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A LEAST-SQUARES APPROACH BASED ON A DISCRETE

MINUS ONE INNER PRODUCT FOR FIRST ORDER SYSTEMS

JAMES H. BRAMBLE, RAYTCHO D. LAZAROV, AND JOSEPH E. PASCIAK

Abstract. The purpose of this paper is to develop and analyze a least-squares
approximation to a first order system. The first order system represents a
reformulation of a second order elliptic boundary value problem which may
be indefinite and/or nonsymmetric. The approach taken here is novel in that
the least-squares functional employed involves a discrete inner product which
is related to the inner product in H−1(Ω) (the Sobolev space of order minus
one on Ω). The use of this inner product results in a method of approximation
which is optimal with respect to the required regularity as well as the order of
approximation even when applied to problems with low regularity solutions. In
addition, the discrete system of equations which needs to be solved in order to
compute the resulting approximation is easily preconditioned, thus providing
an efficient method for solving the algebraic equations. The preconditioner
for this discrete system only requires the construction of preconditioners for
standard second order problems, a task which is well understood.

1. Introduction

Substantial progress in the finite element methods and in the solution techniques
for solving the corresponding systems of algebraic equations in the last three decades
has resulted in the development of mathematical formulations that introduce phys-
ically meaningful quantities as new dependent variables (fluxes, velocity, vorticity,
strains and stresses, etc.). These problems can be posed in a weak sense and approx-
imated by finite element methods. In many cases (for example, Stokes equations),
this procedure leads to a saddle point problem. Due largely to Babuška [3] and
Brezzi [10], it is now well understood that the finite element spaces approximat-
ing different physical quantities (pressure and velocity, or temperature and flux,
or displacement and stresses, etc.) cannot be chosen independently and have to
satisfy the the so-called inf-sup condition of Ladyzhenskaya-Babuška-Brezzi [25],
[3], [10]. Although substantial progress in approximation and solution methods for
saddle point problems has been achieved, these problems may still be difficult and
expensive to solve.
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In recent years there has been significant interest in least-squares methods, con-
sidered as an alternative to the saddle point formulations and circumventing the
inf-sup condition. Examples of application of the least-squares to potential flows,
convection-diffusion problems, Stokes and Navier-Stokes equations can be found
in [8], [9], [16], [17], [20], [21], [23], [28]. In general, the corresponding problem
is written as a system of partial differential equations of first order with possibly
additional compatibility conditions. For example, −∇ · u = f , u = ∇ p provides
a first order system for the Poisson equation −∆p = f which can be augmented
by the compatibility equation curl u = 0 (see [24], [28]). Alternatively, the system
curl u = 0 and ∇ · u + f = 0 has been used (cf. Chen and Fix in [16], [17]) for
fluid flow computations.

There are two main approaches for studying least-squares methods for systems of
first order. The first approach introduced by Aziz, Kellogg and Stephens in [2] uses
the general theory of elliptic boundary value problems of Agmon-Douglis-Nirenberg
(ADN) and reduces the system to a minimization of a least-squares functional that
consists of a weighted sum of the residuals occurring in the equations and the
boundary conditions. The weights occurring in the least-squares functional are
determined by the indices that enter into the definition of the ADN boundary value
problem. See also the paper of Chang [15]. This approach generalizes both the
least-squares method of Jespersen [22], which is for the Poisson equation written
as a grad − div system, and the method of Wendland [34], which is for elliptic
systems of Cauchy-Riemann type. Recently, Bochev and Gunzburger [8], [9], have
extended the ADN approach to velocity-vorticity-pressure formulation of Stokes
and Navier-Stokes equations and have produced some very interesting theoretical
and computational results.

The second approach, mostly used for second order elliptic problems written as
systems of first order, introduces a least-squares functional and studies the resulting
minimization problem in the framework of the Lax-Milgram theory establishing the
boundness and the coercivity of the corresponding bilinear form in an appropriate
space. Interesting computational experiments in this setting have been done by
Chen and Fix in [17] and by Carey and Shen in [14] that were a basis for the
theoretical analysis of Pehlivanov, Carey and Lazarov in [30] for selfadjoint and of
Cai, Lazarov, Manteuffel and McCormick in [12] for non-selfadjoint second order
elliptic equations. The main result in [12], [30] is that the least-squares functional
generates a bilinear form that is continuous and coercive in a properly defined
subspace of Hdiv(Ω) ×H1(Ω) and, therefore, any finite element approximation of
Hdiv(Ω) can be used since the approximating space need not to satisfy the inf-sup
condition. A recent paper by Pehlivanov, Carey and Vassilevski [32] considers a
least-squares method for non-selfadjoint problems.

One problem with the above mentioned least-squares methods is that the error
estimates require relatively smooth solutions. The known estimates do not guaran-
tee any convergence when the methods are applied to problems with low regularity
solutions. The least-squares method developed in this paper will be stable and
convergent as long as the solution belongs to the Sobolev space H1+β(Ω), for any
positive β.

In this paper, we introduce and study a new least-squares norm for systems
arising from splitting convection–diffusion and reaction–diffusion equations into a
system of equations of first order. The problem may be indefinite and nonsymmet-
ric as long as it has a unique solution. We introduce a least-squares functional that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEAST-SQUARES APPROACH FOR FIRST ORDER SYSTEMS 937

involves a discrete inner product that is related to the inner product in the Sobolev
space H−1(Ω). The use of this inner product results in a method which is optimal
with respect to the required regularity as well as the order of approximation and
extends to problems with low regularity solutions. In addition, the discrete system
of equations which needs to be solved in order to compute the resulting approxi-
mation is easily preconditioned thus providing an efficient method for solving the
algebraic equations. The preconditioner for the algebraic system corresponding to
the new least-squares system only requires the construction of preconditioners for
standard second order problems, a task which is well understood.

The paper is organized as follows. In Section 2 we describe the least-squares
approach using a discrete H−1(Ω) inner product. We then discuss some of the
properties of more standard least-squares methods already studied in the literature
and show how this inner product results in a more balanced quadratic form. Next we
define the computational algorithm and study its properties. In Section 3 we derive
an error estimate for the least-squares finite element approximation, in Section 4 we
discuss the issues of implementation of the iteration methods and finally in Section
5 we provide the results of numerical experiments on some model problems.

2. The discrete H−1
least-squares approach

In this section, we describe the least-squares approach using a discrete H−1(Ω)
inner product. We start by defining the second order boundary value problem
which we shall be approximating. We next give some notation for norms and
Sobolev spaces. We then discuss some of the properties of more standard least-
squares methods already studied in the literature and show how the use of the
inner product in H−1(Ω) in the least square functional provides a more balanced
quadratic form. Finally, we define the computational algorithm by introducing a
discrete version of the H−1(Ω) inner product.

We shall consider least-squares approximations to the solutions for the following
second order elliptic boundary value problem. Let Ω be a domain in d dimensional
Euclidean space with boundary ∂Ω = ΓD ∪ ΓN and let u satisfy

Lu = f in Ω,

u = 0 on ΓD,

∂u

∂ν
= 0 on ΓN .

(2.1)

Here ∂u
∂ν denotes the co-normal derivative on ΓN and the operator L is given by

Lu = −
d∑

i,j=1

∂

∂xi
aij(x)

∂u

∂xj
+

d∑
i=1

bi(x)
∂u

∂xi
+ c(x)u.

We assume that the matrix {aij(x)} is symmetric, uniformly positive definite and
bounded. We further assume that bi ∈ L∞(Ω), for i = 1, . . . , d.

To describe and analyze the least-squares method, we shall use Sobolev spaces.
For non-negative integers s, let Hs(Ω) denote the Sobolev space of order s defined
on Ω (see, e.g., [19], [26], [29]). The norm in Hs(Ω) will be denoted by ‖·‖s. For
s = 0, Hs(Ω) coincides with L2(Ω). In this case, the norm and inner product will
be denoted by ‖·‖ and (·, ·) respectively. The space W is defined to be the closure
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of {
v ∈ C∞(Ω) | v = 0 on ΓD

}
.

with respect to the norm in H1(Ω). In the case where ΓD = ∅, we define W to be
the set of functions in H1(Ω) with zero mean value. The space H−1(Ω) is defined
by duality and consists of the functionals v for which the norm

‖v‖−1 = sup
φ∈W

(v, φ)

‖φ‖1

(2.2)

is finite. Here (v, φ) also is the value of the functional v at φ. For noninteger
values of s, Hs(Ω) is defined by the real method of interpolation (cf., [26]) between
consecutive integers. We use the same notation for the norms of vector valued
functions. Thus, if δ is a vector valued function with each component δi ∈ Hs(Ω),
then

‖δ‖2
s ≡

d∑
i=1

∥∥δi∥∥2

s
.

Let A(·, ·) be the form corresponding to the operator L, i.e., for u, v ∈ H1(Ω),

A(u, v) =

d∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx

+

d∑
i=1

∫
Ω

bi(x)
∂u

∂xi
v dx+

∫
Ω

c(x)uv dx.

The weak formulation of (2.1) is given by the problem: Given f ∈ L2(Ω), find
u ∈ W satisfying

A(u, θ) = (f, θ) for all θ ∈ W.(2.3)

We assume that the solution of (2.3) is unique. This means that if v ∈ W and
satisfies A(v, θ) = 0 for all θ ∈ W , then v = 0. As usual (cf., [18], [26]), the
uniqueness assumption implies the existence of solutions as well.

The particular space H−1(Ω) chosen above is related to the boundary conditions
used in our boundary value problem (2.1). We consider the symmetric problem

w −∆w = f in Ω,

w = 0 on ΓD,

∂w

∂n
= 0 on ΓN .

(2.4)

Let T : H−1(Ω) 7→W denote the solution operator for the above problem, i.e., for
f ∈ H−1(Ω), Tf = w is the solution to (2.4). The following lemma provides the
relationship between T and the norm in H−1(Ω). Its proof is a simple consequence
of the definition of T .

Lemma 2.1. For all v ∈ H−1(Ω),

(v, T v) = sup
θ∈W

(v, θ)2

‖θ‖2
1

= ‖v‖2
−1(2.5)

and thus the inner product on H−1(Ω) × H−1(Ω) is given by (v, Tw), for v, w ∈
H−1(Ω). For v and w in L2(Ω), (v, Tw) = (Tv, w).
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To define the least-squares approximation to (2.1) we start by considering the
following reformulation of (2.1) into a system of first order equations. Let u be the
solution of (2.1) and define σ = −A∇u where A = A(x) is the matrix with entries
{aij(x)}, i, j = 1, . . . , d. In addition, for θ ∈ H1(Ω), define

X θ =

d∑
i=1

bi(x)
∂θ

∂xi
+ c(x)θ.

Then, (2.1) can be rewritten as

σ +A∇u = 0 in Ω,

∇ · σ + Xu = f in Ω,

u = 0 on ΓD,

σ · n = 0 on ΓN .

(2.6)

Here n denotes the outward normal on ΓN .
In order to motivate our new least-squares formulation, we shall consider for the

moment a standard least-squares approach to (2.6). In particular, we shall point
out some undesirable features which are not present in our new method. To this
end, let Hdiv(Ω) denote the linear space of vector functions δ whose components
δi, for i = 1, . . . , d, are in L2(Ω) and whose divergence is also in L2(Ω). The
corresponding norm ‖·‖Hdiv

is defined by

‖δ‖2
Hdiv

= ‖δ‖2 + ‖∇ · δ‖2 .

The subset Hdiv(Ω) consisting of functions with vanishing normal component on
ΓN will be denoted H0

div(Ω). The solution (σ, u) of (2.6) obviously minimizes the
quadratic functional

Q1(δ, v) = ‖∇ · δ + Xv − f‖2 +
∥∥∥A−1/2(δ +A∇v)

∥∥∥2

(2.7)

for all δ ∈ H0
div(Ω) and v ∈ W . It is known that for some positive numbers C0,

C1,

C0(‖δ‖2
Hdiv

+ ‖v‖21) ≤ ‖∇ · δ + Xv‖2 +
∥∥∥A−1/2(δ +A∇v)

∥∥∥2

≤ C1(‖δ‖2
Hdiv

+ ‖v‖21)
(2.8)

for all v ∈ W and δ ∈ H0
div(Ω). The one dimensional case was proved in [31] and

the case of higher dimensions was proved in [12].
Numerical approximations are defined by introducing spaces of approximating

functions Vh ⊆ H0
div(Ω) and Wh ⊆ W . The discrete approximations are defined

to be the pair σh ∈ Vh and uh ∈ Wh which minimize (2.7) over all pairs (δ, v) in
Vh ×Wh. It follows from (2.8) (cf. [12], [30]) that the errors eσ = σ − σh and
eu = u− uh are quasi-optimal with respect to the norm appearing in (2.8), i.e.,

‖eσ‖Hdiv
+ ‖eu‖1 ≤ C inf

(δ,v)∈Vh×Wh

{
‖σ − δ‖Hdiv

+ ‖u− v‖1

}
.(2.9)

Although (2.9) is optimal with respect to this norm, it does not provide an optimal
estimate with respect to regularity of the solution. Consider, for example, the case
when Vh and Wh consist of standard conforming piecewise linear finite element
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approximation subspaces on a triangulation of size h. In that case, (2.9) gives rise
to the estimate

‖eσ‖Hdiv
+ ‖eu‖1 ≤ Ch ‖u‖3 .

Thus, to get first order convergence in L2(Ω)d for σ (or H1(Ω) for u), we need three
Sobolev derivatives on the solution. Moreover, there is no theoretical convergence in
the case when f is only in L2(Ω) or u is only in H2(Ω). In addition to this deficiency
there is no obvious efficient way to solve the resulting algebraic equations.

The problem with the above least-squares formulation is that there are too many
derivatives on σ, i.e., the L2(Ω) norm is too strong in the first term on the right hand
side of (2.7). This suggests the use of a weaker norm. Consider the least-squares
method based on the following functional:

Q2(δ, v) = ‖∇ · δ + Xv − f‖2−1 +
∥∥∥A−1/2(δ +A∇v)

∥∥∥2

.(2.10)

The above functional makes sense for δ ∈ H0
div(Ω) (and in fact somewhat more

generally as we will see in Section 3) and v ∈ W . The solution pair (σ, u) is its
minimum. The following lemma will be proved in the next section.

Lemma 2.2. There are positive numbers c0 and c1 such that

c0(‖δ‖2
+ ‖v‖2

1) ≤ ‖∇ · δ + Xv‖2
−1 +

∥∥∥A−1/2(δ +A∇v)
∥∥∥2

≤ c1(‖δ‖2 + ‖v‖21),
(2.11)

for all (δ, v) ∈ H0
div(Ω)×W . The constants c0 and c1 above depend on {aij}, {bj}

and c.

We now consider least-squares approximation based on Q2. Let Vh ⊆ H0
div(Ω)

and Wh ⊆W and let (σh, uh) minimize (2.10) over Vh×Wh. It follows from Lemma
2.2 that the resulting errors eσ = σ − σh and eu = u − uh are quasi-optimal with
respect to the norm appearing in (2.11); i.e.,

‖eσ‖ + ‖eu‖1 ≤ C inf
(δ,v)∈Vh×Wh

{
‖σ − δ‖ + ‖u− v‖1

}
.(2.12)

This method gives rise to estimates which are optimal with respect to the the or-
der of approximation as well as the required regularity. Let us consider the case
when Vh consists of standard conforming piecewise linear finite element approxi-
mation subspaces and Wh consists of the lowest order Raviart-Thomas spaces on a
triangulation of size h. In that case, (2.12) gives rise to the estimate

‖eσ‖ + ‖eu‖1 ≤ Ch ‖u‖2 .
Thus, we get first order convergence in L2(Ω)d on σ (or in H1(Ω) on u) when
u is only in H2(Ω). This estimate is optimal both with respect to the order of
approximation as well as the required regularity.

Although minimization with respect to the functional Q2(·, ·) appears attractive
from the point of view of stability and accuracy, it is unfortunately not computa-
tionally feasible. This is because the evaluation of the operator T defining the inner
product in H−1(Ω) involves the solution of the boundary value problem (2.4).

To make the method computationally feasible, we will replace the operator T
appearing in (2.10). Note that the first term of (2.10) can be rewritten

(T (∇ · δ + Xv),∇ · δ + Xv).(2.13)
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Our goal is to replace T by an operator Th which is computable and is equivalent
to T in the sense that there are positive constants c2, c3 not depending on h such
that

c2(T (∇ · δ + Xv),∇ · δ + Xv) ≤ (Th(∇ · δ + Xv),∇ · δ + Xv)
≤ c3(T (∇ · δ + Xv),∇ · δ + Xv),(2.14)

for all (δ, v) ∈ Vh ×Wh.
We construct Th from a preconditioner for the finite element approximation of

(2.4). Let Th : H−1(Ω) 7→ Wh be defined by Thf = w where w is the unique
element of Wh satisfying

D(w, θ) = (f, θ) for all θ ∈ Wh.

Here D(·, ·) denotes the form on H1(Ω) and is defined by

D(v, w) =

∫
Ω

(∇v · ∇w + vw) dx.

A preconditioner Bh : Wh 7→ Wh is a symmetric, positive definite operator with
respect to the L2(Ω) inner product. A good preconditioner is one which is compu-
tationally easy to evaluate and is spectrally equivalent to Th in the sense that there
are positive constants c4, c5 not depending on h and satisfying

c4(Thw,w) ≤ (Bhw,w) ≤ c5(Thw,w) for all w ∈Wh.(2.15)

Remark 2.1. We extend the operatorBh toH−1(Ω) byBhQh whereQh is the L2(Ω)
orthogonal projection onto Wh. This results in an operator which is symmetric and
semidefinite on L2(Ω). Note that Th = ThQh. Thus (2.15) holds for all w in L2(Ω)
if it is satisfied for all w in Wh.

We will assume that Bh is a good preconditioner. We then define Th = h2I+Bh

where I denotes the identity operator on Wh. The purpose of this paper is to
analyze least-squares approximation based on the functional

Q3(δ, v) = (Th(∇ · δ + Xv − f),∇ · δ + Xv − f) +
∥∥∥A−1/2(δ +A∇v)

∥∥∥2

.(2.16)

The quadratic form Q3(·, ·) shares many of the properties of Q2(·, ·) when re-
stricted to the approximation subspaces. For example, the inequality analogous
to (2.11) holds under reasonable assumptions (the norm ‖·‖−1 is replaced by

(Th·, ·)1/2). This allows us to construct efficient iterative methods for the solu-
tion of the resulting discrete equations. We will discuss this more fully in Section 4.
Inequalities analogous to (2.11) also enable one to prove error estimates which are
optimal both in order of approximation and required regularity (see, Section 3).

Remark 2.2. Note that we require that the operator Th be equivalent to T on
functions of the form appearing in (2.14). The h2I term is necessary since the
operator Bh alone may fail to satisfy the lower inequality in (2.14).

Remark 2.3. The exact weighting in the definition of Th is not critical. For example,
one could take

Th = αh2I + βBh

for fixed positive constants α and β. These parameters could be used to tune the
iterative convergence rate. The order of convergence is not changed.
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3. Error analysis

We provide in this section an analysis of the least-squares approximation based
on the functional Q3(·, ·) defined in (2.16). First we prove Lemma 2.2 and then
establish a stability estimate involving the norms corresponding to the quadratic
functional Q3(·, ·). We then prove error estimates which are optimal in order and
regularity for eσ in L2(Ω)d and eu in H1(Ω) and conclude this section by proving
an optimal L2(Ω) estimate for eu.

In the remainder of this paper, C, with or without subscript will denote a generic
positive constant. These constants will take on different values in different occur-
rences but are always independent of the mesh parameter h.

Proof of Lemma 2.2. We will use an additional function space for the proof. Define
the boundary norm, for θ ∈ L2(ΓN ), by

‖θ‖−1/2,ΓN
= sup

φ∈W

〈θ, φ〉
‖φ‖1

(3.1)

where 〈·, ·〉 denotes the L2(ΓN ) inner product. We consider the norm

[|δ, v|] ≡ (‖δ · n‖2−1/2,ΓN
+ ‖δ‖2 + ‖v‖21)1/2(3.2)

and let H be the closure of Hdiv(Ω)×W with respect to this norm.
We first prove that there is a constant C satisfying

[|δ, v|]2 ≤ C
(
‖∇ · δ + Xv‖2−1 +

∥∥∥A−1/2(δ +A∇v)
∥∥∥2

+ ‖δ · n‖2
−1/2,ΓN

+ ‖v‖2)(3.3)

for all (δ, v) ∈ H. Indeed, for smooth δ and v,

(A∇v,∇v) = −(δ,∇v) + (δ +A∇v,∇v)
= (∇ · δ + Xv, v)− 〈δ · n, v〉

+ (A−1/2(δ +A∇v),A1/2∇v) − (Xv, v).

By the Poincaré inequality,

‖v‖2
1 ≤ C(A∇v,∇v).

Thus, the Schwarz inequality and obvious manipulations imply that

‖v‖2
1 ≤ C

(
‖∇ · δ + Xv‖2−1 +

∥∥∥A−1/2(δ +A∇v)
∥∥∥2

+ ‖δ · n‖2−1/2,ΓN
+ ‖v‖2

)
.

The inequality (3.3) immediately follows for smooth δ and v. We clearly have that

‖∇ · δ + Xv‖2−1 +
∥∥∥A−1/2(δ +A∇v)

∥∥∥2

+ ‖δ · n‖2−1/2,ΓN
+ ‖v‖2 ≤ C[|δ, v|]2.(3.4)

It follows that inequality (3.3) holds for all (δ, v) ∈ H by continuity.
We next show that

[|δ, v|]2 ≤ C
(
‖∇ · δ + Xv‖2−1 +

∥∥∥A−1/2(δ +A∇v)
∥∥∥2

+ ‖δ · n‖2−1/2,ΓN

)
(3.5)
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for all (δ, v) ∈ H by applying a standard compactness argument. This argument is
by contradiction. Assume that (3.5) does not hold for any constant C > 0. Then
there is a sequence {(δi, vi)}, for i = 1, 2, . . . , with {(δi, vi)} ∈ H, [|δi, vi|] = 1 and

‖∇ · δi + Xvi‖2
−1 +

∥∥∥A−1/2(δi +A∇vi)
∥∥∥2

+ ‖δi · n‖2−1/2,ΓN
≤ 1

i
.(3.6)

Since W is compactly contained in L2(Ω), we may assume without loss of generality
that vi converges in L2(Ω). It immediately follows from (3.3) and (3.6) that the
sequence {(δi, vi)} is a Cauchy sequence with respect to the norm [|·, ·|]. Let (δi, vi)
converge to (δ, v) in H.

For any φ ∈W , we then have

A(vi, φ) = (A∇vi,∇φ) + (Xvi, φ)

= −(δi,∇φ) + (Xvi, φ) + (δi +A∇vi,∇φ)

= (∇ · δi + Xvi, φ) + (δi +A∇vi,∇φ) − 〈δi · n, φ〉 .
Hence,

|A(v, φ)| = lim
i→∞

|A(vi, φ)|

≤ lim
i→∞

(
‖∇ · δi + Xvi‖2

−1 +
∥∥∥A−1/2(δi +A∇vi)

∥∥∥2

+ ‖δi · n‖2−1/2,ΓN

)1/2

‖φ‖1 = 0.

By our assumption that solutions of (2.3) are unique, it follows that v = 0. In
addition, using (3.3),

‖δ‖2
+ ‖δ · n‖2−1/2,ΓN

≤ C lim
i→∞

(
‖∇ · δi + Xvi‖2

−1

+
∥∥∥A−1/2(δi +A∇vi)

∥∥∥2

+ ‖δi · n‖2
−1/2,ΓN

)
= 0.

This contradicts the assumption that

[|δ, v|] = lim
i→∞

[|δi, vi|] = 1

and hence completes the proof of (3.5). The lemma follows by restricting (3.4) and
(3.5) to H0

div(Ω)×W and hence completes the proof.

We next state some hypotheses which we shall require to hold for the approx-
imation subspaces. It is well known that these properties hold for typical finite
element spaces consisting of piecewise polynomials with respect to quasi-uniform
triangulations of the domain Ω (cf., [1], [7], [11], [13], [33]). Let r be an integer
greater than or equal to one.

(H.1) The subspace Vh has the following approximation property: For any η ∈
Hr(Ω)d ∩H0

div(Ω),

inf
δ∈Vh

{
‖η − δ‖ + h ‖∇ · (η − δ)‖

}
≤ Chr ‖η‖r .(3.7)

(H.2) The subspace Wh has the following approximation property: For any w ∈
Hr+1(Ω) ∩W ,

inf
v∈Wh

{
‖w − v‖ + h ‖w − v‖1

}
≤ Chr+1 ‖w‖r+1 .(3.8)
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(H.3) We assume that Wh is such that Qh, the L2(Ω) orthogonal projection oper-
ator onto Wh, is a bounded operator with respect to the norm in W , i.e.,

‖Qhu‖1 ≤ C ‖u‖1 for all u ∈W.(3.9)

Remark 3.1. It follows from [6] that if (H.1) and (H.2) hold for r = r̃, then they
hold for r = 1, 2, . . . , r̃. The property (H.3) is studied in [7].

We note some properties implied by the above assumptions. It follows from (3.8)
that

‖(I −Qh)v‖−1 = sup
θ∈W

(v, (I −Qh)θ)

‖θ‖1
≤ Ch ‖v‖ for all v ∈ L2(Ω).

(3.10)

It follows from (3.9) that Qh is defined and bounded on H−1(Ω). In addition,

‖Qhu‖2−1 ≤ C2(u, Thu) ≤ C2 ‖u‖2−1 for all u ∈ H−1(Ω).(3.11)

Indeed, the upper inequality follows from (2.5) and the analogous equality

(v, Thv) = sup
θ∈Wh

(v, θ)2

‖θ‖2
1

.

For the lower inequality of (3.11), (3.9) implies that

(TQhv,Qhv) = sup
θ∈W

(v,Qhθ)
2 ‖Qhθ‖2

1

‖Qhθ‖2
1 ‖θ‖

2
1

≤ C sup
φ∈Wh

(v, φ)2

‖φ‖2
1

= C(v, Thv).

We next prove a result analogous to Lemma 2.2 for the functional Q3(·, ·). For
convenience, we define the corresponding form

[δ, v; η, w] = (Th(∇ · δ + Xv),∇ · η + Xw)

+ (A−1(δ +A∇v), η +A∇w),
(3.12)

for all δ, η ∈ H0
div(Ω) and v, w ∈ W . The corresponding norm will be denoted by

|||·, ·||| and is defined by

|||δ, v||| = [δ, v; δ, v]1/2.

We then have the following lemma.

Lemma 3.1. Assume (H.1) – (H.3) hold and that Th is constructed as described
in Section 2 with a preconditioning operator Bh satisfying (2.15) with constants c4
and c5 not depending on h. Then, for all δ ∈ H0

div(Ω) and v ∈W ,

C0(‖δ‖2 + ‖v‖2
1) ≤ |||δ, v||| 2 ≤ C1(h

2 ‖∇ · δ‖2
+ ‖δ‖2

+ ‖v‖21)(3.13)

holds with C0 and C1 which are independent of h.

Proof. By Lemma 2.2, the lower inequality of (3.13) will follow if we can show that

‖∇ · δ + Xv‖2
−1 ≤ C(Th(∇ · δ + Xv),∇ · δ + Xv),(3.14)

for all δ ∈ H0
div(Ω) and v ∈W . For any w ∈ L2(Ω),

‖w‖−1 ≤ ‖(I −Qh)w‖−1 + ‖Qhw‖−1
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and hence (3.10) and (3.11) imply that

‖w‖2
−1 ≤ C(h2 ‖w‖2

+ (Thw,w)) ≤ C(Thw,w).

We used Remark 2.1 for the last inequality above. This verifies (3.14) and completes
the proof of the lower inequality in (3.13).

For the upper inequality in (3.13), we note that by (3.11), for w ∈ L2(Ω),

(Thw,w) ≤ C(h2 ‖w‖2
+ (Thw,w)) ≤ C(h2 ‖w‖2

+ ‖w‖2
−1).(3.15)

The upper inequality of (3.13) follows from Lemma 2.2 and (3.15). This completes
the proof of Lemma 3.1.

Remark 3.2. If Vh satisfies an inverse inequality of the form

‖∇ · δ‖2 ≤ Ch−2 ‖δ‖2(3.16)

then the upper inequality of (3.13) can be replaced by

|||δ, v||| 2 ≤ C1(‖δ‖2
+ ‖v‖21),(3.17)

for all δ ∈ Vh and v ∈ W .

The following theorem gives estimates for the least-squares approximation using
the functional Q3(·, ·).

Theorem 3.1. Assume that the hypotheses of Lemma 3.1 are satisfied. Let (σh, uh)
in Vh ×Wh be the unique minimizer of Q3(·, ·) over all (δ, v) in Vh ×Wh. If the
solution u of (2.1) is in Hr+1(Ω), then the errors eσ = σ − σh and eu = u − uh
satisfy the inequality

‖eσ‖ + ‖eu‖1 ≤ Chr ‖u‖r+1 .(3.18)

The constant C above is independent of the mesh size h.

Proof. It is immediate from the definition of the approximation scheme that the
error (eσ, eu) satisfies

[eσ, eu; δ, v] = 0 for all (δ, v) ∈ Vh ×Wh.(3.19)

Thus, by Lemma 3.1,

C0(‖eσ‖2 + ‖eu‖21) ≤ [eσ, eu; eσ, eu] = inf
(δ,v)∈Vh×Wh

[eσ, eu;σ − δ, u− v].

By the Schwarz inequality and (3.13), using (H.1) and (H.2), it follows that

‖eσ‖2
+ ‖eu‖2

1 ≤ C inf
(δ,v)∈Vh×Wh

|||σ − δ, u− v||| 2

≤ C inf
(δ,v)∈Vh×Wh

(h2 ‖∇ · (σ − δ)‖2 + ‖σ − δ‖2 + ‖u− v‖2
1)

≤ Ch2r ‖u‖2r+1 .

This completes the proof of the theorem.

Often solutions to elliptic boundary value problems may not be in the Sobolev
space Hr+1(Ω) for any r ≥ 1. Problems on nonconvex polygonal domains, problems
with discontinuous coefficients and problems with arbitrary ΓN all give rise to
solutions which are only in H1+β(Ω) for some positive β strictly less than one. The
following corollary shows that the least-squares method with a simple modification
will still give stable and accurate approximation.
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Corollary 3.1. Assume that the hypotheses of Theorem 3.1 are satisfied and that
the inverse inequality

‖v‖1 ≤ Ch−1 ‖v‖ for all v ∈Wh,(3.20)

holds. Let Q4(·, ·) denote the functional which is defined by replacing f by Qhf in
(2.16). Let (σh, uh) in Vh×Wh be the unique minimizer of Q4(·, ·) over all (δ, v) in
Vh ×Wh. If the solution u of (2.1) is in H1+β(Ω) with 0 ≤ β ≤ 1, then the errors
eσ = σ − σh and eu = u− uh satisfy the inequality

‖eσ‖ + ‖eu‖1 ≤ Chβ ‖u‖1+β .(3.21)

The constant C above is independent of the mesh size h.

Proof. Note that

|||σh, uh||| 2 = [σh, uh;σh, uh] = (ThQhf,∇ · σh + Xuh).
By the Schwarz inequality

|||σh, uh||| 2 ≤ (ThQhf,Qhf)1/2(Th(∇ · σh + Xuh),∇ · σh + Xuh)1/2.
It easily follows that

|||σh, uh||| 2 ≤ (ThQhf,Qhf).

By (3.20) and duality,

h2 ‖Qhf‖2 ≤ C ‖Qhf‖2−1

and hence (3.11) implies that

(ThQhf,Qhf) ≤ C ‖f‖2−1 .

Using (2.2) and (2.3), it follows that

‖f‖2−1 ≤ C ‖u‖21 .
Combining the above inequalities with Lemma 3.1 gives

‖σh‖2 + ‖uh‖2
1 ≤ C ‖u‖21

and hence

‖eσ‖2 + ‖eu‖21 ≤ C ‖u‖21 .(3.22)

We next show that (3.21) holds for β = 1 and discrete solutions resulting from
the functional Q4(·, ·). Assume that u ∈ H2(Ω). Let (σ′h, u

′
h) in Vh ×Wh be the

unique minimizer of Q3(·, ·) over all (δ, v) in Vh ×Wh. Then,

|||σh − σ′h, uh − u′h||| 2 = [σh − σ′h, uh − u′h;σh − σ′h, uh − u′h]

= −(Th(I −Qh)f,∇ · (σh − σ′h) + X (uh − u′h)).

As above,

|||σh − σ′h, uh − u′h||| 2 ≤ (Th(I −Qh)f, (I −Qh)f) = h2 ‖(I −Qh)f‖2 .
By (3.8),

|||σh − σ′h, uh − u′h||| 2 ≤ Ch2 ‖f‖20 ≤ Ch2 ‖u‖22 .
The above estimate and Lemma 3.1 imply that

‖σh − σ′h‖
2

+ ‖uh − u′h‖
2
1 ≤ Ch2 ‖u‖22 .
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Thus by Theorem 3.1 and the triangle inequality, it follows that

‖eσ‖2
+ ‖eu‖2

1 ≤ Ch2 ‖u‖22 .(3.23)

The corollary follows interpolating (3.22) and (3.23).

We conclude this section by proving an improved error estimate for eu in L2(Ω).
For this result, we need somewhat stronger assumptions on the operator Bh used
in the definition of Th. We assume that Bh is such that there is a positive number
c6 satisfying

c6
∥∥B−1

h v
∥∥ ≤ ∥∥T−1

h v
∥∥ for all v ∈ Wh.(3.24)

In contrast to (2.15), there are far fewer examples of operators Bh known to satisfy
(3.24). If the operator T gives rise to full elliptic regularity, then it is known that
the W-cycle multigrid algorithm with sufficiently many smoothings on each level
gives rise to an operator Bh which satisfies (3.24) (cf., [4]). Another example of
an operator Bh which satisfies (3.24) is the variable V-cycle introduced in [5]. It
seems that in this case also sufficiently many smoothings are required on the finest
level. Though results of numerical calculations indicate that (3.24) holds also for
the usual V-cycle, as far as we know there is no proof of this in the literature.

Improved L2(Ω) estimates depend upon elliptic regularity. We consider the
adjoint boundary value problem in weak form: Given g ∈ L2(Ω) find v ∈ W
such that

A(φ, v) = (φ, g) for all φ ∈ W.(3.25)

Solutions of (3.25) exist and are unique since we have assumed uniqueness and
existence for solutions to (2.3). We assume full elliptic regularity, i.e., solutions to
(2.3), (2.4) and (3.25) are in H2(Ω) ∩W and satisfy the inequalities

‖u‖2 ≤ C ‖f‖ ,
‖Tf‖2 ≤ C ‖f‖ ,
‖v‖2 ≤ C ‖g‖ .

(3.26)

Theorem 3.2. Assume that the hypotheses for Theorem 3.1 are satisfied. In ad-
dition, assume that Bh also satisfies (3.24) and that solutions of (2.1), (2.4) and
(3.25) satisfy (3.26). Then,

‖eu‖ ≤ Ch |||eσ, eu||| .

Proof. The proof is by duality. Let v solve (3.25) with g = eu. Then,

‖eu‖2
= A(eu, v)

= (Th(∇ · eσ + X eu), Th−1v) + (A−1(eσ +A∇eu),A∇v).
(3.27)

We want to define w and η so that

Th−1v = ∇ · η + Xw and A∇v = η +A∇w.(3.28)

To this end let w be the solution of

A(w, φ) = (Th−1v −∇ · A∇v, φ) for all φ ∈ W.(3.29)

By (3.26), v is in H2(Ω) and hence the data appearing in (3.29) are in L2(Ω). Thus,
w is in H2(Ω) and satisfies

Lw = Th−1v −∇ · A∇v.
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Setting η = A∇(v−w) we see that (3.28) is satisfied. Hence (3.27) and (3.28) give

‖eu‖2 = (Th(∇ · eσ + X eu),∇ · η + Xw) + (A−1(eσ +A∇eu), η +A∇w)

= [eσ, eu; η, w].

By (3.19) and the Schwarz inequality,

‖eu‖2 ≤ |||eσ, eu||| |||η − δ, w − θ|||(3.30)

for all (δ, θ) ∈ Vh ×Wh. Applying Lemma 3.1 and Remark 3.1 implies that there
exists (δ, θ) ∈ Vh ×Wh such that

|||η − δ, w − θ||| 2 ≤ C(h2 ‖∇ · (η − δ)‖2 + ‖η − δ‖2 + ‖w − θ‖2
1)

≤ Ch2(‖η‖2
1 + ‖w‖2

2) ≤ Ch2(‖w‖2
2 + ‖v‖2

2)

≤ Ch2(
∥∥Th−1v

∥∥2
+ ‖v‖2

2).

(3.31)

The last inequality above follows from (3.26). By the triangle inequality,∥∥Th−1v
∥∥ =

∥∥Th−1T (v −∆v)
∥∥

≤
∥∥Th−1(T − Th)(v −∆v)

∥∥ +
∥∥Th−1Th(v −∆v)

∥∥ .
It is easy to see from eigenfunction expansions with respect to the operator Bh that∥∥Th−1ζ

∥∥ ≤ ∥∥B−1
h ζ

∥∥ for all ζ ∈ Wh

and ∥∥Th−1ζ
∥∥ ≤ h−2 ‖ζ‖ for all ζ ∈ L2(Ω).

It follows from (3.26), Remark 3.1 and standard finite element theory that

‖(T − Th)f‖ ≤ Ch2 ‖f‖ for all f ∈ L2(Ω).

Combining the above estimates gives∥∥Th−1v
∥∥ ≤ C

(
‖v‖2 +

∥∥B−1
h Th(v −∆v)

∥∥) ≤ C ‖v‖2 .(3.32)

We used (3.24) for the last inequality above. Combining (3.30), (3.31) (3.32) and
(3.26) completes the proof of the theorem.

4. Implementation and the iterative solution

of the least-squares system

In this section we consider the implementation aspects of the least-square method
corresponding to Q3(·, ·) described in Section 2 and analyzed in Section 3. The
resulting equations are solved by preconditioned iteration. There are two major
aspects involved in the implementation of a preconditioned iteration, the operator
evaluation and the evaluation of the preconditioner. These tasks will be considered
in detail in this section.

Our goal is to solve the equations which result from the minimization of the
functional Q3(·, ·) over the space Vh ×Wh. The solution pair (σh, uh) satisfies the
equations

[σh, uh; δ, v] = (Thf,∇ · δ + Xv)(4.1)

for all pairs (δ, v) ∈ Vh ×Wh. As a model application, we will consider the case
when Vh and Wh consist of continuous piecewise linear functions with respect to a
quasi-uniform triangulation of Ω of size h. We only consider the case when ΓN = ∅
and when Ω is a subset of R2. The functions in Wh vanish on ∂Ω while those in Vh
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are piecewise linear vector functions without any imposed boundary conditions. We
also let W̄h denote the set of continuous piecewise linear functions on Ω (not sat-
isfying any boundary conditions). Extensions to higher dimensional finite element
subspaces are straightforward. We shall avoid the question of quadrature in the
case of variable coefficient problems. Instead, we shall assume that all coefficients
are piecewise constant with respect to the triangulation defining the mesh. We will
also replace f by its interpolant f̃ ∈ W̄h.

Remark 4.1. For general polygonal domains with ΓN 6= ∅, it is not suitable to use
spaces of continuous piecewise linear functions for Vh. This is because the bound-
ary condition in H0

div(Ω) may force all components of continuous piecewise linear
vector functions to vanish on ΓN resulting in a loss of accuracy. For these problems
we could define Vh to be the spaces designed for mixed finite approximation such
as the Raviart-Thomas or the Brezzi-Douglas-Marini spaces. In such spaces, the
boundary conditions can be easily satisfied while retaining the desired approxima-
tion properties.

Let {δi} and {φi} be the nodal bases for the spaces Vh and Wh respectively. The
two bases provide a natural basis for the product space Vh ×Wh which we shall
denote by {ζi}. Each basis function ζi is of the form (ζiv , ζ

i
m) where ζiv is a basis

element for Vh and ζim = 0 or ζim is a basis element for Wh and ζiv = 0.
As usual, one writes the solution

(σh, uh) =
∑
i

Diζ
i

in terms of this basis and replaces (4.1) by the matrix problem

MD = F(4.2)

where M is the matrix with entries

Mij = [ζiv, ζ
i
m; ζjv , ζ

j
m]

and F is the vector with entries

Fi = (Thf̃ ,∇ · ζiv + X ζim).

Clearly, M is symmetric and is also positive definite by Lemma 3.1. Although, the
implementation involves the solution matrix system (4.2), the matrix itself is never
assembled. In fact, because of the operator Th appearing in the first term of (3.12),
M is a dense matrix. Instead, one solves (4.2) by preconditioned iteration.

The implementation of a preconditioned iteration for solving (4.2) involves three
distinct steps. First, we must compute the vector F . Second, we must be able to
compute the action of the matrix M applied to arbitrary vectors G ∈ Rm, where
m is the dimension of Vh ×Wh. Finally, we must be able to compute the action of
a suitable preconditioner applied to arbitrary vectors G ∈ Rm. As we shall see, all
three steps involve the preconditioner Bh.

In previous sections in this paper, we defined Bh as a symmetric positive definite
operator on Wh. In terms of the implementation, the preconditioner can be more
naturally thought of in terms of an n × n matrix N where n is the dimension of
Wh. The operator Bh is defined in terms of this matrix as follows. Fix v ∈Wh and
expand

Bhv =
∑
i

Giφ
i.
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Then,

NG = G̃(4.3)

where

G̃i = (v, φi).(4.4)

The operatorBh is a good preconditioner for Th provided that the matrix N−1Ñ has
small condition number. Here Ñ is the stiffness matrix for the form D(·, ·) defined
in Section 2. The matrix N need not explicitly appear in the computation of the
action of the preconditioner. Instead, one often has a process or algorithm which
acts on the vector G̃ and produces the vector G, i.e., computes N−1G̃. Thus, the
practical application of the preconditioner on a function v reduces to a predefined
algorithm and the evaluation of the vector G̃ defined by (4.4).

We now outline the steps for computing F . We first compute the nodal values
of f̃ by evaluating f at the nodes. The data (for application of Bh)

G̃i = (f̃ , φi)

can be analytically calculated since the product f̃φi is piecewise quadratic with
respect to the mesh triangulation. The coefficients of Bhf̃ result from application
of the preconditioning algorithm. The remaining quantities can be analytically
computed since they only involve integration of piecewise quadratic functions.

The next action required for the preconditioning iteration is the application of M
to arbitrary vectors G ∈ Rm. The vector G represents the coefficients of a function
pair

(δ, v) =
∑
i

Gi(ζ
i
v, ζ

i
m)

and we are required to evaluate

(MG)j = [δ, v; ζjv , ζ
j
m] = (Th(∇ · δ + Xv),∇ · ζjv + X ζjm)

+ (A−1/2(δ +A∇v), ζjv +A∇ζjm),
(4.5)

for j = 1, . . . , n. The quantity (∇ · δ + Xv) is a discontinuous piecewise linear
function with respect to the mesh triangulation. The data for the preconditioner
solve

((∇ · δ + Xv), φi)

can be computed since it reduces to integrals of piecewise quadratic functions
over the triangles. After application of the preconditioning process, the function
Th(∇·δ+Xv) is known. Since both Th(∇·δ+Xv) and A−1/2(δ+A∇v) are known,
piecewise linear (discontinuous) functions, the remaining integrals required for the
computation of (MG)j in (4.5) reduce to local linear combinations of integrals of
piecewise quadratic functions over triangles.

The final step required for a preconditioned iteration is the action of a precon-
ditioner for M . Let G ∈ Rm and let Gv and Gm denote the coefficients of G which
correspond to basis functions for Vh and Wh respectively. From Lemma 3.1 and
(3.17), it follows that there are positive numbers C0 and C1 not depending on h
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which satisfy

C0

[
(ĨGv) ·Gv + (ÑGm) ·Gm

]
≤ (MG) ·G ≤ C1

[
(ĨGv) ·Gv + (ÑGm) ·Gm

](4.6)

for all G ∈ Rm. Here Ĩ is the mass matrix Ĩij = (δi, δj). It is not difficult to see

that the matrix Ĩ is spectrally equivalent to the h2 times the identity matrix I. It
follows that the matrix M is spectrally equivalent to the block matrix(

h2I 0
0 N

)
.(4.7)

The blocks above correspond to the partitioning of the basis functions into those
from Vh and Wh respectively. We use the inverse of the block matrix of (4.7) as
a preconditioner for M . Thus, the application of the preconditioner to a vector
G ∈ Rn involves multiplying the Vh components of G by h−2 and applying the
preconditioning process (N−1) to the Wh components of G.

We now consider the amount of computational work involved in the above steps.
Each step involves the computational effort required to evaluate the action of the
preconditioner. The additional computations for each step require a fixed amount
of work per node since the subsequent nodal computation only involves integration
over the local support of basis functions. The work per step in the preconditioned
iteration for (4.2) consists of the work for two Bh preconditioner evaluations plus
work on the order of the number of unknowns n.

5. Numerical experiments

In this section, we report the results of numerical experiments involving the least-
squares method developed earlier. In all of these experiments, the operator Bh was
defined in terms of one multigrid V-cycle iteration. We first consider the rate of
convergence for preconditioned iterative methods for computing the minimizer over
the approximation subspace for (2.16). This convergence rate can be bounded in
terms of the condition number of the precondition system which we shall report for
three sets of coefficients. Subsequently, we will report the error in the approximation
when the least-squares approach is applied to a problem with known solution.

We consider problem (2.1) when Ω is the unit square in two dimensional Eu-
clidean space. For our reported results we shall only consider the case of constant
coefficients and take ΓN = ∅. The unit square is first partitioned into a regular
n×n mesh of smaller squares of size h = 1/n. The triangulation is then defined by
breaking each of these squares into two triangles by connecting the lower left hand
corner with the upper right. The approximation space Wh is defined to be the finite
element space consisting of the continuous functions on Ω which are piecewise linear
with respect to the triangulation and vanish on ∂Ω. The approximation space Vh is
defined to be the continuous vector valued functions which are piecewise linear with
respect to the triangulation. Since ΓN = ∅, no boundary conditions are imposed
on Vh. This construction agrees with that discussed in Section 4.

In all of our examples, we shall use Bh to be the preconditioner for Th corre-
sponding one sweep of the multigrid V-cycle algorithm. We shall take n to be a
power of two. To define the multigrid algorithm, one requires a sequence of coarser
grid spaces. These spaces are defined by successively doubling the mesh size. Since
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Table 5.1. Condition number of M̃−1M for three problems

h Problem (a) Problem (b) Problem (c)
1/8 11.8 12.7 205
1/16 11.9 13.3 318
1/32 12.2 13.5 367
1/64 12.3 13.7 383
1/128 12.4 13.7 387

the resulting sequence of triangulations is nested, so is the sequence of spaces,

M1 ⊂M2 ⊂ · · · ⊂M j = Wh.

We use the point Gauss Seidel smoothing iteration on all spaces except the first
(with mesh size 1/2) on which we solve directly. The resulting multigrid iterative
procedure is described in, for example, [27]. The multigrid preconditioner results
from applying one step of the iterative procedure with zero starting iterate, [5]. The
V-cycle uses one pre and post Gauss Seidel iteration sweep where the directions of
the sweeps are reversed in the pre and post smoothing iterations. This results in a
symmetric preconditioning operator Bh which satisfies

.74(Thv, v) ≤ (Bhv, v) ≤ (Thv, v) for all v ∈ Wh.(5.1)

The above bound was computed numerically and holds for h = 1/n for n =
4, 8, 16, . . . , 128. The evaluation of Bh (i.e., N−1 applied to a vector where N
is given by (4.3)) can be done in O(n2) operations and hence is proportional to the
number of grid points on the mesh defining Wh.

We first report condition numbers for the preconditioned system. As noted in
Remark 2.3, we have some freedom in choosing the definition of Th. In all of the
reported calculations, we used α = 1/3 and β = 2 (see, Remark 2.3). Let M be
the stiffness matrix for the least-squares approximation as defined in Section 4. We
replace the Gram matrix Ĩ in (4.6) by the diagonal matrix Ī with diagonal entries
given by

(Ī)ii = 2Ĩii.

Thus, the preconditioner for M involves the inversion of the block matrix

M̃ =

(
Ī 0
0 N

)
.

Remark 3.2 and Lemma 3.1 show that the condition number of M̃−1M is bounded
independently of the mesh size h. We report the actual condition numbers in Table
5.1. We give the condition numbers for three different problems. For the first
problem (a), the operator is given by the Laplacian, i.e.,

aii = 1, aij = 0 for i 6= j, bi = 0, and c = 0.

The second column (b) corresponds to an operator with the coefficients

aii = 1, aij = 0 for i 6= j, b1 = 2, b2 = 3, and c = 0.

Finally, the third column (c) corresponds to (2.1) with coefficients

aii = 1, aij = 0 for i 6= j, bi = 0, and c = −25.
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Table 5.2. Error and iteration counts for Problem (a)

h eu eσ Iterations
1/8 6.9× 10−3 2.9× 10−2 47
1/16 1.8× 10−3 8.5× 10−3 47
1/32 4.5× 10−4 2.7× 10−3 47
1/64 1.1× 10−4 9.2× 10−4 46
1/128 2.8× 10−5 3.1× 10−4 45

Table 5.3. Error and iteration counts for Problem (b)

h eu eσ Iterations
1/8 6.4× 10−3 2.9× 10−2 48
1/16 1.6× 10−3 8.6× 10−3 48
1/32 4.1× 10−4 2.8× 10−3 48
1/64 1.0× 10−4 9.2× 10−4 47
1/128 2.6× 10−5 3.2× 10−4 46

We note a significant increase in the condition numbers in the case of Problem
(c). The reason for this increase is that this problem is more singular than the
other two. Let v ∈ H1

0 (Ω) be arbitrary and set δ = −A∇v then Lemma 2.2 implies
that

‖∇v‖2 ≤ c−1
0 ‖−∆v + Xv‖2

−1 .(5.2)

By Fourier analysis, it is straightforward to see that (5.2) holds for c0 = 1 for
Problem (a) whereas we must take c0 < 1/14 in the case of Problem (c). This
suggests that the condition number of Problem (c) should be at least 14 times
larger than that of Problem (a). This explains much of the increase in condition
number reported for Problem (c).

We next considered applying the least-squares method to approximately solve
problems with a known analytic solution. We do this by starting with the solution

u = x(x − 1) sin(πy).

This obviously satisfies the zero Dirichlet boundary condition. We generate the
right hand side data by applying the differential operator to the solution. This
resulting right hand side function is then interpolated and used as data in the
least-squares algorithm as discussed in Section 4. We consider the Problems (a),
(b) and (c) described above. We report the discrete L2(Ω) norms of the errors eσ
and eu as well as the number of iterations required for numerical convergence of
the preconditioned iteration.

The errors and iteration counts for Problem (a) are given in Table 5.2. The
discrete L2(Ω) convergence appears to be second order for u. In this case the
method is behaving somewhat better than predicted by the theory since it is not
known whether the preconditioner Bh satisfies (3.24) with c0 independent h. The
error in σ appears also to be converging somewhat faster than the first order rate
guaranteed by Theorem 3.1.

The error and iteration counts for Problems (b) and (c) are reported in Tables
5.3 and 5.4 respectively. The results of Problem (a) and (b) are really rather sim-
ilar. This suggests that the effect of the non-symmetric terms in Problem (b) is
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Table 5.4. Error and iteration counts for Problem (c)

h eu eσ Iterations
1/8 6.2× 10−2 3.7× 10−1 63
1/16 2.4× 10−2 1.3× 10−1 66
1/32 6.9× 10−3 3.7× 10−2 67
1/64 1.8× 10−3 9.5× 10−3 66
1/128 4.5× 10−4 2.4× 10−3 66

relatively small. We note that the moderate increase in the number of iterations for
convergence for Problem (c) does not reflect the large increase in condition number
observed in column (c) of Table 5.1. One expects that the large condition numbers
are due to a few small eigenvalues which correspond to eigenvalues of the contin-
uous problem with small absolute value. In such a situation, the preconditioned
conjugate gradient algorithm is known to perform much better than predicted by
the worst case bound involving the condition number. The errors in Problem (c)
are also larger by about a factor of ten than those observed for Problem (a) and
(b).
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