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A Least Squares Decomposition Method

for Solving Elliptic Equations

By Dennis C. Jespersen

Abstract.   This paper analyzes a numerical method for solving second-order elliptic

partial differential equations.   The idea is to write the equation as a lower-order

system and solve the system using least squares techniques.   Error estimates are

derived for a model problem.

1.  Introduction.  The purpose of this paper is to propose and analyze a numer-

ical method for the solution of second-order elliptic partial differential equations.  The

method to be presented has its roots in two sources.

The first source is the least squares method for solving elliptic equations due to

Bramble and Schatz [3].  This method has the feature that the trial functions are

not required to satisfy any boundary conditions.  On the other hand, the condition

number of the matrix which arises is 0(/j~4m)for a 2mth order elliptic problem, the

square of the condition number which would arise from usual Galerkin techniques

(but this difficulty can be overcome, albeit at the expense of some additional com-

plications [2]). Also, the trial functions are required to be in the Sobólev space H2m

for a 2wth order problem.  Thus, the simple piecewise linear trial functions are never

admissible.

The second source is the idea of mixed methods for solving partial differential

equations, in which the derivatives of the solution are introduced as new independent

variables and one attempts to approximate both the solution and its derivatives

simultaneously [9].  Mixed methods have the feature that approximations to the

derivatives are automatically obtained, and in some problems of physical interest the

derivatives are important.  Also, less smooth trial functions may be admissible.  How-

ever, there still may be a problem as to how one treats the boundary conditions.   Also,

the matrix that arises may be indefinite, and difficult to prove nonsingular.

The method to be studied in this paper is one which combines features of both

the above methods.  The derivatives of the solution are introduced as new independent

variables (the decomposition step), and the resulting system is treated by least squares

methods.  Thus the smoothness requirement on the trial functions will be relaxed, no

boundary conditions will be imposed on the trial functions, and the matrix will be

symmetric and positive definite.  This idea was apparently first seen in [7] but no

analysis of the method was given.

The plan of this paper is as follows.   Section 2 contains the necessary technical

Received March 1, 1976; revised December 12, 1976.

AMS (MOS) subject classifications (1970).   Primary 65N30.

Key words and phrases-   Rayleigh-Ritz Galerkin methods, least squares approximation,

methods.
Copyright © 1977, American Mathematical Society

873

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



874 DENNIS C. JESPERSEN

lemmas.   In Section 3 the problem is formulated and in Section 4, the main section,

we prove error estimates.

2. Notation and Technical Lemmas.   Let £2 be a bounded region in RN with

smooth boundary T and outward normal n.  Define the Sobolev spaces Hs(£l), #¿(£2),

and Hs(r) for s > 0 as in [6].  Denote the L2(£2) inner product of u and 0 by (u, <p)

and the L2(F) inner product of a and r by (a, t).  For s < 0, define Hs(Çl) as the

dual of//-s(£2) under the pairing («, 0) and HS(F) as the dual of H~S(F) under the

pairing <a, r).  Let ||*||s denote the Hs(Çl) norm, l*^ denote the HS(F) norm.  We

will also need the space Hí(íí) = Hs(£l) x //s(£2) with inner product (w, z) and norm

||w||s.  Throughout, C will denote a positive constant not necessarily the same in any

two places.

The first two lemmas are from [6] and [1].

Lemma 2.1. // 0 G H"s(ü) for s < 1, then there is a unique w G //2_í(£2) D

//¿ (£2) with Aw = 0 i« £2, a«(i II wll2_s < C||0|Ls, where C depends only on £2 and s.

Lemma 2.2.   (a) If w G //s(£2) for s > Vi, then |w|,_%  < C\\w\\s, where on

the left-hand side we have the trace of w on V, and C depends only on £2 and s.   (b)

If w G Hs(£l) for s > 3/2, then \ 3w/9n|s_3 ,2 < C||w||s, where C depends only on Í2

and s.

Lemma 2.3.    There is a constant C such that for all e > 0 and for all w G Hl(SÏ),

|w|0<e|M|, +C|MI0/e.

Proof.  See [4].

Lemma 2.4.   For w G //J(Í2) and z G H l(ÇÏ),

(w, div z) + (Vw, z) = (w, n - z).

Proof.   See [10].

Lemma 2.5.   // r G //'/2(r), rizere is a unique w G Hl(Sl) such that Aw = 0

and w = t on T.  This w satisfies \\w\\x <C\t\Vz, where C depends only on £2.

Proof.  See [6].

3. Statement of Problem.   Consider the model problem

(3.1) -Au=f   in £2,       u=g    on T,

where T, /, and g are sufficiently smooth. This problem is selected only to keep the

formulas which follow as simple as possible; the results hold for more general elliptic

problems [5].

Decompose (3.1) into a system of equations

(3.2) -V« = v    in £2,       div v = /   in £2,      u = g   on T.

Choose, for 0 < h < 1, finite-dimensional spaces Sh C //'(ft). S% C Hl(Sl), and

define S2 = S2 xSj.  Consider then the problem of minimizing the quadratic func-

tional

J(wh,zh) = \\Vwh +zh\\20 +||divz„-/||¿ +h-1\wh-g\20

over(wh,zn)eSh x s£.

Define, for (w, z), (0, i//) G //'(fi) x H'(£2), a bilinear form by
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(3.3)    A((w, z), (0, »») = (Vw + z, V0 + i/<) + (divz, div >//) + //-'(w, 0),

where in the L2(T) inner product we have the restrictions of w and 0 to T.  It is

classical that (un, \h) minimizes the functional / over Sx  x S2 if and only if

A((u\ v"), (0„ *„)) = ¿((u, v), (0„, *„))
(3.4)

= (/, div <//„) + Ä-V, 0„>

for all (0h, \¡in) G Sx  x S2, where (u, v) is the solution of (3.2).  So one finds uh

and \n by solving the finite-dimensional problem (3.4).

The bilinear form A gives rise to a norm by defining \\(w, z)!!^ = A((w, z), (w, z)).

We have the Cauchy-Schwarz inequality for A, \A((w, z), (0, i//))| < \\(w, z)||^ ||(0, i//)||4.

Now make the following standard approximability assumptions.

(3.5) There is some rx > 2 such that if m G //s(£2), 1 < s < r,, then there is

some uh G Sx such that \\u - uh\\0 + h \\u - uh\\x < C7is||w 11^ where Cis independent

of u and uh.

(3.6) There is some r2>2 such that if v G Hf(£2), 1 < t < r2, then there is

some \h G S2 such that ||v - v^l^ + h\\\ - \h\\x < CTi * 11 v 11 f where C is independent

of v and \n.

These assumptions are satisfied by the finite-dimensional spaces used in practice.

Lemma 3.1.   Let (u, v) be the solution of (3.2), where f G //fe(£2) and g G

//fc+3/2(r), k > 0.   77ien a unique solution (uh, \h) of (3.4) exisis, and

||(« - uh, v - v")!^ = inf \\(u -wh,\- zh)\\A

,   h    h._-„ftvQft
/-t -7\ (w   ,z    )6ij Xb2

<C(^-1||«IIS + izf-1||v||f),      s<min(Ar + 2, rx), í < min(*: + l,r2).

Proof.  From (3.4) we have the fundamental orthogonality relation

(3.8)       A((u -uh,v- v"), (0„, «//„)) = 0    for all (0„, «/,„) G S? x S*.

Thus, (un, \h) is the projection of (u, v) onto Sh x S2 in the A -inner product, and

so we have existence, uniqueness (since the A -inner product is nondegenerate) and the

first part of (3.7).   For the second part of (3.7), note that

||(M - wh, v - zh)\\A < ||V(u - wh) + (v - z")||0 + ||div(v - z")||0 + hTll2\u - w\

<\\u-w\ + ||v-z\ +C\\y-z%

+ h-l,2(Ch-l'2\\u - w"||0 4- hll2\\u - w%)

by Lemma 2.3 with e = hl¡2

< C{hrl \\u - w\ + Hu - w*||, + ||v - z^llj).

Taking the infimum over all (wh, zh) G Sx  x S2 , we obtain the second half of (3.7),

and the proof is complete.

Note that if we take rx = r2 = r (i.e., use piecewise polynomials of the same

degree r - 1 to approximate u and v), then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



876 DENNIS C. JESPERSEN

||(«-«A,v-v% <C/z'-1(||U||r + ||v||r) <CÄr-1(||/||r_1 + lc?U1/2).

4.   Error Estimates.   In this section we derive estimates for the errors eu =

u - u" and eu = v — v*.  The key tools are the orthogonality relation (3.8) and the

inequality

||Vw + z||0 + l|divz||0 +A-1/2|w|0

(4.1)
<C\\(w,z)\\A <C(\\w\\x +h-l\\w\\0 + \\z\\0 +||divz||0),

which is an easy consequence of the definition of \\(w, z)\\A.

Lemma 4.1.   For all 0 EHl{0), (dive,,, 0)| < Ch \\(eu, ev)\\A U\\x.

Proof.  Given 0 G //'(£2), let a solve - Act = 0 in £2, a = 0 on T, and let ß =

-Va, so div/3 = 0.  Then ||a||3 < C||0||j.   Now we have

(div eu, 0) = (div e„, div/}) = A((eu, ev), (a, ß)) = A((eu, ev), (a - a„, 0 - /?„))

for all (an, ßh) G S* x S*.  Thus,

|(div e„, 0)1 < ||(e„, ev)\\A\\(a -a„, ß- ßh)\\A

< H(e„, e,)IUC(^ ||a||2 + ri||0||2) < Ch\\(eu, tv)\\A\\a\\3

<Ch\\(eu,ev)\\AH\\x.

Note that this shows dive^ considered as an element of//_1(£2), has norm

bounded by Ch \\(eu, eu)\\A.

Lemma 4.2.    \eu\_% < Ch \\(eu, ev)\\A.

Proof.  By definition

(eu, t)

|eJ-i/2 =       SUP 73— ■

Given t G HVl(T), let a G //'(£2) solve Aa = 0 in £2, a = r on T.  This can be done

by Lemma 2.5, and ||a||j < C\t\Vi.  Now, for all an G Sx,

(eu, t) = (eu, a) = h(h'x(eu, a) ) = h(h~\eu, a)-A((eu, e„), (a„, 0)))

= h(h~Heu, a - a„> - (Veu + ev, Va„)).

Thus we have

\{eu,T)\<h(h-ll2\eu\0h-ll2\a-ah\0 + || Ve„ + e„||0||7aÄ||0)

<Cir||(eu,eu)^(/i-1||a-aJ|0 + II« - aA||, + ||ah||,)

< Ch\\(eu, eJ^QT1 \\a - ah\\Q + ||« - aj, + Hoc||1>,

where we again used Lemma 2.3.   Now taking the infimum over ah G SX(Q¡) bounds

this by Ch \\(eu, ev)\\A\\a\\x < Ch \\(eu, e„)IUIr|H, which finishes the proof.

Corollary.  For 0 < s < fc, \eu\^h < Ch1~s\\(eu, e,,)!^.

Proof.  We have \eu\0 < Ctih\\(eu, ev)\\A and kJ_1/2 < Ch \\(eu, e„)\\A.

The corollary follows by interpolation.
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Theorem 4.1.   For 0 < s < &, ||u - u% < Ch1"s\\(eu, ev)\\A.

Proof.  The proof uses the duality argument of Nitsche [8].  We have

(eu, 0)

Given 0 G //~s(£2), let w G H2~s(íl) solve - Aw = 0 in £2, w = 0 on T.  By Lemma

2.1,||w||2_s<C||0||_i.  We have

/       dw\
(ew *) = (e»> ~Aw) = (Vc„. Vw) - {eu,  —J

= (Ve„ + e„> Vw) - (e„, Vw) - (eu,  |0

= ̂  ((*„, e„), (w, 0)) + (div e„, w) - (eu, jfy

= A((eu, e„), (w - wh, 0)) + (div eu, w) - (eu, |^)

for all wn G ,Sf (£2).  Now estimating each term on the right-hand side separately, we

have with the help of (4.1), Lemma 4.1 and the corollary to Lemma 4.2,

\(eu, 0)1 < \\(eu, ev)\\A\\(w - wh, 0)\\A + |(div e„, w)| + \eu\s_x/2

< Keu, tv)\\A C(\\w - wh\\x + h~l ||w - wn\\0)

dw

dn
1/2-s

+ Ch\\(eu, ev)\\A\\w\\x + Ch'-'Wie,,, »e„)||^IIw||2_,.

Taking the infimum over wh G Sx yields

\(eu, 0)| < \\(eu, %)\\AChl~s\\w\\2_s + Ch \\(eu, ev)\\A\\w\\x

+ c7z1-í||(eu,eu)IUI|w||2_í

< Chl-*\\(eu, eJ\A\\w\\2_s < Ch^s\\(eu, e„)IUU0||_„

which completes the proof.

Theorem 4.1 implies that ||m - un\\0 is of optimal order in h provided / and g

are smooth enough and r2 > rx. We now come to the question of an error estimate

for e^.  The following a priori estimate is our starting point.

Lemma 4.3.   For all (w, z) G H ' (£2) x H ' (£2),

llwll, + ||z||0<C(||Vw + z||0 + ||divz|L, + |w|1/2).

Proof  Given 0 G H~l(W, let a G //01(£2) solve - Aa = 0 in £2.   It follows from

results in [1] that we may define da/dn as an element of H~Vl(T), and |9a/d«|_1/2

< Cjlctllj < C||011 _j.  Then the same computation as in Theorem 4.1 gives

(w, 0) = (Vw + z, Va) + (div z, a) - (w,  r^-\ .
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Taking absolute values gives the bound for ||w||j ; for z, simply write z = (Vw + z) —

Vw and take norms.

To take advantage of the estimate of Lemma 4.3, we introduce another assumption.

(4.2)  Assume there exists a C> 0 such that \wh\1/2 < Ch~~V2\wh\0 us h —► 0

for all wn G Sx.  The assumption (4.2) is an assumption of inverse type [1] on the

elements of Sh restricted to the boundary.

Theorem 4.2.   Suppose the boundary inverse hypothesis (4.2) holds.   Then

Kill +lleJlo<c/||(eu,eü)||^ +     inf     QTl\\u - 0„||o + ||u - ^H,)

♦Äesf

Proof. We begin by bounding \eu\Vl.  Indeed, for all (¡>h G Sx,

\u-Uh\x/2  <\u-(j>h\ll2  +  I0„-A/2  <l"-^ll/2   +Ch-ll2\djn-Uh\0

<C||«-0fc||, +Ch-ll2(\4>h-u\0 + \u-u\)

<C\\u-4>h\\1 +Ch-lHh-u\\0 +Cnh~u\\x +C||(eM, e„)||x,

so we have

(4.3)      |eJ1/2 <ch|(e„,e„)||il +     inf    (h~l\\u

\ <¡>neshx

Now Lemma 4.3, Eq. (4.3), and the observation that ||0||_x < ||0||o for all

0 G //°(£2) give us

Kill + Kilo < C(||Ve„ + e„||0 + ||dive„||0 + ku|1/2)

< C (\\(eu, ev)\\A +     inf    (h~l \\u - 0„||o -4- ||u - 0AIU)),

finishing the proof.

This is an estimate of optimal order for lku||j but of suboptimal order for

He^ÜQ.  It is unclear if this suboptimal bound is sharp.

Finally, let us consider the condition number of the matrix problem (3.4).  The

entries of the matrix, call it A, are various inner products of basis elements of the

spaces Sx and S2 .  Suppose {wx, . . . , wn] is a basis for Sx and {zt, . . . , zm} is a

basis for S2.  Then A is a symmetric positive definite (m + n) x (m + n) matrix

whose entries a¡: are given by

atj = A ((w¡, 0), (Wf, 0)) = (Vw,-, Vwy) + h~H w¡, w¡ >   for 1 < i, / < n,

a¡j = A ((w¿, 0), (0, zhn)) = (Vw,-, zhn) = a}i    forl<i<n,n + K/<m + »,

<¡i¡ = A((0, z,.^„), (0, zHn)) = (z,-_„, Zj_„) + (div z^n, div zy_„)

for n + 1 < i, / < m + n.

We now assume the bases are chosen so that the following conditions hold [2].

Recall £2 C RN; the notation (•, *)j denotes the //1(£2) inner product.

For all real numbers £., , . . , £„, t?,, . . . , T?m,
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(a) chNY£ < Z>/. wjM, < ChNZ%.

(b) chNZnl < 2X */)*¥?/ < c^I>2,

(c) D«'i.«'/)1^<CftJV-2Ií?,

(d) Efri.^iw^cft^Eiif.
Now we have

Theorem 4.3.   Suppose the boundary inverse hypothesis (4.2) ami r/ze ¿axis cow-

ditions (4.4) iioic/.   77jen ffte condition number of the matrix A is 0(h~2), i.e.,

cond(A) <Ch~2.

Proof.  Since ^4 is symmetric positive definite, cond (A) = Amax(/4)/Amin(./4),

the maximum eigenvalue of A divided by the minimum eigenvalue.   We estimate the

eigenvalues by considering the Rayleigh quotient %TA%/%T%.   Let % = (%x, . . . , £„,

Tjj, . . . , r¡m) be an (m + «)-component vector.  Define wh = 2£,w,-, zh = Sfyz,..

Then %TA% = A((wn, zh), (wh, zh)), and we have

C • A((wn, z„), (wh, zn)) > ||w„||2 + ||z„||2 > \\wh\\2 + Kilo

= B¿M> »/) + Jjiflfa'z/) > «*"(£*? + 2>,2) = c**ir*.

The first step here used Lemma 4.3 and the assumption (4.2).  We also have

A((wh, z„), (wn, zn)) < CQT2\\wh\\2 + ||w„||2 + ||z„||2 + ||z„||2)

<c(/r2 IK y2 + \\wh\\\ + l|zftn2)

< C(A"aZ«i5/(w„ wj) + I¿Mwi> w/)i + ZvtV,(Zi, Z/)i)

< c(/2^2 Z?,2 + ^~2 E*?,2) < a."-2*7"?.

Hence AmaxC4) < ChN~2 and Amin04) >chN, and the proof is complete.

In conclusion, it is clear that the least squares decomposition idea of this paper

can be applied to virtually any partial differential equation or system of equations.

The analysis of cases other than the elliptic remains a project for the future.
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