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Protein complex formed by a group of physical interacting proteins plays a crucial role in cell activities. Great e	ort has been
made to computationally identify protein complexes from protein-protein interaction (PPI) network. However, the accuracy of
the prediction is still far from being satisfactory, because the topological structures of protein complexes in the PPI network are
too complicated. �is paper proposes a novel optimization framework to detect complexes from PPI network, named PLSMC.
�e method is on the basis of the fact that if two proteins are in a common complex, they are likely to be interacting. PLSMC
employs this relation to determine complexes by a penalized least squares method. PLSMC is applied to several public yeast PPI
networks, and compared with several state-of-the-art methods. �e results indicate that PLSMC outperforms other methods. In
particular, complexes predicted by PLSMC canmatch known complexes with a higher accuracy than other methods. Furthermore,
the predicted complexes have high functional homogeneity.

1. Introduction

Proteins do not function in isolation but interact together
to form complexes. Protein complex plays an important
role in cellular activities, such as signal transduction, cell
cycle, DNA transcription, and DNA repair [1–3]. Identifying
protein complexes is crucial for understanding molecular
mechanism in cellular activities. It is important to develop
computational methods for identifying complexes [1]. Recent
developments in high-throughput technologies have pro-
duced large amount of high-quality protein-protein interac-
tion (PPI) data that can be represented as a PPI network,
an undirected graph, in which nodes denote that proteins
and edges are interactions between pairs of proteins. Graph
clustering techniques are used to identify protein complexes
by 
nding dense regions in a PPI network [4]. Since proteins
may belong to several complexes, most of previous methods
detect overlapping clusters [1, 4–6].

Manymethods [7–9] detect complexes from PPI network
by 
nding cliques, in which all nodes connect to each other.
CFinder is one of the most popular clique-based methods,
which searches adjacent cliques in the network [8, 10, 11].

OCG [12] takes the cliques as initial classes for hierar-
chy fusion to detect overlapping clusters in PPI networks.
Another kind of methods detects complexes by expanding
a set of seed proteins or clusters. MCODE [13] chooses the
proteins with high weights as seeds and expands these seeds
by including their neighboring proteins with weights higher
than a threshold. ClusterONE [14], the latest and powerful
seed-expansion method, starts from a set of seed complexes
and expands them by maximizing the cohesiveness function.
�e expanding method depends on the density-based de
-
nition of the complexes. Random walking techniques have
been also used to detect complexes.Markov clustering (MCL)
algorithm [15] iteratively applies “expansion” and “in�ation”
steps to the transitionmatrix that denote theMarkov chain of
randomwalk. Reference [16] proposes a new spectral method
based on the two-hop transition matrix of Markov random
walk (SLCP2). In general, although much progress has been
made, identifying protein complexes from PPI network still
remains a challenge. �e complexes derived by existing
methods match few known complexes. �e reason is that the
topological structures of complexes are too complicated. It is
di�cult to de
ne the topology by a speci
c type of pattern. It
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is necessary to develop a newmethod to avoid the problem of
topological dependence.

In this paper, we present an optimization framework that
uses a penalized least squares method to identify complexes
from PPI network, named PLSMC. Intuitively, our method is
on the basis of the fact that if two proteins are in a common
complex, they are likely to be interacting [1, 4, 5]. PLSMC
employs this relation to detect complexes using a penalized
least squares method. By optimization, the propensities of
proteins to complexes can be determined. �e PLSMC is
tested and compared with other methods on several public
PPI networks of yeast. �e results show that PLSMC has
higher accuracy on matching with known complexes than
other state-of-the-art methods. Moreover, the analysis of
functional homogeneity indicates that complexes identi
ed
by PLSMC are biological relevance.

2. Materials and Methods

2.1. Penalized Least Squares Method for Complex Detection.
In order to introduce our method, we 
rst introduce several
notations. A PPI network is denoted by a matrix of ��×�,
where � is the number of proteins and ��� is equal to 1 if
proteins � and � are interacting, 0 otherwise. Since an inter-
action may be a false positive one when the corresponding
proteins share less common interacting partners, we compute
the weight matrix � for a PPI network as in [17],

��� =
{{{{{{{

����� (�) ∩ � (�)����√|� (�)| × ����� (�)���� , if ��� = 1,
0, otherwise,

(1)

where �(�) is a set consisting of protein � and all of its
neighbors.

Let ��� (��� > 0) be the propensity denoting how likely
protein � belongs to complex �, which is an unknown variable
needing to be estimated. �e cocomplex coe�cient ��� of
proteins � and � denotes the likelihood that they participate in
the same complexes.Given that there are atmost� complexes
existing in the PPI network, ��� is calculated as

��� = �∑
�=1

������. (2)

Hence, the sum of distances between interaction weights
and cocomplex coe�cients over all pairs of proteins can be
written as follows:

� = �∑
�,�

12(��� − ���)2 = �∑
�,�

12(
�∑
�=1

������ − ���)
2. (3)

Minimizing � with respect to Θ = [���] is to make the
cocomplex coe�cient close to interaction weight for each
pair of proteins. If two proteins are not interacting, the
cocomplex coe�cient of them is supposed to be minimized
to 0. However, only considering the cocomplex coe�cient is
not su�cient for complex detection, since a proteinmay have
large number of propensities with high values. It will assign a

protein to too many complexes and thus produce pervasive
overlapping complexes. �erefore, to control overlapping
rate, we augment (3) with a penalty term to shrink the pro-
pensities as in (4). Consider

� = �∑
�,�

12(
�∑
�
������ − ���)

2 + � �∑
�

�∑
�
�2��, (4)

where � (� > 0) is the parameter of the penalization. Finally,
the optimization in PLSMC is written as

min
Θ

� (Θ) = �∑
�,�

12(
�∑
�
������ − ���)

2 + � �∑
�

�∑
�
�2��,

s.t. Θ ≥ 0.
(5)

2.2. Estimating Protein Propensities. Estimating the propensi-
tiesΘ = [���] in (5) is a nonnegative constrained optimization
problem. Let Φ = [���] be the Lagrange multiplier for the
constraint Θ ≥ 0. �e Lagrange function � is as

� (Θ,Φ) = �∑
�,�

12(
�∑
�
������ − ���)

2 + � �∑
�

�∑
�
�2��

+ �∑
�

�∑
�
������.

(6)

Taking the derivation of (6) with respect to ��� and setting
it to zero give

2 �∑
�
��� �∑
�
������ − 2 �∑

�
������ + 2���� + ��� = 0. (7)

It is di�cult to estimate ��� in above equation using an
analyticalmethod, as it depends on ���, where � ̸= � and � ̸=  .
�erefore, we use an iterative method, to 
nd the optimal ���.
Because ������ = 0 for the Karush-Kuhn-Tucker condition,
we multiply both sides of the equation by ��� and get

���( �∑
�
��� �∑
�
������ + ����) = ��� �∑

�
������. (8)

�en, we can write the multiplicative updating rule as

�new�� ←$ ��� ∑�� ������∑�� ���∑�	 ������ + ���� . (9)

As suggested in the literature [18], we use the updating
rule as

�new�� ←$ ���2 + ���2
∑�� ������∑�� ���∑�	 ������ + ���� . (10)

With the updating rule, we could estimate the propensi-
ties ���. �e reason why we use the multiplicative updating
rule is that it is a gradient descent method with an adaptive
step length and is guaranteed to converge to an optimum [19–
21].
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Input: �: PPI network;�: penalty parameter;&: propensity threshold;�
: max size of sub networks;

Output: �: predicted complexes

Algorithm:

(1) � ← 0;
(2) get the sub-networks {��} in G with max size of�
;
(3) for each sub-network �� in {��}
(4) compute the weight matrix �� of ��;
(5) Initialize the propensity matrix Θ� of ��;
(6) for � = 1 to��
(7) for  = 1 to ��
(8) update ��� in Θ� using the rule in (10);

(9) end for

(10) end for

(11) return (6) until convergent;

(12) get complexes �� from Θ� and � ← � ∪ ��;
(13) end for

(14) return �.
Algorithm 1: PLSMC (�, �, &,�
).

2.3. Postprocessing. A�er estimating the propensities, we
could obtain complexes using the estimated propensity
matrix Θ = [���]. We introduce a propensity threshold & to
derive the complexes. If ��� ≥ &, the protein � is allocated
to the complex  . �us, a set of predicted complexes � in
the network � is obtained, in which each element consists
of a group of proteins. Moreover, as previous methods, the
predicted complexes in set � that include less than 3 proteins
are removed.

2.4. A Speeding-Up Strategy. �e time-consuming is pro-
hibitive when the optimizing process is directly conducted on
a large-scale real world PPI network.�erefore, it is appropri-
ate to execute the estimating process on a set of subnetworks
that are of small scale but enough to identify complexes. To
get the subnetworks, we recursively cluster the network into
subnetworks containing proteins less than a speci
c size �
.
�en, apply the optimization procedure to each subnetwork
to detect complexes. We use the tool of fastCommunity [22]
to cluster the network.�e reason is that it is a fast and robust
algorithm in the 
eld of network clustering.

In particular, we 
rst use fastCommunity to cluster the
input network and let each cluster be a subnetwork. Redo the
process on each subnetwork larger than�
, until there is no
subnetwork larger than�
.
2.5. PLSMC Algorithm. �ree main steps in PLSMC are as
follows: (1) get subnetworks from the input PPI network;

(2) compute the weight matrix and initialize the propensity
matrix with random values for each subnetwork; (3) esti-
mate protein propensities in each subnetwork; (4) identify
complexes of proteins using the postprocessing step. �e
pseudocode of PLSMC is in Algorithm 1.

3. Results and Discussion

We implemented a Java archive and a Web tool of the
PLSMC algorithm, which is available at http://nclab.hit.edu
.cn/PLSMC/. To examine its e	ectiveness, PLSMC is tested on
several public PPI networks of yeast and comparedwith some
state-of-the-art methods. �e matching with known com-
plexes and functional homogeneity of predicted complexes
are both studied.

3.1. Dataset and Evaluation Metrics. We investigate the per-
formance on several PPI networks of yeast (Saccharomyces
cerevisiae), including Krogan [23], Collins [24], Gavin [2],
and BioGRID [25] datasets. For Krogan, we use high con
-
dence interactions with the probability higher than 0.273. For
Gavin, only interactions with socioa�nity index larger than 5
are considered. For Collins network, we choose the top 9074
interactions with respect to puri
cation enrichment score.
�e above cuto	s are suggested by original papers and [14].
In addition, all of physical interactions in BioGRID dataset
(version 3.1.92) are downloaded. �e general characteristics
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of these networks are listed in Supplementary Table S1
available online at http://dx.doi.org/10.1155/2014/720960.

�e matching between predicted complexes and known
complexes is studied to evaluate the accuracy of the predic-
tion. We use CYC2008 catalogue [26] as the gold standard
of known complexes in this work, which is available at
http://wodaklab.org/cyc2008/. �e CYC2008 includes the
complexes that are all validated by small-scale experiments
and it is an up-to-date comprehensive dataset of known com-
plexes of yeast. As in the literature [14], the known complexes
in CYC2008 containing less than 3 proteins are removed.

�ree metrics in the following are used to evaluate the
accuracy of matching between a predicted complex set - and
a gold standard /.
3.1.1. f-Measure. A predicted complex 3 ∈ - and a known
one 5 ∈ / are considered to be matching, if the overlapping
score os (3, 5) is greater than a matching threshold ov (ov is
set to 0.25 as in [4]). �e overlapping score is de
ned as

67 (3, 5) = ����3 ∩ 5����2(����3���� × |5|) . (11)

Let�
� be the number of predicted complexes that match
at least one known complex and let �
� be the number of
known complexes that match at least one predicted complex.
�e precision and recall are de
ned as follows:

precison = �
�|-| , recall = �
�|/| . (12)

�e 8-measure is the harmonic mean of precision and
recall as

8-measure = 2 × precision × recall(precision + recall) . (13)

3.1.2. Acc Metric. Let 9�� be the number of common proteins
between a known complex � and a predicted complex �.�en,
the sensitivity (Sn) and positive predictive value (PPV) are as
follows:

Sn = (∑|�|�=1max� {9��})(∑|�|�=1��) ,

PPV = (∑|�|�=1max� {9��})
(∑|�|�=1∑|�|�=1 9��) ,

(14)

where �� is the number of proteins in a known complex �.
�en, the accuracy metric [14] is de
ned as

Acc = √Sn × PPV. (15)

3.1.3. MMR Metric. Recently, [14] proposed a novel metric
called maximummatching ratio (MMR) as follows:

MMR = ∑|�|�=1max|�|�=167 (3�, 5�)|/| , (16)

where 5� and 3� are �th known complex in/ and �th predicted
complex in -, respectively.

It is important to note that each of above evaluation met-
rics does not provide an adequate description of thematching
between predicted complexes and known complexes. To
make a comprehensive evaluation, we consider the composite
score that is the sum of above three scores in this study.
Similar composite score is also used in the literature [14].

3.2. Investigation of PLSMC. �e parameter �
 in PLSMC
controls the size of subnetwork and is signi
cantly related to
the e	ect of the speed-up strategy. We test di	erent values of�
 = {50, 100, 200, 300, 400, 500}. Because of the prohibitive
cost of computation, �
 larger than 500 is not investigated.
For each value of �
, we try di	erent values of penalty
parameter � (� ∈ {2−5, . . . , 25}) and repeat executing the
algorithm 100 times with random initialization. We choose
the execution that the estimated propensity matrix gives the
minimal value of � in (5). We choose the values of propensity
threshold & from 0.05 to 0.5 with increment 0.05 that gives
the best composite score. Supplementary Table S2 shows the
best parameter setting for each value of�
.

We demonstrate the e	ect of �
 with di	erent values on
the four networks in Figures 1(a) and 1(b). As in Figure 1(a),
on all networks, the composite score decreases with the
parameter�
 when�
 ≤ 200 and �uctuates when�
 > 200.
Meanwhile, the execution time increases with the parameter
dramatically as in Figure 1(b). It indicates that the speed-
up procedure could make a good balance between the
computation time and prediction performance when �
 =200. Interestingly, this is also consistent with that in CYC2008
[26], in which there is no known complex including more
than 200 proteins. �erefore, in the following of this study,�
 is set to 200.

To examine the e	ect of the penalty term introduced
in (4), we compare the PLSMC using the term and the
one without using it (denoted by LSMC) applied to the
four networks. �e parameter setting of LSMC is shown
in Supplementary Table S3. Figure 1(c) illustrates the results
of PLSMC and LSMC. As shown, the PLSMC outperforms
LSMC applied to all four networks. �is con
rms that the
penalty term in (4) is essential.

3.3. Comparison with Other Methods on Matching Known
Complexes. We compare PLSMC with SLCP2 [16], Clus-
terONE [14], RSGNM [21], OCG [12],MCL [15], andCFinder
[10].�e parameters of these algorithms are tuned as follows:
ClusterONE: density (C) and merging threshold (D6) both
from 0.1 to 1.0 with increment 0.1; RSGNM: rate parameterE ∈ {2−5, . . . , 25} and the parameter � ∈ {2−5, . . . , 25}; MCL:
in�ation from 1.2 to 5.0 with increment of 0.1; CFinder: the
size ( ) of  -clique is changed from 3 to 10; OCG: using
centered cliques initialization and modularity maximization;
SLCP2: no parameter needs to be tuned. We remove the
predicted complexes of above methods with size smaller
than 3 and choose the parameter setting that yields the
best composite score. �e general information including
parameter settings of the algorithms applied to four networks
is in Supplementary Table S4, where (Com.) is the number
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Figure 1: Comparison of PLSMC with di	erent parameter setting. (a) and (b) are the comparison of composite score and execution time of
PLSMC with di	erent value of�
 (max size of subnetwork) applied to the four networks. (c) is the composite scores of PLSMC and PLSMC
without the penalty term (denoted by LSMC).

of predicted complexes, (Prot.) is the number of covered
proteins, and (Size) is the average size of predicted complexes.
We cannot obtain the results of CFinder on BioGRID net-
work, as the calculation requires morememory than a typical
computer.

We present the comparison result of matching with gold
standard in Figure 2. On all four networks, PLSMC could get
better composite score than other methods. ClusterONE gets
close results to PLSMC on all networks. SLCP2 and OCG
provide good performance when applied to Collins network
but make poor predictions about other networks. It indicates
that these two methods are prone to be a	ected by di	erent
networks. MCL achieves poor performance when applied to
all networks.

In addition, we also investigate the number of known
complexes that are matched by predicted complexes. �e
number of matched known complexes of various algorithms
applied to Krogan, Collins, Gavin, and BioGRID networks
is illustrated in Figures 3(a)–3(d), respectively. We show the
results of the overlapping threshold 6V from 0.5 to 1.0. It
denotes a perfect matching when 6V = 1. As shown, PLSMC
can hit 15, 36, 16, and 23 known complexes with perfect
matching on four networks, respectively. It can also be found
that, on Krogan, Collins, and BioGRID networks, PLSMC
can provide the greatest number using all thresholds. On
Gavin network, PLSMC could get comparative results with
ClusterONE with all thresholds and match more known
complexes with perfect matching than others. Generally, the
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Figure 2: Comparison on composite score of the algorithms applied to four networks. Various shades of the same color denote 8-measure,
Acc, and MMR submetrics. �e total height of each bar is the value of composite score.
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Figure 3: �e number of matched known complexes of the algorithms.
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Figure 4: �e COMPASS complex as detected by the six algorithms. Hexagon nodes represent the proteins involved in the COMPASS
complex. Shaded areas are the clusters detected by the algorithms, which have the max overlapping scores (os) with COMPASS complex.

above comparisons con
rm that the PLSMC outperforms
other methods in terms of matching known complexes in
gold standard.

We show how the studied algorithms identify the known
COMPASS complex from the Krogan network in Figure 4.
�e COMPASS complex is an important conserved protein
complex that catalyzes methylation of histone H3, which
is collected in both CYC2008 and GO (GO: 0048188). �e

complex contains 8 proteins (YKL018W, YPL138C, YBR175W,
YDR469W, YHR119W, YLR015W, YAR003W, and YBR258C),
which are denoted by hexagon nodes in Figure 4.�e clusters
under the shaded areas are detected by the algorithms,
which have the max overlapping scores (os) with COMPASS
complex. As shown, PLSMC is the only algorithm that is
able to detect this complex with perfect matching. All of the
other algorithms make inaccurate prediction. SLCP2 detects
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Table 1: Comparison onbiological relevance of complexes predicted
by the algorithms.

Network Method MF BP CC

Krogan

PLSMC 0.479 0.457 0.592

SLCP2 0.394 0.114 0.094

ClusterONE 0.311 0.291 0.357

RSGNM 0.392 0.270 0.270

OCG 0.199 0.185 0.331

MCL 0.265 0.057 0.033

CFinder 0.296 0.287 0.330

Collins

PLSMC 0.536 0.460 0.620

SLCP2 0.405 0.353 0.410

ClusterONE 0.401 0.377 0.419

RSGNM 0.376 0.371 0.418

OCG 0.519 0.439 0.612

MCL 0.380 0.240 0.331

CFinder 0.439 0.351 0.439

Gavin

PLSMC 0.399 0.362 0.467

SLCP2 0.374 0.153 0.189

ClusterONE 0.374 0.308 0.360

RSGNM 0.382 0.333 0.389

OCG 0.381 0.310 0.405

MCL 0.308 0.112 0.210

CFinder 0.387 0.350 0.401

BioGRID

PLSMC 0.459 0.452 0.511

SLCP2 0.443 0.184 0.117

ClusterONE 0.439 0.447 0.439

RSGNM 0.363 0.277 0.267

OCG 0.262 0.321 0.343

MCL 0.400 0.176 0.140

CFinder — — —

CYC2008 0.458 0.424 0.525

MF, molecular function; BP, biological process; CC, cellular compartment.

a part of the complex and other algorithms include unrelated
proteins into the complex.�e result of CFinder is not shown,
because the detected cluster that has the best matching with
the complex is a huge cluster, which consists of 627 proteins.

3.4. Biological Relevance of Predicted Complexes. �e known
complex dataset is incomplete. For example, CYC2008 only
covers 1627 proteins, while the number of proteins in yeast
is more than 5000. �erefore, a predicted complex that
does not match with any known complex is possibly not a
false positive one and it is worth further in-depth analysis.
To this end, we also examine the biological relevance of
predicted complexes in terms of functional homogeneity.
�is is because the proteins within a complex tend to be
located in the same cellular component (CC) or are involved
in a common molecular function (MF) or biological process
(BP) [4, 14]. We use the tool of GO::TermFinder (Version
0.83) [27] to compute the- value for each predicted complex.
�e GO corpus is downloaded from Saccharomyces Genome
Database [28]. We investigate all three aspects of GO.

A predicted complex that has more than one annotation
with the - value smaller than a threshold 3 is considered
functional homogeneity. �e threshold 3 is set to 1.0F − 10
[4]. �e fraction of predicted complexes that are functional
homogeneity is used to evaluate the performance of the
prediction method.

Table 1 presents the comparison of functional homo-
geneity of complexes predicted by di	erent methods. �e
result of known complexes in CYC2008 is also listed. It
can be found that the complexes predicted by PLSMC are
more functional homologous than those of other methods.
Moreover, the results of PLSMC applied to Krogan, Collins,
and Biological networks are all better than that of CYC2008.
More interestingly, on all networks, the results of PLSMC in
regard to CC aspect are better than MF and BP aspects. �is
tendency is consistent with that of CYC2008. On the whole,
the comparison demonstrates that the complexes derived by
PLSMC are more biologically relevant.

4. Conclusion

In this paper, we present PLSMC, a penalized least squares
method, to detect complexes from PPI network. PLSMC
identi
es complexes by minimizing the distances between
cocomplex coe�cients and interaction weights of all pairs of
proteins. We test it on several yeast PPI networks. �e results
show that PLSMC achieves higher accuracy in matching
with known complexes than some state-of-the-art methods.
Moreover, the predicted complexes also have good biological
relevance to functional homogeneity. �is study con
rms
that PLSMC, based on a least squares method, is an e	ective
approach to identify complexes from the PPI network.

We note that integrating multiple biological data sources
in addition to PPI network [29] can improve the identi
cation
of protein complexes. On the one hand, most of available
protein-protein interaction networks are static. Combining
dynamic information such as expression pro
les can infer
the dynamic properties of protein-protein interactions under
di	erent time points or various conditions [1, 30]. On the
other hand, when two or more proteins form a complex,
some interface information as physical folds [31], biochemical
properties [32], and posttranslationmodi
cations [33] is very
important to the complex formation. In the future, based
on PLSMC, we will study the identi
cation of protein com-
plexes from dynamic protein-protein interaction networks
and interface datasets.
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