
PSYCHOMETRIKA--VOL. 48, NO. 4. 

DECEMBER, 1983 

NOTES AND COMMENTS 

A LEAST SQUARES ALGORITHM FOR FITTING 
ADDITIVE TREES TO PROXIMITY DATA 

GEERT DE SOETE 

UNIVERSITY OF GHENT, BELGIUM 

A least squares algorithm for fitting additive trees to proximity data is described. The algo- 
rithm uses a penalty function to enforce the four point condition on the estimated path length 
distances. The algorithm is evaluated in a small Monte Carlo study. Finally, an illustrative appli- 
cation is presented. 
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Additive trees have proved to be a valuable alternative to multidimensional scaling 
for representing proximity data [Sattath & Tversky, 1977]. Especially when the stimuli 
are conceptual rather than perceptual, an additive tree representation can be very useful 
[cf. Pruzansky, Tversky, & Carroll, 1982]. 

A tree is a connected graph where every pair of nodes is connected by a unique path. 
In an additive tree a nonnegative weight is attached to each link such that the distance 
between any pair of nodes is the sum of the weights associated with the links that connect 
the two nodes. Alternative names for additive trees are path length trees [Carroll, 1976] 
and weighted free trees [Cunningham, 1978]. 

Let ~ be a nonnegative symmetric dissimilarity measure defined on a finite set of n 
objects. Then the n objects can be represented by the n terminal nodes of an additive tree 
whenever A = {bo l i  < j} satisfies 

6~j + 6kl < m a x  ((~ik "~- {~jl, 6il "~ (~jk) (1) 

for all i, j, k and I. Or equivalently, whenever the two largest of (t$ o + 6kt), (~ik + 6jr), and 
(tSit + t$ik ) are equal for all i, j, k, and I. This condition, which is often referred to as the 
additive inequality or the four point condition, is both necessary and sufficient for the 
existence of a unique additive tree representation of A [cf. e.g., Dobson, 1974]. When A 
satisfies (1) perfectly, the additive tree representation can be constructed quite easily. As 
remarked by Sattath and Tversky [1977] every proof of the sufficiency of (1) provides a 
method for constructing the tree. With fallible data, however, an algorithm is needed that 
finds an additive tree with path length distances D = {do l i < j} that optimally approxi- 
mate A. Cunningham [1978] suggested to use a least squares criterion. This means that 
path length distances are sought which minimize 

L = E E (3~j - dij) 2. (2) 
i<j 

Cunningham [1978] presented an algorithm that is meant to minimize (2). His pro- 
cedure is based on the assumption that for all i, j, k, and l the optimal path length 
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distances satisfy 

whenever 

dij + dkl_._~ dik + dji < dl: + djk 

This clearly need not always be the case, especially when the data contain a lot of noise. 
Therefore, the path length distances estimated with Cunningham's procedure are not nec- 
essarily optimal in a least squares sense. 

Carroll and Pruzansky [Note 1, I980] proposed an alternating least squares algo- 
rithm that is based on the fact that any set of path length distances can be decomposed 
into a set of distances that satisfy the ultrametric inequality and n additive constants. In 
the next section we propose a more straightforward algorithm for obtaining path length 
distances that minimize (2). 

A N e w  Aloorithm 

In order to simplify the notation, it is assumed throughout this section that the data 
are normalized such that 

E Z - = 1, 
i < j  

where 

2 

We want to find a set of distances D which are closest to the data in least squares 
sense and which satisfy the four point condition perfectly. This constrained optimization 
problem is solved by sequentially minimizing the unconstrained function 

F(D, r) = L(D) + rP(D) (3) 

for an increasing sequence of values of r. The first component of F(D, r) is given in (2) and 
measures the departure from the data while the second part, P(D), is a penalty function 
that expresses how strongly D violates the four point condition. P(D) is defined as 

P(D) = ~ (dtk + djl -- du - d~k) 2 
f~ 

where 

f~ = {(i,j, k, l)[ i,j, k, I distinct and dq + du < min (dik + dj~, dll + d~,)}. 

Using q as the iteration index, the basic algorithm for obtaining least squares estimates of 
the path length distances is as follows: 

(i) Initialize: q = 1, 

D (°) = {6i# + 8ij[i < j} where eij "-~ N(O, a~), r (1) L(D(°)) 
= p(D(O)) • 

(ii) Minimize F(D, r tq)) starting from D (q- 1) to obtain D ~). 
(iii) Test for convergence: If 
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is less than some small constant stop, otherwise continue. 
(iv) Update r: r (q+l) = 10 x r (q). 

Increment q and go back to step (ii). 

This procedure converges usually within five to six major iterations, Since the number of 
unknowns can be quite large, we decided to use Powelrs [1977J conjugate gradient pro- 
cedure with automatic restarts to minimize F(D, r (q)) in phase (ii). This method requires 
only the first-order partial derivatives of F(D, r) with respect to the elements in D. These 
are given below 

OF 
2(5~, - d~,) + 2r Z {(e~,. ,k + e~,. ~t - e~,. ,, - e~,, j~)(d,k + d r, - d,, - d~k)}. 

0dst - n 

where the indicator variable e~t ' ij is defined by 

{ l o w h e n s = i a n d t = J .  
e,t. ij = otherwise. 

Once least squares estimates of the path length distances are obtained by the procedure 
outlined above, the additive tree can be constructed in a straightforward way [cf. e.g., 
Cunningham, 1978; Dobson, 1974]. 

Monte Carlo Evaluation 

In order to evaluate the performance of the algorithm described in the previous 
section, a Monte Carlo study was undertaken using error-perturbed path length distances 
as input data. Two factors were factorially combined: the set size and the amount  of error 
added to the true path length distances. Following Pruzansky et al. [1982] three different 
set sizes (n) were used: 12, 24, and 36. 

Error-perturbed path length distances were generated by adding a random central 
2 normal deviate with variance a e to the unit variance normalized path length distances 

2 between the n terminal nodes of a random additive tree. The same levels of ae as in 
Pruzansky et al. [1982] were used: 0.00, 0.25, and 0.50. In order to construct a random 
additive tree with n terminal nodes, a weight randomly sampled from a uniform distri- 
bution on the unit interval was added to each link of a random binary tree with n termi- 
nal nodes which was constructed by uniform subsampling from the infinite binary tree 
(for more details on constructing random binary trees, see Furnas, Note 2). 

There were 11 replications per condition and for each data set a new random additive 
tree was generated. Each of the 3 x 3 x 11 = 99 data sets was analyzed using 10 different 
sets of initial parameter estimates, so that a total of 990 least squares additive tree analy- 
ses were performed. The initial parameter estimates were constructed by adding a random 
normal deviate with zero mean and variance s~/3 to the input data, where s~ denotes the 
variance of the input data. 

It was found that for each data set, ten exactly identical solutions were obtained. This 
suggests that the algorithm is relatively stable and does not suffer from serious local 
minima problems. Note, however, that the starting configurations were not completely 
random, but that they were obtained by randomly "shaking" the data. 

For  each data set the squared product-moment correlation between the true and the 
derived path length distances was calculated as an index of metric recovery. Table 1 lists 
per condition the median metric recovery as well as the interquartile distance. As can be 
inferred from the table, the metric recovery increases as the number of stimuli increases, 
while it decreases when a~ increases. 
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TABLE I 

Summary of Monte Carlo Results on 
Metric Recovery 

o 2 = 0.00 o 2 = 0.25 o 2 = 0.50 
e e e 

n = 12 1.000 a 0.953 0.906 

(0.000) b (O.010) (0.O83) 

n = 24 1.000 0.979 0.955 

(0.000) (0.009) (0.017) 

n : 36 1.000 0.984 0.961 

(0.000) (O.O03) (0.011) 

aMedian metric recovery 

blnterquartile distance of metric recovery 

Although Pruzansky et al. [1982] utilized a slightly different method for generating 
error-perturbed path length distances, it is instructive to compare Table 1 with the first 
table in Appendix A of Pruzansky et al. 1,1982] which presents results about the metric 
recovery of ADDTREE [Sattath & Tversky, 1977] for the same combinations of n and 
a 2. Comparing the two tables reveals that the present algorithm outperforms ADDTREE 

2 in terms of metric recovery whenever tre > 0. Moreover, the larger the set size, the bigger 
the difference. 

Illustrative Application 

Kuennapas and Janson 11969] obtained from 57 subjects similarity judgments be- 
tween all lower-case Swedish letters. A least squares additive tree analysis was performed 
on the symmetrized average ratings. In order to be able to compare our results with the 
ADDTREE solution reported by Sattath and Tversky [19771 the three special letters ~, ~i 
and 6 were omitted. The least squares additive tree accounts for 77% of the variance of 
the data. The tree is displayed in parallel form in Figure 1. In this form, the distance 
between any pair of nodes is the sum of the horizontal links that connect them. Just like 
in the ADDTREE analysis, five major clusters emerge: the curved and circular letters (o, 
c, e, a), the curved and tailed letters (g, p, q, d, b), the arched letters (m, n, h, u), the 
angular letters (s, z, y, v, x), and the vertical letters (r, 1, t, f, j, i, k). Although the 
ADDTREE solution presented in Sattath and Tversky 1-1977] gives approximately an 
equally good account of the data (76% variance accounted for), there are some interesting 
qualitative differences between the two trees. The most remarkable one is that in Figure 1 
k is grouped together with the vertical letters, whereas in the ADDTREE solution k is 
classified in the cluster of the angular letters. 

Discussion 

In this paper an iterative algorithm for constructing a least squares additive tree 
representation of a set of dissimilarity data was presented. The algorithm uses a penalty 
function to enforce the four point condition on the estimated path length distances. Con- 
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FIGURE 1. 
Least squares additive tree representation of the Kuennapas and Janson [1969] data. 

Z 
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ceptually, this approach is closely related to Carroll and Pruzansky's [Note 1, 1980i 
method for fitting ultrametric trees to proximity data. Numerically, the present method 
differs from the Carroll and Pruzansky algorithm in that a more stable nonlinear mini- 
mization procedure has been used. As evidenced by the Monte Carlo study, the present 
algorithm is quite insensitive to the choice of the initial parameter estimates. 
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Contrary to Cunningham's [1978] procedure, the present algorithm is iterative. How- 
ever, as has been argued in the first section, Cunningham's method does not always yield 
a least squares solution. Moreover, his method requires the inversion of a symmetric 
matrix of order (~). This limits its applicability to fairly small data sets. The present algo- 
rithm, on the other hand, can analyze dissimilarity data between and up to fifty stimuli 
without much problem. 
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