{s{rð Þj

~

ð

?

0

dr0 er r0ð Þ nk t{dr{r0ð Þzwkie½ szr{dr{r0ð Þzd s{dr{r0ð Þ�

~

ð

?

0

dr0er r0ð Þnk t{dr{r0ð Þzwki

ð

?

0

dr0 er r0ð Þe szr{dr{r0ð Þzer s{drð Þ:

If we assume that the output firing rate is constant on the time

scale of the reward function, the first term vanishes. We rewrite the

result as

Dki t,s,rð Þ~er s{drð Þzwki

ð

?

{?

dr0 er s{drzr0ð Þe r{r0ð Þ:

The mean weight change for weights to the reinforced neuron is

therefore

d

dt
wki tð Þ~

ð

?

{?

drW rð Þ

ð

?

0

ds fc sð Þer s{drð ÞSnki t{s,rð ÞTT

	

z

wki

ð

?

{?

dr0 e r{r0ð Þ

ð

?

0

ds fc sð Þer s{drzr0ð ÞSnki t{s,rð ÞTT




:

ð20Þ

We show that the second term in the brackets is very small

compared to the first term:

wki

ð

?

{?

dr0 e r{r0ð Þ

ð

?

0

ds fc sð Þer s{drzr0ð ÞSnki t{s,rð ÞTT~

wki

ð

?

{?

dr0 e r{r0ð Þ

ð

?

0

ds fc s{r0ð Þer s{drð ÞSnki t{s{r0,rð ÞTT&

wki

ð

?

{?

dr0 e r{r0ð Þ

ð

?

0

ds fc sð Þer s{drð ÞSnki t{s,rð ÞTT :

The last approximation is based on the assumption that

fc(s)<fc(s2r9) and Ænki(t2r9,r)æT<Ænki(t,r)æT for r9M[2TW2Te,TW].

Here, TW is the time scale of the learning window (see above), and

Te is time scale of the PSP, i.e., we have e(s)<0 for s$Te. Since
Ð

?

{?
dr e rð Þ~1 by definition, we see that this is the first term in the

brackets of Equation 20 scaled by wki. For neurons with many

input synapses we have wki%1. Thus the second term in the

brackets of Equation 20 is small compared to the first term. We

therefore have

d

dt
wki tð Þ&

ð

?

0

ds fc szdrð Þer sð Þ

ð

?

{?

drW rð ÞSnki t{dr{s,rð ÞTT :

Weight change for non-reinforced neurons (derivation of
Equation 11)
The reward correlation of a synapse ji to a non-reinforced

neuron j is given by

Dji t,s,rð Þ~Sd tð ÞTE S
post

j
t{sð Þ,Spre

i
t{s{rð Þj

~

ð

?

0

dr0 er r
0ð ÞSSpost

k t{dr{r0ð ÞT
E S

post

j
t{sð Þ,Spre

i
t{s{rð Þj :

We have

SS
post
k t{dr{r0ð ÞT

E S
post

jj t{sð Þ,Spre

i
t{s{rð Þ

~

SS
post
k t{dr{r0ð ÞSpost

j t{sð ÞT
E S

pre

i
t{s{rð Þj

SS
post
j t{sð ÞTE S

pre

i
t{s{rð Þj

~
nki t{dr{r0,s{dr{r0ð Þzwkiwjie szr{dr{r0ð Þe rð Þ

nj t{sð Þzwjie rð Þ
,

for which we obtain

Dji t,s,rð Þ~
ð

?

0

dr0 er r0ð Þ
nkj t{dr{r0,s{dr{r0ð Þzwkiwjie szr{dr{r0ð Þe rð Þ

nj t{sð Þzwjie rð Þ
:

In analogy to the previous derivation, we assume here that the

firing rate nj(t2s) in the denominator results from many PSPs.

Hence, the single PSP wjie(r) is small compared to nj(t2s). Similarly,

we assume that with weights wki, wji%1, the second term in the

nominator is small compared to the joint firing rate

nkj(t2dr2r9,s2dr2r9). We therefore approximate the reward

correlation by

Dji t,s,rð Þ&

ð

?

0

dr0 er r
0ð Þ
nkj t{dr{r0,s{dr{r0ð Þ

nj t{sð Þ
:

Hence, the reward correlation of a non-reinforced neuron depends

on the correlation of this neuron with the reinforced neuron. The

mean weight change for a non-reinforced neuron j?k is therefore

d

dt
wji tð Þ&

ð

?

0

ds fc sð Þ

ð

?

{?

drW rð Þ

ð

?

0

dr0er(r
0)S

nkj t{dr{r0,s{dr{r0ð Þ

nj t{sð Þ
nji t{s,rð ÞTT

This equation deserves a remark for the case that nj(t2s) is zero,

since it appears in the denominator of the fraction. Note that in

this case, both nkj(t2dr2r9,s2dr2r9) and nji(t2s,r) are zero. In fact, if

we take the limit nj(t2s)R0, then both of these factors approach

zero at least as fast. Hence, in the limit of nj(t2s)R0, the term in

the angular brackets evaluates to zero. This reflects the fact that

since STDP is driven by pre- and postsynaptic spikes, there is no

weight change if no postsynaptic spikes occur.

For uncorrelated neurons, Equation 11 evaluates to

zero. For uncorrelated neurons k, j, nkj(t2dr2r9,s2dr2r9) can

be factorized into nk(t2dr2r9)nj(t2s), and we obtain

d

dt
wji tð Þ&

ð

?

0

ds fc sð Þ

ð

?

{?

drW rð Þ

ð

?

0

dr0er r0ð ÞSnk t{dr{r0ð Þnji t{s,rð ÞTT :

This evaluates approximately to zero if the mean output rate of

neuron k is constant on the time scale of the reward kernel.

Analysis of Spike-Timing-Dependent Rewards (Derivation
of Conditions 13–15)
Below, we will indicate the variables Y1,Y2,… over which the

average of x is taken by writing SxTY1,Y2,... ...j . From Equation 12,

we can determine the reward correlation for synapse i

Reward-Modulated STDP
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Dji t,s,rð Þ~

ð

?

{?

dr0k r0ð ÞSSpost
j t{drð ÞS

1

t{dr{r0ð ÞTE S
post

j
t{sð Þ,Spre

i
t{s{rð Þj

~

ð

?

{?

dr0k r0ð Þ n
post
j t{drð Þzd s{drð Þzwji szr{drð Þe szr{drð Þ

h i

n
1

t{dr{r0ð Þzw
1

i e szr{dr{r0ð Þ
h i

, ð21Þ

where n
post
j tð Þ~SS

post
j tð ÞTE denotes the instantaneous firing rate of the

trained neuron at time t, and n*(t) = ÆS*(t)æE denotes the instantaneous
rate of the target spike train at time t. Since weights are changing

very slowly, we have wji(t2s2r)<wji(t). In the following, we will drop

the dependence of wji on t for brevity. For simplicity, we assume that

input rates are stationary and uncorrelated. In this case (since the

weights are changing slowly), also the correlations between inputs

and outputs can be assumed stationary, nji(t,r) = nji(r). With constant

input rates, we can rewrite Equation 21 as

Dji t,s,rð Þ~kn
1

n
post
j zkn

1

d s{drð Þzkn
1

wjie szr{drð Þ

zw
1

i

ð

?

{?

dr0k r0ð Þe szr{dr{r0ð Þ

n
post
j t{drð Þzd s{drð Þzwji szr{drð Þe szr{drð Þ

h i

,

with k~

ð

?

{?

ds k(s). We use this results to obtain the temporally

smoothed weight change for synapse ji. With stationary correlations,

we can drop the dependence of nji on t and write nji(t,r) = nji(r).

Furthermore, we define nWji rð Þ~nji rð ÞW rð Þ and obtain

d

dt
wji tð Þ~

ð

?

{?

dr W rð Þnji rð Þ

ð

?

0

ds fc sð ÞSDji t,s,rð ÞTT

~

ð

?

{?

dr nWji rð Þk n�n
post
j f czn�fc drð Þ

h

zn�wji

ð

?

0

ds fc sð Þe szr{drð Þ

�

z

ð

?

{?

dr nWji rð Þw�
i n

post

ð

?

{?

dr0k r0ð Þ

ð

?

0

ds fc sð Þe szr{dr{r0ð Þ

z

ð

?

{?

dr nWji rð Þw�
i

ð

?

{?

dr0k r0ð Þfc drð Þe r{r0ð Þ

z

ð

?

{?

dr nWji rð Þw�
i

ð

?

{?

dr0k r0ð Þwji

ð

?

0

ds fc sð Þe szr{drð Þe szr{dr{r0ð Þ:

We assume that the eligibility function fc(dr)<fc(dr+r) if |r| is on the

time scale of a PSP, the learning window, or the reward kernel, and

that dr is large compared to these time scales. Then, we have
ð

?

{?

dr nWji rð Þ

ð

?

{?

dr0 k r0ð Þfc drð Þe r{r0ð Þ~fc drð Þ

ð

?

{?

dr nWji rð Þek rð Þ

where ek rð Þ~
Ð

?

{?
dr0 k r0ð Þe r{r0ð Þ is the convolution of the reward

kernel with the PSP. Furthermore, we find

ð

?

{?

dr nWji rð Þ

ð

?

{?

dr0 k r0ð Þ

ð

?

0

ds fc sð Þe szr{drð Þe szr{dr{r0ð Þ

&fc drð Þ

ð

?

{?

dr nWji rð Þ

ð

?

{?

dr0 k r0ð Þ

ð

?

0

ds e szr{drð Þe szr{dr{r0ð Þ

~fc drð Þ

ð

?

{?

dr nWji rð Þ

ð

?

0

ds e sð Þek sð Þ:

With these simplifications, and the abbreviation nWji ~
Ð

?

{?
dr nWji rð Þ we

obtain the weight change at synapse ji

d

dt
wji tð Þ&kn�n

post
j nWji f czfc drð ÞknWji n�zn�wjizw�

i n
post
j

h i

zfc drð Þw�
i

ð

?

{?

drW rð Þnji rð Þek rð Þzfc drð Þwjiw
�
i n

W
ji

ð

?

{?

dr e rð Þek rð Þ,

where nWji ~
Ð

?

{?
drW rð Þnji rð Þ.

For uncorrelated Poisson input spike trains of rate n
pre
i and the

linear Poisson neuron model, the input-output correlations are

nji rð Þ~n
pre
i n

post
j zwjin

pre
i e rð Þ. With these correlations, we ob-

tain nWji ~n
pre
i n

post
j Wzwjin

pre
i W e where W~

Ð

?

{?
drW rð Þ, and

W e~
Ð

?

{?
dr e rð ÞW rð Þ. The weight change at synapse ji is then

d

dt
wji tð Þ&kf cn

�n
pre
i n

post
j n

post
j WzwjiW e

h i

zkfc drð Þnprei n
post
j WzwjiW e

h i

n�zn�wjizw�
i n

post
j

h i

zfc drð Þw�
i n

pre
i n

post
j

ð

?

{?

dr W rð Þek rð Þzwji

ð

?

{?

dr W rð Þe rð Þek rð Þ

� �

zfc drð Þw�
i wjin

pre
i n

post
j WzwjiW e

h i

ð

?

0

dr e rð Þek rð Þ,

ð22Þ

We will now bound the expected weight change for synapses ji

with w
1

i ~wmax and for synapses jk with w
1

k~0. In this way we can

derive conditions for which the expected weight change for the

former synapses is positive, and that for the latter type is negative.

First, we assume that the integral over the reward kernel is

positive. In this case, the weight change given by Equation 22 is

negative for synapses i with w
1

i ~0 if and only if n
pre
i w0, and

{n
post
j WwwjiW e. In the worst case, wji is wmax and n

post
j is small.

We have to guarantee some minimal output rate n
post
min such that

even if wji=wmax, this inequality is fulfilled. This could be

guaranteed by some noise current. Given such minimal output

rate, we can state the first inequality which guarantees conver-

gence of weights wji with w
1

i ~0

{n
post
minWwwmaxW e:

For synapses ji with w
1

i ~wmax, we obtain two more conditions.

The approximate weight change is given by

d

dt
wji tð Þ

1

n
pre
i

&k n
post
j WzwjiW e

h i

n�n
post
j f czfc drð Þn�zfc drð Þn�wjizfc drð Þnpostj wmax

h i

zfc drð Þwmaxn
post
j

ð

?

{?

dr W rð Þek rð Þ

zfc drð Þwmaxwji

ð

?

{?

dr W rð Þe rð Þek rð Þ

zfc drð Þwmaxwjin
post
j W

ð

?

0

dr e rð Þek rð Þ

zfc drð Þwmaxw
2
jiW e

ð

?

0

dr e rð Þek rð Þ:

(21)
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The last term in this equation is positive and small. We can ignore

it in our sufficient condition. The second to last term is negative.

We will include in our condition that the third to last term

compensates for this negative term. Hence, the second condition is

ð

?

{?

dr W rð Þe rð Þek rð Þ§{n
post
j W

ð

?

0

dr e rð Þek rð Þ,

which should be satisfied in most setups. If we assume that this

holds, we obtain

d

dt
wji tð Þ§k n

post
j WzwjiW e

h i

n�n
post
j f czfc drð Þn�zfc drð Þn�wjizfc drð Þnpostj wmax

h i

zfc drð Þwmaxn
post
j

ð

?

{?

dr W rð Þek rð Þ:

which should be positive. We obtain the following inequality

ð

?

{?

dr W rð Þek rð Þw{Wk
n
1

n
post
j

wmax

f c
fc drð Þ

z
n
1

wmax

zn
1

znpost

" #

:

All three inequalities are summarized in the following:

{n
post
minWwwmaxW e

ð

?

{?

dr W rð Þe rð Þek rð Þ§{npostmaxW

ð

?

0

dr e rð Þek rð Þ

ð

?

{?

dr W rð Þek rð Þw{Wk
n�npostmax

wmax

f c
fc drð Þ

z
n�

wmax

zn�znpostmax

� �

,

where npostmax is the maximal output rate. If these inequalities are

fulfilled and input rates are positive, then the weight vector

converges on average from any initial weight vector to w*. The

second condition is less severe, and should be easily fulfilled in

most setups. If this is the case, the first Condition 13 ensures that

weights with w* = 0 are depressed while the third Condition 15

ensures that weights with w* =wmax are potentiated.

Analysis of the Pattern Discrimination Task (Derivation of
Equation 17)
We assume that a trial consists of the presentation of a single

pattern starting at time t=0. We compute the weight change for a

single trial given that pattern XM{P,N} was presented with the help

of Equations 1, 3, and 4 as

d

dt
wi tð Þ

�

�

�

�

X

~

ð

?

0

dsfc sð Þ

ð

?

0

drW rð ÞSpost t{sð Þd t{s{r{tXi
� �

�

z

ð

?

0

drW {rð ÞSpost t{s{rð Þd t{s{tXi
� �

�

d tð Þ

~aX
ð

?

0

dsfc sð Þ

ð

?

0

drW rð ÞSpost t{sð Þd t{s{r{tXi
� �

�

z

ð

?

0

drW {rð ÞSpost t{s{rð Þd t{s{tXi
� �

�
ð

?

0

dr0er r0ð ÞSpost t{dr{r0ð Þ

~aX
ð

?

0

drfc t{r{tXi
� �

W rð Þ

ð

?

0

dr0er r0ð ÞSpost rztXi
� �

Spost t{dr{r0ð Þ

zaX
ð

?

0

drfc t{tXi
� �

W {rð Þ

ð

?

0

dr0er r0ð ÞSpost tXi {r
� �

Spost t{dr{r0ð Þ:

We can compute the average weight change given that pattern X

was presented:

S
d

dt
wi tð ÞTE Xj ~aX

ð

?

0

drfc t{r{tXi
� �

W rð Þ

ð

?

0

dr0er r
0ð ÞSSpost tXi zr

� �

Spost t{dr{r0ð ÞTE Xj

zaX
ð

?

0

drfc t{tXi
� �

W {rð Þ

ð

?

0

dr0er r
0ð ÞSSpost tXi {r

� �

Spost t{dr{r0ð ÞTE Xj :

If we assume that fc is approximately constant on the time scale of

the learning window W, we can simplify this to

S
d

dt
wi tð ÞTE Xj ~

ð

?

{?

drfc t{tXi
� �

W rð Þ

ð

?

0

dr0er r0ð ÞSSpost tXi zr
� �

Spost t{dr{r0ð ÞTE Xj aX :

For the linear Poisson neuron, we can write the auto-correlation

function as

SSpost tXi zr
� �

Spost t{dr{r0ð ÞTE Xj ~ nX tXi zr
� �

nX t{dr{r0ð Þ
�

znX tXi zr
� �

d tXi zr{tzdrzr0
� ��

~nX tXi zr
� �

nX t{dr{r0ð Þz
�

d tXi zr{tzdrzr0
� ��

,

where nX(t) = ÆSpost(t)æE|X is the ensemble average rate at time t given

that pattern X was presented. If an experiment for a single pattern

runs over the time interval [0,T9], we can compute the total average

weight change DwX
i of a trial given that pattern X was presented as

DwX
i ~

ðT 0

0

dtS
d

dt
wi tð ÞTE Xj

~aX
ð

?

{?

drW rð ÞnX tXi zr
� �

ðT 0

0

dtfc t{tXi
� �

ð

?

0

dr0er r
0ð Þ

nX t{dr{r0ð Þzd tXi zr{tzdrzr0
� �� �

~aX
ð

?

{?

drW rð ÞnX tXi zr
� �

ð

?

0

dr0er r
0ð Þ

fc rzdrzr0ð Þz

ðT 0

dr

dtfc t{tXi
� �

nX t{dr{r0ð Þ

" #

&aX
ð

?

{?

drW rð ÞnX tXi zr
� �

ð

?

0

dr0er r
0ð Þ

fc drzr0ð Þz

ðT 0

0

dtfc t{tXi
� �

nX t{dr{r0ð Þ

" #

ð23Þ

By defining

AX
i ~aX

ð

?

0

dr0er r
0ð Þ fc drzr0ð Þz

ðT 0

0

dtfc t{tXi
� �

nX t{dr{r0ð Þ

" #

,

we can write Equation 23 as

Reward-Modulated STDP
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DwX
i ~

ð

?

{?

drW rð ÞnX tXi zr
� �

AX
i :

We assume that eligibility traces and reward signals have settled to

zero before a new pattern is presented. The expected weight change

for the successive presentation of both patterns is therefore

Dwi~

ð

?

{?

drW rð Þ nP tPi zr
� �

AP
i znN tNi zr

� �

AN
i

� �

:

The equations can easily be generalized to the case where multiple

input spikes per synapse are allowed and where jitter on the

templates is allowed. However, the main effect of the rule can be

read off the equations given here.

Common Models and Parameters of the Computer
Simulations
We describe here the models and parameter values that were

used in all our computer simulations. We will specify in a

subsequent section the values of other parameters that had to be

chosen differently in individual computer simulations, in depen-

dence of their different setups and requirements of each computer

simulation.

LIF Neuron Model
For the computer simulations LIF neurons with conductance-

based synapses were used. The membrane potential Vm(t) of this

neuron model is given by:

Cm

dVm tð Þ

dt
~{

Vm tð Þ{Vresting

Rm

{

X

Ke

j~1

ge,j tð Þ Vm tð Þ{Eeð Þ{
X

Ki

j~1

gi,j Vm tð Þ{Eið Þ{Inoise tð Þ,

ð24Þ

where Cm is the membrane capacitance, Rm is the membrane

resistance, Vresting is the resting potential, and ge,j(t) and gi,j(t) are the

Ke and Ki synaptic conductances from the excitatory and inhibitory

synapses respectively. The constants Ee and Ei are the reversal

potentials of excitatory and inhibitory synapses. Inoise represents the

synaptic background current which the neuron receives (see below

for details).

Whenever the membrane potential reaches a threshold value

Vthresh, the neuron produces a spike, and its membrane potential is

reset to the value of the reset potential Vreset. After a spike, there is a

refractory period of length Trefract, during which the membrane

potential of the neuron remains equal to the value Vm(t) =Vreset.

After the refractory period Vm(t) continues to change according to

Equation 24.

For a given synapse, the dynamics of the synaptic conductance

g(t) is defined by

dg tð Þ

dt
~{

g tð Þ

tsyn
z

X

k

A t kð Þ
ztdelay

� �

d t{t kð Þ
{tdelay

� �

, ð25Þ

where A(t) is the amplitude of the postsynaptic response (PSR) to a

single presynaptic spike, which varies over time due to the inherent

short-term dynamics of the synapse, and {t(k)} are the spike times

of the presynaptic neuron. The conductance of the synapse

decreases exponentially with time constant tsyn, and increases

instantaneously by amount of A(t) whenever the presynaptic

neuron spikes.

In all computer simulations we used the following values for the

neuron and synapse parameters. The membrane resistance of the

neurons was Rm=100 MV, the membrane capacitance

Cm=0.3 nF, the resting potential, reset potential and the initial

value of the membrane potential had the same value of

Vresting=Vreset=Vm(0) =270 mV, the threshold potential was set

to Vthresh=259 mV and the refractory period Trefract=5 ms. For

the synapses we used a time constant set to tsyn=5 ms, reversal

potential Ee=0 mV for the excitatory synapses and Ee=275 mV

for the inhibitory synapses. All synapses had a synaptic delay of

tdelay=1 ms.

Short-Term Dynamics of Synapses
We modeled the short-term dynamics of synapses according to

the phenomenological model proposed in [37], where the

amplitude Ak=A(tk+tdelay) of the postsynaptic response for the kth

spike in a spike train with inter-spike intervals D1,D2,…,Dk21 is

calculated with the following equations

Ak~w:uk:Rk

uk~Uzuk{1 1{Uð Þe{Dk{1=F

Rk~1z Rk{1{uk{1Rk{1{1ð Þe{Dk{1=D,

ð26Þ

with hidden dynamic variables uM[0,1] and RM[0,1] whose initial

values for the 1st spike are u1=U and R=1 (see [38] for a

justification of this version of the equations, which corrects a small

error in [37] ). The variable w is the synaptic weight which scales

the amplitudes of postsynaptic responses. If long-term plasticity is

introduced, this variable is a function of time. In the simulations,

for the neurons in the circuits the values for the U, D and F

parameters were drawn from Gaussian distributions with mean

values which depended on whether the type of presynaptic and

postsynaptic neuron of the synapse is excitatory or inhibitory, and

were chosen according to the data reported in [37] and [39]. The

mean values of the Gaussian distributions are given in Table 2,

and the standard deviation was chosen to be 50% of its mean.

Negative values were replaced with values drawn from uniform

distribution with a range between 0 and twice the mean value. For

the simulations involving individual trained neurons, the U, D,

and F parameters of these neurons were set to the values from

Table 2.

We have carried out control experiments with current-based

synapses that were not subject to short-term plasticity (see Figure

S5, Figure S8, and Figure S9; successful control experiments with

static current-based synapses were also carried out for computer

simulation 1, results not shown). We found that the results of all

Table 2. Mean values of the U, D, and F parameters in the
model from [37] for the short-term dynamics of synapses,
depending on the type of the presynaptic and postsynaptic
neuron (excitatory or inhibitory).

Source/Dest. Exc. (U, D, F) Inh. (U, D, F)

Exc. 0.5, 1.1, 0.02 0.25, 0.7, 0.02

Inh. 0.05, 0.125, 1.2 0.32, 0.144, 0.06

These mean values, based on experimental data from [37,39], were used in all
computer simulations.
doi:10.1371/journal.pcbi.1000180.t002
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our computer simulations also hold for static current-based

synapses.

Model of Background Synaptic Activity
To reproduce the background synaptic input cortical neurons

receive in vivo, the neurons in our models received an additional

noise process as conductance input. The noise process we used is a

point-conductance approximation model, described in [26].

According to [26], this noise process models the effect of a

bombardment by a large number of synaptic inputs in vivo, which

causes membrane potential depolarization, referred to as ‘‘high

conductance’’ state. Furthermore, it was shown that it captures the

spectral and amplitude characteristics of the input conductances of

a detailed biophysical model of a neocortical pyramidal cell that

was matched to intracellular recordings in cat parietal cortex in

vivo. The ratio of average contributions of excitatory and

inhibitory background conductances was chosen to be 5 in

accordance to experimental studies during sensory responses (see

[40–42]). In this model, the noisy synaptic current Inoise in

Equation 24 is a sum of two currents:

Inoise tð Þ~ge tð Þ Vm tð Þ{Eeð Þzgi tð Þ Vm tð Þ{Eið Þ, ð27Þ

where ge(t) and gi(t) are time-dependent excitatory and inhibitory

conductances. The values of the respective reversal potentials were

Ee=0 mV and Ei=275 mV. The conductances ge(t) and gi(t) were

modeled according to [26] as a one-variable stochastic process

similar to an Ornstein-Uhlenbeck process:

dge tð Þ

dt
~{

1

te
ge tð Þ{ge0½ �z

ffiffiffiffiffiffi

De

p

x1 tð Þ

dgi tð Þ

dt
~{

1

ti
gi tð Þ{gi0½ �z

ffiffiffiffiffi

Di

p

x2 tð Þ,

with mean ge0=0.012 mS, noise-diffusion constant De=0.003 mS
and time constant te=2.7 ms for the excitatory conductance, and

mean gi0=0.057 mS, noise-diffusion constant Di=0.0066 mS, and
time constant ti=10.5 ms for the inhibitory conductance. x1(t) and

x2(t) are Gaussian white noise of zero mean and unit standard

deviation.

Since these processes are Gaussian stochastic processes, they can

be numerically integrated by an exact update rule:

ge tzDð Þ~ge0z ge tð Þ{ge0½ �e{
D

tezAeN1 0,1ð Þ

gi tzDð Þ~gi0z gi tð Þ{gi0½ �e
{

D

tizAiN2 0,1ð Þ,

where N1(0,1) and N2(0,1) are normal random numbers (zero

mean, unit standard deviation) and Ae, Ai are amplitude

coefficients given by:

Ae~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dete

2
1{e

{2D
te

h i

r

Ai~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Diti

2
1{e

{2D
ti

h i

r

:

Reward-Modulated STDP
For the computer simulations we used the following parameters

for the STDP window function W(r): A+=0.01wmax, A2/A+=1.05,

t+= t2=30 ms. wmax denotes the hard bound of the synaptic

weight of the particular plastic synapse. Note that the parameter

A+ can be given arbitrary value in this plasticity rule, since it can be

scaled together with the reward signal, i.e. multiplying the reward

signal by some constant and dividing A+ by the same constant

results in identical time evolution of the weight changes. We have

set A+ to be 1% of the maximum synaptic weight.

We used the a-function to model the eligibility trace kernel fc(t)

fc tð Þ~
t
te
e

t
te , if tw0

0 , otherwise
,

(

ð28Þ

where the time constant te was set to te=0.4 s in all computer

simulations.

For computer simulations 1 and 4 we performed control

experiments (see Figure S3, Figure S4, and Figure S7) with the

weight-dependent synaptic update rule proposed in [22], instead

of the purely additive rule in Equation 3. We used the parameters

proposed in [22], i.e. m=0.4, a=0.11, t+= t2=20 ms. The w0

parameter was calculated according to the formula:

w0~
1
2
wmaxa

1=1{m where wmax is the maximum synaptic weight

of the synapse. 1
2
wmax is equal to the initial synaptic weight for the

circuit neurons, or to the mean of the distribution of the initial

weights for the trained neurons.

Initial Weights of Trained Neurons
The synaptic weights of excitatory synapses to the trained

neurons in experiments 2–5 were initialized from a Gaussian

distribution with mean wmax/2. The standard deviation was set to

wmax/10 bounded within the range [3wmax/10,7wmax/10].

Software
All computer simulations were carried out with the PCSIM

software package (http://www.lsm.tugraz.at/pcsim). PCSIM is a

parallel simulator for biologically realistic neural networks with a

fast c++ simulation core and a Python interface. It has been

developed by Thomas Natschläger and Dejan Pecevski. The time

step of simulation was set to 0.1 ms.

Details to Individual Computer Simulations
For all computer simulations, both for the cortical microcircuits

and readout neurons, the same parameters values for the neuron

and synapse models and the reward-modulated STDP rule were

used, as specified in the previous section (except in computer

simulation 3, where the goal was to test the theoretical predictions

for different values of the parameters). Each of the computer

simulations in this article modeled a specific task or experimental

finding. Consequently, the dependence of the reward signal on the

behavior of the system had to be modeled in a specific way for

each simulation (a more detailed discussion of the reward signal

can be found in the Discussion section). The parameters for that

are given below in separate subsections which address the

individual simulations. Furthermore, some of the remaining

parameters in the experiments, i.e. the values of the synaptic

weights, the number of synapses of a neuron, number of neurons

in the circuit and the Ornstein-Uhlenbeck (OU) noise levels were

chosen to achieve different goals depending on the particular

experiment. Briefly stated, these values were tuned to achieve a

certain level of firing activity in the neurons, a suitable dynamical

regime of the activity in the circuits, and a specific ratio between

amount of input the neurons receive from the input synapses and

the input generated by the noise process.

Reward-Modulated STDP
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We carried out two types of simulations: simulations of cortical

microcircuits in computer simulations 1 and 5, and training of

readout neurons in computer simulations 2, 3, 4, and 5. In the

following we discuss these two types of simulations in more detail.

Cortical Microcircuits
The values of the initial weights of the excitatory and inhibitory

synapses for the cortical microcircuits are given in Table 3. All

synaptic weights were bounded in the range between 0 and twice

the initial synaptic weight of the synapse.

The cortical microcircuit was composed of 4000 neurons

connected randomly with connection probabilities described in

Details to computer simulation 1. The initial synaptic weights of

the synapses and the levels of OU noise were tuned to achieve a

spontaneous firing rate of about 4.6 Hz, while maintaining an

asynchronous irregular firing activity in the circuit. 50% of all

neurons (randomly chosen, 50% excitatory and 50% inhibitory)

received downscaled OU noise (by a factor 0.2 from the model

reported in [26]), with the subtracted part substituted by additional

synaptic input from the circuit. The input connection probabilities

of these neurons were scaled up, so that the firing rates remain in

the same range as for the other neurons. This was done in order to

observe how the learning mechanisms work when most of the

input conductance in the neuron comes from a larger number of

input synapses which are plastic, rather than from a static noise

process. The reinforced neurons were randomly chosen from this

group of neurons.

We chose a smaller microcircuit, composed of 540 neurons, for

the computer simulation 5 in order to be able to perform a large

number of training trials. The synaptic weights in this smaller

circuit were chosen (see Table 3) to achieve an appropriate level of

firing activity in the circuit that is modulated by the external input.

The circuit neurons had injected an Ornstein-Uhlenbeck (OU)

noise multiplied by 0.4 in order to emulate the background

synaptic activity in neocortical neurons in vivo, and test the

learning in a more biologically realistic settings. This produced

significant trial-to-trial variability in the circuit response (see

Figure 10D). A lower value of the noise level could also be used

without affecting the learning, whereas increasing the amount of

injected noise would slowly deteriorate the information that the

circuit activity maintains about the injected inputs, resulting in a

decline of the learning performance.

Readout Neurons
The maximum values of the synaptic weights of readout

neurons for computer simulations 2, 4, and 5, together with the

number of synapses of the neurons, are given in Table 4.

The neuron in computer simulation 2 had 100 synapses. We

chose 200 synapses for the neuron in computer simulation 4, in

order to improve the learning performance. Such improvement of

the learning performance for larger numbers of synapses is in

accordance with our theoretical analysis (see Equation 17), since

for learning the classification of temporal patterns the temporal

variation of the voltage of the postsynaptic membrane turns out to

be of critical importance (see the discussion after Equation 17).

This temporal variation depends less on the shape of a single EPSP

and more on the temporal pattern of presynaptic firing when the

number of synapses is increased. In computer simulation 5 the

readout neuron received inputs from all 432 excitatory neurons in

the circuit. The synaptic weights were chosen in accordance with

the number of synapses in order to achieve a firing rate suitable for

the particular task, and to balance the synaptic input and the noise

injections in the neurons.

For the pattern discrimination task (computer simulation 4) and

the speech recognition task (computer simulation 5), the amount of

noise had to be chosen to be high enough to achieve sufficient

variation of the membrane potential from trial to trial near the

firing threshold, and low enough so that it would not dominate the

fluctuations of the membrane potential. In the experiment where

the exact spike times were rewarded (computer simulation 2), the

noise had a different role. As described in the Results section, there

the noise effectively controls the amount of depression. If the noise

(and therefore the depression) is too weak, w* = 0 synapses do not

converge to 0. If the noise is too strong, w* =wmax synapses do not

converge to wmax. To achieve the desired learning result, the noise

level should be in a range where it reduces the correlations of the

synapses with w* = 0 so that the depression of STDP will prevail,

but at the same time is not strong enough to do the same for the

other group of synapses with w* =wmax, since they have stronger

pre-before-post correlations. For our simulations, we have set the

noise level to the full amount of OU noise.

Details to Computer Simulation 1: Model for Biofeedback
Experiment
The cortical microcircuit model consisted of 4000 neurons with

twenty percent of the neurons randomly chosen to be inhibitory,

and the others excitatory. The connections between the neurons

were created randomly, with different connectivity probabilities

depending on whether the postsynaptic neuron received the full

amount of OU noise, or downscaled OU noise with an additional

compensatory synaptic input from the circuit. For neurons in the

latter sub-population, the connection probabilities were pee=0.02,

pei=0.02, pie=0.024 and pii=0.016 where the ee, ei, ie, ii indices

designate the type of the presynaptic and postsynaptic neurons

(e = excitatory or i = inhibitory). For the other neurons the

corresponding connection probabilities were downscaled by 0.4.

The resulting firing rates and correlations for both types of

excitatory neurons are plotted in Figure S1 and Figure S2.

The shape of the reward kernel er(t) was chosen as a difference of

two a-functions

Table 3. Specific parameter values for the cortical
microcircuits in computer simulation 1 and 5.

Simulation

No. Neurons pee, pei, pie, pii

wexc(0)

[nS]

winh

[nS] COU

1 4000 0.02,0.02,0.024,0.016 10.7 211.6 1.0, 0.2

5 540 0.1 0.784 5.1 0.4

pconn is the connection probability, wexc(0) and winh(0) are the initial synaptic
weights for the excitatory and inhibitory synapses respectively, and COU is the
scaling factor for the Ornstein-Uhlenbeck noise injected in the neurons.
doi:10.1371/journal.pcbi.1000180.t003

Table 4. Specific parameter values for the trained (readout)
neurons in computer simulation 2, 4, and 5.

Simulation No. Num. Synapses wmax [nS] COU

2 100 11.9 1.0

4 200 5.73 0.2

5 432 2.02 0.2

wmax is the upper hard bound of the synaptic weights of the synapses. COU is
the scaling factor for the Ornstein-Uhlenbeck noise injected in the neurons.
doi:10.1371/journal.pcbi.1000180.t004
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one positive a-pulse with a peak at 0.4 sec after the corresponding

spike, and one long-tailed negative a-pulse which makes sure that

the integral over the reward kernel is zero. The parameters for the

reward kernel were Az

r ~1:379, A{

r ~0:27, tzr ~0:2 s, t{r ~1 s, and

dr=0.2 s, which produced a peak value of the reward pulse 0.4 s

after the spike that caused it.

Details to Computer Simulation 2: Learning Spike Times
We used the following function for the reward kernel k(r)
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where Ak
z

and Ak
{

are positive scaling constants, tk1 and tk2 define

the shape of the two double-exponential functions the kernel is

composed of, and tk defines the offset of the zero-crossing from the

origin. The parameter values used in our simulations were

Ak
z
~0:1457, Ak

{
~{0:1442, tk1~30 ms, tk2~4 ms and tk=21 ms.

The reward delay was equal to dr=0.4 s.

Details to Computer Simulation 3: Testing the
Analytically Derived Conditions
We used a linear Poisson neuron model as in the theoretical

analysis with static synapses and exponentially decaying postsyn-

aptic responses e sð Þ~e {s=teð Þ


te. The neuron had 100 excitatory

synapses, except in experiment #6, where we used 200 synapses.

In all experiments the target neuron received additional 10

excitatory synapses with weights set to wmax. The input spike trains

were Poisson processes with a constant rate of rpre=6 Hz, except in

experiment # 6 where the rate was rpre=3 Hz. The weights of the

target neuron were set to w
1

i ~wmax for 0#i,50 and w
1

i ~0 for

50#i,100.

The time constants of the reward kernel were tk2~4 ms, whereas

tk1 had different values in different experiments (reported in

table 1). The value of tk was always set to an optimal value such

that the ek 0ð Þ~
Ð

?

0
k {sð Þe sð Þ~0. The time constant t2 of the

negative part of the STDP window functionW(r) was set to t+. The
reward signal was delayed by td=0.4 s. The simulations were

performed for varying durations of simulated biological time (see

the tsim-column in Table 1).

Details to Computer Simulation 4: Learning Pattern
Classification
We used the reward signal from Equation 16, with an a-

function for the reward kernel er rð Þ~ e
t
te{t=t, and the reward

delay dr set to 300 ms. The amplitudes of the positive and negative

pulses were aP=2aN=1.435 and the time constant of the reward

kernel was t=100 ms.

Details to Computer Simulation 5: Training a Readout
Neuron with Reward-Modulated STDP To Recognize
Isolated Spoken Digits

Spike representations of speech utterances. The speech

utterances were preprocessed by the cochlea model described in

[43], which captures the filtering properties of the cochlea and hair

cells in the human inner ear. The resulting analog signals were

encoded by spikes with the BSA spike encoding algorithm

described in [44]. We used the same preprocessing to generate

the spikes as in [45]. The spike representations had a duration of

about 400 ms and 20 input channels. The input channels were

connected topographically to the cortical microcircuit model. The

neurons in the circuit were split into 20 disjunct subsets of 27

neurons, and each input channel was connected to the 27 neurons

in its corresponding subsets. The readout neuron was trained with

20 different spike inputs to the circuit, where 10 of them resulted

from utterances of digit ‘‘one’’, and the other 10 resulted from

utterances of digit ‘‘two’’ by the same speaker.

Training procedure. We performed 2000 training trials,

where for each trial a spike representation of a randomly chosen

utterance out of 10 utterances for one digit was injected into the

circuit. The digit changed from trial to trial. Whenever the readout

neuron spiked during the presentation of an utterance of digit

‘‘two’’, a positive pulse was generated in the reward signal, and

accordingly, for utterances of digit ‘‘one’’, a negative pulse in the

reward was generated. We used the reward signal from

Equation 16. The amplitudes of the positive and negative pulses

were aP=2aN=0.883. The time constant of the reward kernel

er(r) was t=100 ms. The pulses in the reward were delayed

dr=300 ms from the spikes that caused them.

Cortical microcircuit details. The cortical microcircuit

model consisted of 540 neurons with twenty percent of the

neurons randomly chosen to be inhibitory, and the others

excitatory. The recurrent connections in the circuit were created

randomly with a connection probability of 0.1. Long-term

plasticity was not modeled in the circuit synapses.

The synapses for the connections from the input neurons to the

circuit neurons were static, current based with axon conduction

delay of 1 ms, and exponentially decaying PSR with time constant

te=3 ms and amplitude winput=0.715 nA.

Discussion

We have presented in this article analytical tools which make it

possible to predict under which conditions reward-modulated

STDP will achieve a given learning goal in a network of neurons.

These conditions specify relationships between parameters and

auxiliary functions (learning curves for STDP, eligibility traces,

reward signals etc.) that are involved in the specification of the

reward-modulated STDP learning rule. Although our analytical

results are based on some simplifying assumptions, we have shown

that they predict quite well the outcomes of computer simulations

of quite complex models for cortical networks of neurons.

We have applied this learning theory for reward-modulated

STDP to a number of biologically relevant learning tasks. We have

shown that the biofeedback result of Fetz and Baker [17] can in

principle be explained on the basis of reward-modulated STDP.

The underlying credit assignment problem was extremely difficult,

since the monkey brain had no direct information about the

identity of the neuron whose firing rate was relevant for receiving

rewards. This credit assignment problem is even more difficult

from the perspective of a single synapse, and hence for the

application of a local synaptic plasticity rule such as reward-

modulated STDP. However our theoretical analysis (see

Equations 10 and 11) has shown that the longterm evolution of

synaptic weights depended only on the correlation of pairs of pre-

and postsynaptic spikes with the reward signal. Therefore the

firing rate of the rewarded neuron increased (for a computer

simulation of a recurrent network consisting of 4000 conductance

based LIF neurons with realistic background noise typical for in-

vivo conditions, and 228954 synapses that exhibited data-based

Reward-Modulated STDP
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short term synaptic plasticity) within a few minutes of simulated

biological time, like in the experimental data of [17], whereas the

firing rates of the other neurons remained invariant (see Figure 4B).

We were also able to model differential reinforcement of two

neurons in this way (Figure 2). These computer simulations

demonstrated a remarkable stability of the network dynamics (see

Figures 2A, 4A, and 5) in spite of the fact that all excitatory

synapses were continuously subjected to reward-modulated STDP.

In particular, the circuit remained in the asynchronous irregular

firing regime, that resembles spontaneous firing activity in the

cortex [9]. Other STDP-rules (without reward modulation) that

maintain this firing regime have previously been exhibited in [22].

It was also reported in [17], and further examined in [46], that

bursts of the reinforced neurons were often accompanied by

activations of specific muscles in the biofeedback experiment by

Fetz and Baker. But the relationship between bursts of the

recorded neurons in precentral motor cortex and muscle

activations was reported to be quite complex and often dropped

out after continued reinforcement of the neuron alone. Further-

more in [46] it was shown that all neurons tested in that study

could be dissociated from their correlated muscle activity by

differentially reinforcing simultaneous suppression of EMG

activity. These results suggest that the solution of the credit

assignment problem by the monkeys (to stronger activate that

neuron out of billions of neurons in their precentral gyrus that was

reinforced) may have been supported by large scale exploration

strategies that were associated with muscle activations. But the

previously mentioned results on differential reinforcements of two

nearby neurons suggest that this large scale exploration strategy

had to be complemented by exploration on a finer spatial scale

that is difficult to explain on the basis of muscle activations (see

[19] for a detailed discussion).

Whereas this learning task focused on firing rates, we have also

shown (see Figure 7) that neurons can learn via reward-modulated

STDP to respond to inputs with particular spike trains, i.e.,

particular temporal output patterns. It has been pointed out in

[27] that this is a particularly difficult learning task for reward-

modulated STDP, and it was shown there that it can be

accomplished with a modified STDP rule and more complex

reward prediction signals without delays. We have complemented

the results of [27] by deriving specific conditions (Equations 13–

15) under which this learning task can be solved by the standard

version of reward-modulated STDP. Extensive computer simula-

tions have shown that these analytically derived conditions for a

simpler neuron model predict also for a LIF neuron with

conductance based synapses whether it is able to solve this

learning task. Figure 8 shows that this learning theory for reward-

modulated STDP is also able to predict quite well how fast a neuron

can learn to produce a desired temporal output pattern. An

interesting aspect of [27] is that there also the utility of third signals

that provide information about changes in the expectation of

reward was explored. We have considered in this article only

learning scenarios where reward prediction is not possible. A

logical next step will be to extend our learning theory for reward-

modulated STDP to scenarios from classical reinforcement

learning theory that include reward prediction.

We have also addressed the question to what extent neurons can

learn via reward-modulated STDP to respond with different firing

rates to different spatio-temporal presynaptic firing patterns. It had

already been shown in [12] that this learning rule enables neurons

to classify spatial firing patterns. We have complemented this work

by deriving an analytic expression for the expected weight change

in this learning scenario (see Equation 17), which clarifies to what

extent a neuron can learn by reward-modulated STDP to

distinguish differences in the temporal structure of presynaptic

firing patterns. This theoretical analysis showed that in the

extreme case, where all incoming information is encoded in the

relative timing of presynaptic spikes, reward-modulated STDP is

not able to produce a higher average membrane potential for

selected presynaptic firing patterns, even if that would be

rewarded. But it is able to increase the variance of the membrane

potential, and thereby also the number of spikes of any neuron

model that has (unlike the simple linear Poisson neuron) a firing

threshold. The simulation results in Figure 9 confirm that in this

way a LIF neuron can learn with the standard version of reward-

modulated STDP to discriminate even purely temporal presyn-

aptic firing patterns, by producing more spikes in response to one

of these patterns.

A surprising feature is, that although the neuron was rewarded

here only for responding with a higher firing rate to one

presynaptic firing pattern P, it automatically started to respond

to this pattern P with a specific temporal spike pattern, that

advanced in time during training (see Figure 9A).

Finally, we have shown that a spiking neuron can be trained by

reward-modulated STDP to read out information from a

simulated cortical microcircuit (see Figure 10). This is insofar of

interest, as previous work [31,34,47] had shown that models of

generic cortical microcircuits have inherent capabilities to serve as

preprocessors for such readout neurons, by combining in diverse

linear and nonlinear ways information that was contained in

different time segments of spike inputs to the circuit (‘‘liquid

computing model’’). The classification of spoken words (that were

first transformed into spike trains) had been introduced as a

common benchmark task for the evaluation of different approach-

es towards computing with spiking neurons [31–33,45,48]. But so

far all approaches that were based on learning (rather than on

clever constructions) had to rely on supervised training of a simple

linear readout. This gave rise to the question whether also

biologically more realistic models for readout neurons can be

trained through a biologically more plausible learning scenario to

classify spoken words. The results of Figure 10 may be interpreted

as a tentative positive answer to this question. We have

demonstrated that LIF neurons with conductance based synapses

(that are subject to biologically realistic short term plasticity) can

learn without a supervisor through reward-modulated STDP to

classify spoken digits. In contrast to the result of Figure 9, the

output code that emerged here was a rate code. This can be

explained through the significant in-class variance of circuit

responses to different utterances of the same word (see Figure 10C

and 10D). Although the LIF neuron learnt here without a

supervisor to respond with different firing rates to utterances of

different words by the same speaker (whereas the rate output was

very similar for both words at the beginning of learning, see

Figure 10E), the classification capability of these neurons has not

yet reached the level of linear readouts that are trained by a

supervisor (for example, speaker independent word classification

could not yet be achieved in this way). Further work is needed to

test whether the classification capability of LIF readout neurons

can be improved through additional preprocessing in the cortical

microcircuit model, through a suitable variation of the reward-

modulated STDP rule, or through a different learning scenario

(mimicking for example preceding developmental learning that

also modifies the presynaptic circuit).

The new learning theory for reward-modulated STDP will also

be useful for biological experiments that aim at the clarification of

details of the biological implementation of synaptic plasticity in

different parts of the brain, since it allows to make predictions

which types and time courses of signals would be optimal for a
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particular range of learning tasks. For each of the previously

discussed learning tasks, the theoretical analysis provided condi-

tions on the structure of the reward signal d(t) which guaranteed

successful learning. For example, in the biofeedback learning

scenario (Figure 4), every action potential of the reinforced neuron

led—after some delay—to a change of the reward signal d(t). The

shape of this change was defined by the reward kernel e(r). Our

analysis revealed that this reward kernel can be chosen rather

arbitrarily as long as the integral over the kernel is zero, and the

integral over the product of the kernel and the eligibility function is

positive. For another learning scenario, where the goal was that

the output spike train S
post
j of some neuron j approximates the

spike timings of some target spike train S* (Figure 7), the reward

signal has to depend on both, S
post
j and S*. The dependence of the

reward signal on these spike timings was defined by a reward

kernel k(r). Our analysis showed that the reward kernel has to be

chosen for this task so that the synapses receive positive rewards if

the postsynaptic neuron fires close to the time of a spike in the

target spike train S* or somewhat later, and negative rewards when

an output spike occurs in the order of ten milliseconds too early. In

the pattern discrimination task of Figure 9 each postsynaptic

action potential was followed—after some delay—by a change of

the reward signal which depended on the pattern presented. Our

theoretical analysis predicted that this learning task can be solved if

the integrals AP
i and AN

i defined by Equation 18 are such that

AP
i w0 and AN

i &{AP
i . Again, this constraints are fulfilled for a

large class of reward kernels, and a natural choice is to use a non-

negative reward kernel er. There are currently no data available on

the shape of reward kernels in biological neural systems. The

previous sketched theoretical analysis makes specific prediction for

the shape of reward kernels (depending on the type of learning task

in which a biological neural system is involved) which can

potentially be tested through biological experiments.

An interesting general aspect of the learning theory that we have

presented in this article is that it requires substantial trial-to-trial

variability in the neural circuit, which is often viewed as ‘‘noise’’ of

imperfect biological implementations of theoretically ideal circuits

of neurons. This learning theory for reward-modulated STDP

suggests that the main functional role of noise is to maintain a

suitable level of spontaneous firing (since if a neuron does not fire,

it cannot find out whether this will be rewarded), which should

vary from trial to trial in order to explore which firing patterns are

rewarded (It had been shown in [31,34,47] that such highly

variable circuit activity is compatible with a stable performance of

linear readouts). On the other hand if a neuron fires primarily on

the basis of a noise current that is directly injected into that

neuron, and not on the basis of presynaptic activity, then STDP

does not have the required effect on the synaptic connections to

this neuron (see Figure S6). This perspective opens the door for

subsequent studies that compare for concrete biological learning

tasks the theoretically derived optimal amount and distribution of

trial-to-trial variability with corresponding experimental data.

Related Work
The theoretical analysis of this model is directly applicable to

the learning rule considered in [12]. There, the network behavior

of reward-modulated STDP was also studied some situations

different from the ones in this article. The computer simulations of

[12] operate apparently in a different dynamic regime, where

LTD dominates LTP in the STDP-rule, and most weights (except

those that are actively increased through reward-modulated

STDP) have values close to 0 (see Figure 1b and 1d in [12], and

compare with Figure 5 in this article). This setup is likely to require

for successful learning a larger dominance of pre-before-post over

post-before-pre pairs than the one shown in Figure 4E. Further-

more, whereas a very low spontaneous firing rate of 1 Hz was

required in [12], computer simulation 1 shows that reinforcement

learning is also feasible at spontaneous firing rates which

correspond to those reported in [17] (the preceding theoretical

analysis had already suggested that the success of the model does

not depend on particularly low firing rates). The articles [15] and

[13] investigate variations of reward-modulated STDP rules that

do not employ learning curves for STDP that are based on

experimental data, but modified curves that arise in the context of

a very interesting top-down theoretical approach (distributed

reinforcement learning [14]). The authors of [16] arrive at similar

learning rules in a supervised scenario which can be reinterpreted

in the context of reinforcement learning. We expect that a similar

theory as we have presented in this article for the more commonly

discussed version of STDP can also be applied to their modified

STDP rules, thereby making it possible to predict under which

conditions their learning rules will succeed. Another reward based

learning rule for spiking neurons was recently presented in [49].

This rule exploits correlations of a reward signal with noisy

perturbations of the neuronal membrane conductance in order to

optimize some objective function. One crucial assumption of this

approach is that the synaptic plasticity mechanism ‘‘knows’’ which

contributions to the membrane potential arise from synaptic

inputs, and which contributions are due to internal noise. Such

explicit knowledge of the noise signal is not needed in the reward-

modulated STDP rule of [12], which we have considered in this

article. The price one has to pay for this potential gain in

biological realism is a reduced generality of the learning

capabilities. While the learning rule in [49] approximates gradient

ascent on the objective function, this cannot be stated for reward-

modulated STDP at present. Timing-based pattern discrimination

with a spiking neuron, as discussed in the section ‘‘Pattern

discrimination with reward-modulated STDP’’ of this article, was

recently tackled in [50]. The authors proposed the tempotron

learning rule, which increases the peak membrane voltage for one

class of input patterns (if no spike occurred in response to the input

pattern) while decreasing the peak membrane voltage for another

class of input patterns (if a spike occurred in response to the

pattern). The main difference between this learning rule and

reward-modulated STDP is that the tempotron learning rule is

sensitive to the peak membrane voltage, whereas reward-

modulated STDP is sensitive to local fluctuations of the membrane

voltage. Since the time of the maximal membrane voltage has to

be determined for each pattern by the synaptic plasticity

mechanism, the basic tempotron rule is perhaps not biologically

realistic. Therefore, an approximate and potentially biologically

more realistic learning rule was proposed in [50], where plasticity

following error trials is induced at synapse i only if the voltage

within the postsynaptic integration time after their activation

exceeds a plasticity threshold k. One potential problem of this rule

is the plasticity threshold k, since a good choice of this parameter

strongly depends on the mean membrane voltage after input

spikes. This problem is circumvented by reward-modulated

STDP, which considers instead the local change in the membrane

voltage. Further work is needed to compare the advantages and

disadvantages of these different approaches.

Conclusion
Reward-modulated STDP is a very promising candidate for a

synaptic plasticity rule that is able to orchestrate local synaptic

modifications in such a way that particular functional properties of

larger networks of neurons can be achieved and maintained (we

refer to [12] and [27] for discussion of potential biological

Reward-Modulated STDP
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implementations of this plasticity rule). We have provided in this

article analytical tools which make it possible to evaluate this rule

and variations of this rule not just through computer simulations,

but through theoretical analysis. In particular we have shown that

successful learning is only possible if certain relationships hold

between the parameters that are involved. Some of these predicted

relationships can be tested through biological experiments.

Provided that these relationships are satisfied, reward-modulated

STDP turns out to be a powerful rule that can achieve self-

organization of synaptic weights in large recurrent networks of

neurons. In particular, it enables us to explain seemingly inexplicable

experimental data on biofeedback in monkeys. In addition reward-

modulated STDP enables neurons to distinguish complex firing

patterns of presynaptic neurons, even for data-based standard forms

of STDP, and without the need for a supervisor that tells the neuron

when it should spike. Furthermore reward-modulated STDP

requires substantial spontaneous activity and trial-to-trial variability

in order to support successful learning, thereby providing a

functional explanation for these ubiquitous features of cortical

networks of neurons. In fact, not only spontaneous activity but also

STDP itself may be seen in this context as a mechanism that supports

the exploration of different firing chains within a recurrent network,

until a solution is found that is rewarded because it supports a

successful computational function of the network.

Supporting Information

Figure S1 Variations of Figure 5B–D for those excitatory

neurons which receive the full amount of Ornstein-Uhlenbeck

noise. (B) The distribution of the firing rates of these neurons

remains unchanged during the simulation. The colors of the

curves and the corresponding intervals are as follows: red (300–

360 sec), green (600–660 sec), blue (900–960 sec), magenta (1140–

1200 sec). (C) Cross-correlogram of the spiking activity of these

neurons, averaged over 200 pairs of neurons and over 60 s, with a

bin size of 0.2 ms, for the period between 300 and 360 seconds of

simulation time. It is calculated as the cross-covariance divided by

the square root of the product of variances. (D) As in (C), but for

the last 60 seconds of the simulation. The correlation statistics in

the circuit is stable during learning.

Found at: doi:10.1371/journal.pcbi.1000180.s001 (0.06 MB PDF)

Figure S2 Variations of Figure 5B–D for those excitatory

neurons which receive a reduced amount of Ornstein-Uhlenbeck

noise, but receive more synaptic inputs from other neurons. (B)

The distribution of the firing rates of these neurons remains

unchanged during the simulation. The colors of the curves and the

corresponding intervals are as follows: red (300–360 sec), green

(600–660 sec), blue (900–960 sec), magenta (1140–1200 sec). (C)

Cross-correlogram of the spiking activity in the circuit, averaged

over 200 pairs of these neurons and over 60 s, with a bin size of

0.2 ms, for the period between 300 and 360 seconds of simulation

time. It is calculated as the cross-covariance divided by the square

root of the product of variances. (D) As in (C), but for the last

60 seconds of the simulation. The correlation statistics in the

circuit is stable during learning.

Found at: doi:10.1371/journal.pcbi.1000180.s002 (0.06 MB PDF)

Figure S3 Variation of Figure 4 from computer simulation 1

with results from a simulation where the weight-dependent version

of STDP proposed in [22] was used. This STDP rule is defined by

the following equations: Dwz~lw
1{m
0 wme{ Dtj j=tz and

Dw{~lawe{ Dtj j=t{ . We used the parameters proposed in [36],

i.e. m=0.4, a=0.11, t+= t2=20 ms, l=0.1 and w0=272.6 pS.

The w0 parameter was calculated according to the formula:

w0~
1
2
wmaxa

1
1{m where wmax is the maximum synaptic weight of the

synapse. The amplitude parameters Az

r , A{

r for the reward kernel

were set to Az

r ~1:104 and A{

r ~0:221. All other parameter

values were the same as in computer simulation 1.

Found at: doi:10.1371/journal.pcbi.1000180.s003 (0.09 MB PDF)

Figure S4 Variation of Figure 5 for the weight-dependent STDP

rule from [22] (as in Figure S3).

Found at: doi:10.1371/journal.pcbi.1000180.s004 (0.06 MB PDF)

Figure S5 Variation of Figure 7 (i.e., of computer simulation 2)

for a simulation where we used current-based synapses without

short-term plasticity. The post-synaptic response had an

exponentially decaying form e sð Þ~e{s=te


te, with te=5 ms.

The value of the maximum synaptic weight was wmax= 32.9 pA.

All other parameter values were the same as in computer

simulation 2.

Found at: doi:10.1371/journal.pcbi.1000180.s005 (0.17 MB PDF)

Figure S6 Dependence of the learning performance on the noise

level in computer simulation 2. The angular error (defined as the

angle between the weight vector w of the trained neuron at the

end of the simulation and the weight vector w* of the neuron m*) is

taken as measure for the learning performance, and plotted for 9

simulations with different noise levels that are given on the X axis

(in term of multiples of the noise level chosen for Figure 7). All

other parameters values were the same as in computer simulation

2. The figure shows that the learning performance declines both

for too little and for too much noise.

Found at: doi:10.1371/journal.pcbi.1000180.s006 (0.02 MB PDF)

Figure S7 Variation of Figure 9 (i.e., of computer simulation 4)

with the weight-dependent STDP rule proposed in [22]. This rule

is defined by the following equations: Dwz~lw
1{m
0 wme{ Dtj j=tz

and Dw{~lawe{ Dtj j=t{ . We used the parameters proposed in

[22], i.e. m=0.4, a=0.11, t+= t2=20 ms, l=0.1 and w0=

72.4 pS. The w0 parameter was calculated according to the

formula: w0~
1
2
wmaxa

1
1{m where wmax is the maximum synaptic

weight of the synapse. The amplitude parameters of the reward

kernel were set to aP=2aN=1.401. All other parameter values

were the same as in computer simulation 4. The variance of the

membrane potential increased for pattern P from 2.35 (mV)2 to

3.66 (mV)2 (C), and decreased for pattern N (D), from 2.27 (mV)2

to 1.54 (mV)2.

Found at: doi:10.1371/journal.pcbi.1000180.s007 (0.31 MB PDF)

Figure S8 Variation of Figure 9 for a simulation where we used

current-based synapses without short-term plasticity. The post-

synaptic response had an exponentially decaying form

e sð Þ~e{s=te


te, with te=5 ms. The value of the maximum

synaptic weight was wmax=106.2 pA All other parameter values

were the same as in computer simulation 4. The variance of the

membrane potential increased for pattern P from 2.84 (mV)2 to

5.89 (mV)2 (C), and decreased for pattern N (D), from 2.57 (mV)2

to 1.22 (mV)2.

Found at: doi:10.1371/journal.pcbi.1000180.s008 (0.31 MB PDF)

Figure S9 Variation of Figure 10 (i.e., of computer simulation 5)

for a simulation where we used current-based synapses without

short-term plasticity. The post-synaptic response had an exponen-

tially decaying form e sð Þ~e{s=te


te, with te=5 ms. The synaptic

weights of the excitatory and inhibitory synapses in the cortical

microcircuit were set to wexc=65.4 pA and winh=238 pA respec-

tively. The maximum synaptic weight of the synapses to the

readout neuron was wmax=54.3 pA. All other parameter values

were the same as in computer simulation 5.

Found at: doi:10.1371/journal.pcbi.1000180.s009 (0.27 MB PDF)
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Figure S10 Spike encodings of 10 utterances of digit ‘‘one’’ by

one speaker with the Lyon cochlea model [43], which were used as

circuit inputs for computer simulation 5.

Found at: doi:10.1371/journal.pcbi.1000180.s010 (0.05 MB PDF)

Figure S11 Spike encodings of 10 utterances of digit ‘‘two’’ by

one speaker with the Lyon cochlea model [43], which were used as

circuit inputs for computer simulation 5.

Found at: doi:10.1371/journal.pcbi.1000180.s011 (0.05 MB PDF)
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