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A LEAST-SQUARES METHOD FOR OPTIMAL TRANSPORT USING

THE MONGE-AMPÈRE EQUATION

C. R. PRINS∗, J. H. M. TEN THIJE BOONKKAMP∗, W. L. IJZERMAN∗† , AND

T. W. TUKKER‡

Abstract. In this article we introduce a novel numerical method to solve the problem of optimal
mass transport and the related elliptic Monge-Ampère equation. It is one of the few numerical
algorithms capable of solving this problem efficiently with the proper boundary conditions. It scales
well with the grid size and has the additional advantage that the target domain may be non-convex.
We present the method and several numerical experiments.

1. Introduction. In this article, we introduce a novel numerical method to com-
pute the solution of the optimal mass transport problem with quadratic cost function
in two-dimensional domains. The optimal mass transport problem with quadratic
cost function can be stated as follows. Let f : X → [0,∞) and g : Y → (0,∞) be
bounded functions denoting (mass) densities with bounded compact supports X ⊂ R

2

and Y ⊂ R
2. The problem is to find a mapping m : X 7→ Y, minimizing the trans-

portation cost

C [m] =

∫∫

X

|x−m(x)|2 f(x) dx, (1.1)

where |·| denotes the vector 2-norm. In addition, m must rearrange the density f
into the density g, meaning that we require

∫∫

X

h(m(x))f(x) dx =

∫∫

Y

h(p)g(p) dp, (1.2)

for all continuous test functions h [8]. In the classical problem statement [24, p.1],
the density f denotes the height of a pile of soil, and g denotes the depth of an
excavation, and the goal is to transport the sand into the excavation with the least
amount of work. Practical applications of optimal mass transport are, for example,
shape recognition in image processing [2] and mesh generation [9].

An important theorem by Brenier [24, p.125-126] states that such an optimal
mapping is the (almost everywhere) unique gradient of a convex function. Let ∇u
denote this gradient. Substituting m = ∇u in (1.2), we find by a change of variables

det
(
D2u

)
=

f(x, y)

g(∇u(x, y)) , (x, y) ∈ X . (1.3)

This equation is known as the Monge-Ampère equation. The accompanying boundary
condition is derived from the condition that m maps X to Y, and reads [9, 20, 23]:

∇u(∂X ) = ∂Y. (1.4)

The solution of the optimal transportation problem with quadratic cost function de-
fined by (1.1) and (1.2) can be computed by solving the Monge-Ampère equation (1.3)
with boundary condition (1.4).

∗CASA, Eindhoven University of Technology, PO Box 513 5600 MB Eindhoven, The Netherlands
†Philips Lighting, Eindhoven, The Netherlands
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Our interest in optimal mass transport comes from the field of illumination optics,
which concerns the design of lenses and reflectors for use in lighting. In [20] we have
shown that the shape of a lens or reflector surface z = u(x, y) redistributing the light
from a parallel beam into an certain given output light distribution is described by a
solution of (1.3) with boundary condition (1.4). The function f(x, y) corresponds to
the parallel beam of light and the function g(∇u) corresponds to the output distribu-
tion. In our numerical results we will give an example from this application.

Up to recently, very few efficient numerical methods for optimal mass transport
were known. A numerical method for the related Monge-Ampère equation was intro-
duced by Froese, Benamou and Oberman [3,4,9–12,16,17], using finite differences, a
wide-stencil scheme and an innovative discretizaton of the boundary condition. We
implemented and tested this algorithm [21] on several reflector design problems. The
method is robust and efficient. However, the method requires that the target domain
is convex, which is a problem for practical reflector design. At the end of this article
we will compare this method with the least-squares method presented in this paper.

Another popular method to solve the optimal mass transport problem was de-
veloped by Benamou & Brenier [2], using a periodic boundary condition. They add
a time dimension to the problem, and calculate a continuous evolution of the source
density to the target density. This leads to a saddle-point problem which can be
solved numerically. The method was further developed by Tannenbaum, Angenent,
Haker, Haber and Rehman [1, 13].

In this article, we introduce a new numerical method for optimal mass transport,
based on the minimization of a least-squares functional. From this mapping we can
also calculate the convex solution of the corresponding Monge-Ampère equation. Our
new method is inspired by a least-squares method published recently by Caboussat et
al. [5]. Their method numerically solves the Dirichlet problem of the elliptic Monge-
Ampère equation, given by

det
(
D2u

)
= f(x, y) on X , u(x, y) = h(x, y) on ∂X . (1.5)

The authors minimize the functional

J(φ,P ) =
1

2

∫∫

X

∣∣∣∣D2φ− P
∣∣∣∣2 dx dy, (1.6)

over the set of real symmetric matrices P such that detP = f(x, y) and functions φ
satisfying the Dirichlet boundary condition. The minimization is performed alternat-
ingly over P and φ. The minimization over P with fixed φ is a nonlinear problem
which is solved pointwise for each gridpoint using Newton iteration. The minimiza-
tion over φ with fixed P comes down to solving a biharmonic equation, which is
discretized using mixed finite elements. The function φ converges to the convex solu-
tion u of (1.5) [5].

Our algorithm differs from the algorithm of Caboussat et al. in three ways. First,
we have an extra term in the functional J to account for the transport boundary
condition. Secondly, we found a method to solve the minimization over P analytically,
instead of using Newton iteration. Thirdly, instead of u we compute the mapping
functionm. The procedure form boils down to solving two separate Poisson problems
for the componentsm1 andm2 ofm, each iteration. This is numerically much cheaper
than solving a biharmonic equation, and the matrix resulting from the discretization
has a much smaller condition number.

The outline of this paper is as follows. In Section 2 we introduce the numerical
method and give the outline of the algorithm. In each iteration of the algorithm,
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three minimization problems need to be solved. We elaborate the solutions for these
minimization problems in Section 3. In Section 4 we finalize and summarize our
description of the algorithm, and show how to calculate the solution u of the Monge-
Ampère equation from the optimal transportation mapping m. We give several test
results in Section 5 which we discuss in Section 6.

2. Numerical method. In this section, we introduce our new numerical method
to solve optimal mass transport with quadratic cost function. The source density
f : X → [0,∞) and target density g : Y → (0,∞) are such that

∫∫

X

f(x, y) dx dy =

∫∫

Y

g(p, q) dp dq. (2.1)

Note that this is a requirement on the density functions f and g, in contrast to (1.2),
which is a requirement on the mapping m.

We use the fact that that the mapping that solves the optimal mass transport
problem, is equal to the gradient of the convex solution of the Monge-Ampère equation
(1.3) with boundary condition (1.4). We require that the Jacobi matrix of m, given
by

Dm =

(
∂m1

∂x
∂m1

∂y
∂m2

∂x
∂m2

∂y

)
, (2.2)

equals a real symmetric matrix P (x, y), satisfying

det(P (x, y)) =
f(x, y)

g(m(x, y))
, (2.3)

for all (x, y) ∈ X . Because of the symmetry of P (x, y), this results in ∂m1

∂y = ∂m2

∂x . This

implies that m is a conservative vector field and thus the gradient of a function [14,
p.494]. We enforce the equality Dm = P by minimizing the following functional:

JI(m,P ) =
1

2

∫∫

X

||Dm− P ||2 dx dy. (2.4)

The norm used in this functional is called the Fröbenius norm. Let P : Q denote the
Fröbenius inner product of the matrices P and Q, defined by

P : Q =
∑

i,j

(P )i,j(Q)i,j , (2.5)

then the Fröbenius norm is defined as ||P || =
√
P : P . We minimize this functional

over m and P , where m comes from the set

V = [C2(X )]2, (2.6)

which is the set of two-dimensional, twice continuously differentiable vector fields. Let
[C1(X )]2×2

Sym denote all symmetric 2 × 2 matrices of C1(X ) functions. The matrix P

comes from the set

P(m) =

{
P ∈ [C1(X )]2×2

Sym

∣∣∣∣ det (P (x, y)) =
f(x, y)

g(m(x, y))

}
. (2.7)
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The function sets are chosen to match the type of equations that are solved to find
m and P . Because the optimal mass transport problem has a solution, there exist P
and m such that JI(m,P ) = 0. Therefore Dm will be a symmetric matrix and m a
conservative vector field.

In addition to mass conservation, we require that the mapping m maps X to Y,
i.e.,

m(X ) = Y. (2.8)

To this end, we use the boundary condition (1.4):

m(∂X ) = ∂Y. (2.9)

This boundary condition is nonstandard and nonlinear, and requires special attention.
We address the boundary condition by minimizing a second functional:

JB(m, b) =
1

2

∮

∂X

|m− b|2 ds. (2.10)

We minimize this function over b from the set

B =
{
b ∈ [C(∂X )]2

∣∣ b(x) ∈ ∂Y ∀x ∈ ∂X
}
. (2.11)

Again, because the optimal mass transport problem has a solution, we can find an m

and b such that JB(m, b) = 0, so m(∂X ) ⊆ ∂Y. From the continuity of m follows
m(∂X ) = ∂Y [20, p.94].

We combine the functional JI for the interior and JB for the boundary by a
weighted average:

J(m,P , b) = (1− α) JB(m, b) + αJI(m,P ). (2.12)

The parameter 0 < α < 1 controls the weight of JI compared to JB. We calculate the
minimizers by repeatedly minimizing over the three sets V, P(m) and B separately.
We start with an initial guess m0, which will be specified shortly. Subsequently, we
perform the iteration

bn+1 = argmin
b∈B

JB(m
n, b), (2.13a)

P n+1 = argmin
P∈P(mn)

JI(m
n,P ), (2.13b)

mn+1 = argmin
m∈V

J(m,P n+1, bn+1). (2.13c)

This procedure is continued the value of J(mn,P n, bn) stalls.
We solve the optimal mass transport problem using a standard rectangular Nx×

Ny grid for some Nx, Ny ∈ N. Let [amin, amax]× [bmin, bmax] be the smallest bounding
box of X aligned with the axes. The grid is given by

xi = amin + (i− 1)hx, hx =
amax − amin

Nx − 1
, i = 1, . . . , Nx, (2.14a)

yj = bmin + (j − 1)hy, hy =
bmax − bmin

Ny − 1
, j = 1, . . . , Ny. (2.14b)

4



We initialize our minimization by constructing an initial guess m0 which maps the
source area X to a bounding box of the target area Y. Without loss of generality
we assume the source area has a rectangular shape [amin, amax] × [bmin, bmax]. The
source density function f(x, y) may be zero on part of X . The target density function
g(p, q) must be nonzero, and we assume Y to be simply connected. Let [cmin, cmax]×
[dmin, dmax] ⊃ Y be the smallest bounding box of Y aligned with the coordinates p
and q. The initial guess is given by

m0
1 =

x− amin

amax − amin
cmax +

amax − x

amax − amin
cmin, (2.15a)

m0
2 =

y − bmin

bmax − bmin
dmax +

bmax − y

bmax − bmin
dmin. (2.15b)

In the next paragraphs, we elaborate each of the three minimizations (2.13a), (2.13b)
and (2.13c).

3. Minimizing procedures for b, P and m. Using the initial guess m0, we
start the iteration process (2.13). Each iteration consists of three steps, which are
described one by one in the following three paragraphs.

3.1. Minimizing procedure for b. In this section we perform the minimization
step (2.13a). We assume m fixed, and minimize the functional JB(m, b) over b ∈ B.
For simplicity of notation we drop the indices n and n+ 1. The minimization can be
performed point-wise, because no derivative of b with respect to x or y appears in the
functional JB(m, b). For each gridpoint (xi, yj) ∈ ∂X , let mi,j denote the value of
the mapping. We perform the minimization

min
bi,j∈∂Y

|mi,j − bi,j |2 . (3.1)

We discretize the boundary of Y using points zk ∈ ∂Y, (k = 1, . . . , Nb) with increasing
index along the boundary, and define zNb+1 = z1. We connect adjacent points by
line segments (zk, zk+1) and determine the closest point to mi,j to all of the line
segments (zk, zk+1).

First we determine for a given point mi,j and a given line segment (zk, zk+1) the
projection mk

i,j of mi,j on the line through zk and zk+1. This projection is given
by [14, p.30]

tk =
(mi,j − zk) · (zk+1 − zk)

|zk − zk+1|2
, (3.2a)

mk
i,j = zk + tk (zk+1 − zk), (3.2b)

see also Figure 3.1. If tk ∈ [0, 1], the projected point is on the line segment, and the
nearest point to mi,j is given by mk

i,j . If tk < 0, the projected point is not on the
line segment and the nearest point is given by zk, and if tk > 1, the nearest point is
given by zk+1. Thus, the nearest point on the line segment (zk, zk+1) is given by

m̃
k
i,j = zk +min(1,max(0, tk)) (zk+1 − zk). (3.3)

We calculate the nearest point bi,j on all the line segments by

bi,j = argmin
m̃

k
i,j

{∣∣∣m̃k
i,j −mi,j

∣∣∣
2
}
. (3.4)

This procedure is repeated for all grid points xi,j on ∂X .
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Figure 3.1: Calculation of the distance of mi,j to a line segment (zk, zk+1). The
point mk

i,j is the projection of mi,j on the line through zk and zk+1. In this case we
find tk < 0 and the nearest point on the line segment to mi,j is given by bi,j = zk.

3.2. Minimizing procedure for P . In this section we perform the minimiza-
tion step (2.13b). We assume m fixed and minimize JI(m,P ) defined in (2.4) over
the matrices P ∈ P(m) under the condition

det(P ) =
f(x, y)

g(m(x, y))
. (3.5)

Since the integrand of JI(m,P ) does not contain derivatives of P , the minimization
can be performed pointwise. Define

d11 =
∂m1

∂x
, d12 =

∂m1

∂y
, d21 =

∂m2

∂x
, d22 =

∂m2

∂y
, (3.6)

and

D =

(
d11 d12
d21 d22

)
, P =

(
p11 p12
p12 p22

)
. (3.7)

Subsequently, define the function

H(p11, p12, p22) =
1

2
||P −D||2 . (3.8)

We have for each (x, y) ∈ X a quadratic minimization problem:

argmin
(p11,p12,p22)∈R3

{
H(p11, p12, p22)

∣∣∣∣ p11 p22 − p212 =
f(x, y)

g (m(x, y))

}
. (3.9)

This problem can be solved analytically. First we slightly simplify the minimization
problem. Let dS := 1

2 (d12 + d21), and define

DS =

(
d11 dS
dS d22

)
. (3.10)

Subsequently we introduce

HS(p11, p12, p22) =
1

2
||P −DS||2 = H(p11, p12, p22)−

1

4
(d12 − d21)

2. (3.11)
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Because (d12 − d21)
2 is constant with respect to p11, p12 and p22, and because we are

only interested in the minimizer (p11, p12, p22) and not in the value of H(p11, p12, p22),
the minimization problem (3.9) is equivalent to

argmin
(p11,p12,p22)∈R3

{
HS(p11, p12, p22)

∣∣∣∣ p11 p22 − p212 =
f(x, y)

g (m(x, y))

}
. (3.12)

Given d11, dS, d22 and f/g, we distinguish five different cases. In each case, we find at
least one and at most four critical points (p11, p12, p22) ∈ R

3 of (3.12), which we call
possible minimizers, satisfying the nonlinear constraint p11 p22 − p212 = f/g. These
possible minimizers are local minima, maxima or saddle points of the minimization
problem (3.12) and the global minimizer is one of these. We determine the global
minimizer by substituting each possible minimizer in the function HS(p11, p12, p22).
More details are given in [20].

The possible minimizers of (3.12) are given by the critical points of the Lagrange
function:

Λ(p11, p12, p22, λ) =
1

2
||P −DS||2 + λ

(
det (P )− f

g

)
, (3.13)

where λ is the Lagrange multiplier. Setting the partial derivatives with respect to
p11, p12, p22 and λ to 0 we find the critical points. This gives the following equations

p11 + λ p22 = d11, (3.14a)

(1− λ) p12 = dS, (3.14b)

λ p11 + p22 = d22, (3.14c)

p11 p22 − p212 =
f

g
. (3.14d)

The system (3.14a) - (3.14c) is linear in p11, p12 and p22, and may be inverted if
λ 6= ±1. From the two implications

λ = 1 ⇒ [d11 = d22 and dS = 0] , (3.15a)

λ = −1 ⇒ [d11 = −d22] , (3.15b)

we conclude

[d11 6= d22 or dS 6= 0] ⇒ λ 6= 1, (3.16a)

[d11 6= −d22] ⇒ λ 6= −1. (3.16b)

Therefore, if (3.16a) and (3.16b) apply, we can safely assume that λ 6= ±1 and invert
(3.14). If [d11 = d22 and dS = 0] or [d11 = −d22], we will use a different method to
solve the minimization problem (3.12).

First we will assume that (3.16a) and (3.16b) apply. We find:

p11 =
λ d22 − d11
λ2 − 1

, (3.17a)

p12 =
dS

1− λ
, (3.17b)

p22 =
λ d11 − d22
λ2 − 1

. (3.17c)
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Substituting these expressions in (3.14d) gives the quartic equation

a4λ
4 + a2λ

2 + a1λ+ a0 = 0, (3.18)

with coefficients given by

a4 = f/g ≥ 0, (3.19a)

a2 = −2 f/g − det(DS), (3.19b)

a1 = ||DS||
2 ≥ 0, (3.19c)

a0 = f/g − det(DS). (3.19d)

First we will show how to solve (3.18), subsequently we give the minimizers when
[d11 = d22 and dS = 0] or [d11 = −d22].

Solution of (3.18) when f > 0. We find the four (possibly complex) solutions
of equation (3.18) using Ferrari’s method [22, p.32]. The idea is to rewrite the quartic
equation as two quadratic equations. First we assume f > 0 and thus a4 > 0, divide
by a4, and rewrite the equation to

(
λ2 +

a2
2 a4

)2

= −a1
a4
λ− a0

a4
+

(
a2
2 a4

)2

. (3.20)

Adding an arbitrary variable y to the left hand side under the square, and adding the
resulting extra term to the right-hand side we get

(
λ2 +

a2
2 a4

+ y

)2

= 2yλ2 − a1
a4
λ− a0

a4
+

(
a2
2 a4

)2

+
a2
a4
y + y2. (3.21)

Next, we attempt to write the right-hand side as a perfect square, such that we get
the following equation:

(
λ2 +

a2
2 a4

+ y

)2

=

(√
2 yλ− a1

2 a4
√
2 y

)2

. (3.22)

Equating the right-hand sides of (3.21) and (3.22), we find this is only possible if y is
a solution of the cubic equation

y3 + b2 y
2 + b1 y + b0 = 0, (3.23)

with coefficients

b2 =
a2
a4
, b1 =

1

4

(
a2
a4

)2

− a0
a4
, b0 = −1

8

(
a1
a4

)2

. (3.24)

One solution for y is given by [19, p.179]

Q =
b22 − 3 b1

9
, R =

2 b32 − 9 b1 b2 + 27 b0
54

, (3.25a)

A = −sgn(R)
(
|R|+

√
R2 −Q3

)1/3
, (3.25b)

y = A+
Q

A
− b2

3
. (3.25c)
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If Q = R = 0, then A = 0 and we have division by zero in (3.25c). In this case, it is
known that the cubic equation has a triple root given by y = − b2

3 . Using the value

of y given by (3.25c) or y = − b2
3 , we find from (3.22)

λ2 +
a2
2 a4

+ y = ±
(√

2 yλ− a1
2 a4

√
2 y

)
. (3.26)

These are two quadratic equations for λ. Solving both, we find the following four
roots of the quartic equation:

λ1 = −
√
y

2
+

√
−y
2
− a2

2 a4
+

a1
2 a4

√
2 y

, (3.27a)

λ2 = −
√
y

2
−
√

−y
2
− a2

2 a4
+

a1
2 a4

√
2 y

, (3.27b)

λ3 =

√
y

2
+

√
−y
2
− a2

2 a4
− a1

2 a4
√
2 y

, (3.27c)

λ4 =

√
y

2
−
√

−y
2
− a2

2 a4
− a1

2 a4
√
2 y

. (3.27d)

It can be shown that (3.18) has at least two real roots [20, p.138]. Furthermore, we
have division by 0 in (3.27) if y = 0. By substituting y = 0 in (3.23), we find that this
only happens when a1 = 0, and thus in case d11 = d22 = dS = 0, which corresponds
to the situation (3.15a) which we will discuss later. The real roots of the quartic
equation given by (3.27) are substituted in (3.17) and (3.8), yielding at least two and
at most four critical points of the Lagrangian Λ(p11, p12, p22) given by (3.13), and thus
at least two and at most four possible minimizers of (3.12).

Solution of (3.18) when f = 0. If f = 0, i.e., when the source density is zero,
(3.18) reduces to a quadratic equation because a4 = 0. The roots are given by

λ =
−a1 ±

√
a21 − 4 a2 a0
2 a2

. (3.28)

The discriminant of this quadratic equation is always positive. We can verify this by
substutiting (3.19) in the discriminant:

a21 − 4 a2 a0 =
(
d211 − d222

)2
+ 4 d2S (d11 + d22)

2 ≥ 0. (3.29)

Equality is only possible in the two exceptional cases described below, therefore we
always have two distinct real solutions. Substituting these values of λ in (3.17), we
find two possible minimizers.

Solution of (3.18) when f = 0 and a2 = 0. If f = 0 and a2 = 0, we have
division by zero in (3.28). This occurs when d11d22 − d2S = 0, and we find from (3.19)
that a0 = 0 as well. The only solution to (3.18) is then given by λ = 0. Again the
values of p11, p12 and p22 are calculated using (3.17), giving one possible minimizer
p11 = d11, p12 = dS and p22 = d22.

Solution of (3.12) when (3.15a) applies. If d11 = d22 and dS = 0, we cannot
perform the step from (3.14) to (3.17) because we have the possibility that λ = 1.
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Therefore we determine the minimum of H(p11, p12, p22) using another method. Using
dS = 0 and d22 = d11, the minimization (3.12) simplifies to

argmin
(p11,p12,p22)∈R3

1

2

(
(p11 − d11)

2 + 2 p212 + (p22 − d11)
2
)
, (3.30)

under the condition

p11p22 − p212 =
f

g
. (3.31)

From the constraint it follows that p212 = p11p22 − f/g. Substitution in (3.30) gives

argmin
(p11,p22)

1

2

(
(p11 − d11)

2 + 2 (p11p22 − f/g) + (p22 − d11)
2
)
, (3.32)

where we replaced minimization over R
3 by minimization over R

2 restricted to the
domain where p12 = ±

√
p11 p22 − f/g is real. The minimizer can be found in the

interior of this domain or on the boundary. We find the minimizer in the interior by
setting the derivatives with respect to p11 and p22 to 0. This yields a critical line:

p11 + p22 = d11. (3.33)

Next, we need to know which part of this line corresponds to real values of p12.
Substituting p11 + p22 = d11 in p11 p22 − f/g ≥ 0, we find

p211 − d11 p11 +
f

g
≤ 0. (3.34)

This inequality has real solutions p11 if the discriminant of the quadratic equation on
the left hand side d211 − 4 f/g ≥ 0. Then, the part of the line corresponding to real
values of p11 is given by

d11 −
√
d211 − 4 f/g

2
≤ p11 ≤ d11 +

√
d211 − 4 f/g

2
. (3.35)

This is a minimizing line segment, and the the minimizer may not be unique. For
simplicity, we choose p11 in the middle of the line segment, and find two vectors
(p11, p12, p22) given by

p11 = p22 =
d11
2
, p12 = ±

√
d211
4

− f

g
. (3.36)

Next, we need to find possible minimizers on the boundary of the domain where
p12 is real. This boundary is given by p12 = 0, which is an hyperbola:

p11p22 = f/g. (3.37)

Using p12 = 0 and p22 = f/g
p11

, (3.32) reduces to

argmin
p11∈R

1

2

(
(p11 − d11)

2
+

(
f

g p11
− d11

)2
)
. (3.38)
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We find the critical points by differentiation with respect to p11 and subsequent mul-
tiplication with p311. This gives a quartic equation

p411 − d11 p
3
11 + f/g d11 p11 − f2/g2 = 0. (3.39)

This quartic equation can be factored into

(
p211 − f/g

) (
p211 − d11p11 + f/g

)
= 0, (3.40)

and has four solutions. The first two solutions are given by

p11 = ±
√
f/g, (3.41)

and are always real. The other two solutions

p11 =
d11 ±

√
d211 − 4 f/g

2
(3.42)

either correspond to the endpoints of the line segment defined by (3.35), or are complex
valued. If they correspond to the boundaries of the line segment, they will yield the
same value of HS(p11, p12, p22) as the solution (3.36) and can thus be ignored. If they
are complex valued, they can be ignored as well. From the first two solutions (3.41),
we find the following two possible minimizers:

p11 = p22 = ±
√
f/g, p12 = 0. (3.43)

Solution of (3.12) when (3.15b) applies. If d11 = −d22, we also cannot perform
the step from (3.14) to (3.17) because we have the possibility that λ = −1. We
determine the minimizers using a different method. We find from (3.14a) and (3.14b):

p22 = p11 − d11, (3.44a)

p12 = dS/2. (3.44b)

Substituting this in (3.14d) we find

p211 − d11p11 − d2S/4− f/g = 0. (3.45)

Solving for p11 we find two solutions:

p11 =
d11
2

±
√
d211 + 4 f/g + d2S

2
, (3.46a)

p12 =
dS
2
, (3.46b)

p22 = −d11
2

±
√
d211 + 4 f/g + d2S

2
, (3.46c)

which are always real.

Summary. The procedure to minimize over P is as follows: for each grid point
(xi, yj), we calculate the value of f(xi, yj)/g(m(xi, yj)). We determine which of
the five cases applies, and find at least one and at most four possible minimizers
(p11, p12, p22). For each i, j, the new P is constructed from the 3-tuple which gives
the smallest value of H(p11, p12, p22).
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3.3. Minimizing procedure for m. In this section, we perform the mini-
mization step (2.13c). We assume P and b fixed and minimize J(m,P , b) over the
functions m ∈ V. For ease of notation, we drop the indices n and n+ 1. In contrast
to the other two minimization steps, this step can not be performed pointwise. We
minimize m using calculus of variations. Using the identity

||A+B||2 = ||A||2 + 2A : B + ||B||2 , (3.47)

we calculate the first variation of J with respect to m for η ∈
[
C2(X )

]2
, i.e.,

δJ(m,P , b) [η] = lim
ǫ→0

1

ǫ
[J(m+ ǫη,P , b)− J(m,P , b)] =

lim
ǫ→0

[
α

2

∫∫

X

2 (Dm− P ) : Dη + ǫ ||Dη||2 dx dy+

1− α

2

∮

∂X

2 (m− b) · η + ǫ|η|2 ds
]
=

α

∫∫

X

(Dm− P ) : Dη dx dy + (1− α)

∮

∂X

(m− b) · η ds.

(3.48)

The minimizer is given by

δJ(m,P , b) [η] = 0, ∀η ∈
[
C2(X )

]2
. (3.49)

Let

p1 =

(
p11
p12

)
, p2 =

(
p12
p22

)
, P = [p1 p2 ] , η =

(
η1
η2

)
, b =

(
b1
b2

)
.

We rewrite the first integral of the final expression in (3.48) as follows:

∫∫

X

(Dm− P ) : Dη dx dy =

2∑

k=1

∫∫

X

(∇mk − pk) ·∇ηk dx dy. (3.50)

Using the vector-scalar product rule [14, p.144] and Gauss’s theorem [14, p.506] we
find for k = 1, 2:

∫∫

X

(∇mk − pk) ·∇ηk dx dy =

∮

∂X

(∇mk − pk) · n̂ ηk ds−
∫∫

X

(∆mk −∇ · pk) ηk dx dy,

(3.51)

where n̂ is the outward-pointing unit normal vector on ∂X . Combining (3.51) with
(3.48), (3.49) and (3.50) we find

2∑

k=1

∮

∂X

(
[α (∇mk − pk) · n̂+ (1− α) (mk − bk)] ηk

−α

∫∫

X

(∆mk −∇ · pk) ηk dx dy = 0 ∀η ∈
[
C2(X )

]2
.

(3.52)

Choosing η2 = 0 and applying the fundamental lemma of the Calculus of Variations [6,
p.185] for η1, we have almost everywhere

∆m1 = ∇ · p1 (x, y) ∈ X , (3.53a)

(1− α)m1 + α∇m1 · n̂ = (1− α) b1 + αp1 · n̂ (x, y) ∈ ∂X . (3.53b)
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Similarly, choosing η1 = 0 we find

∆m2 = ∇ · p2 (x, y) ∈ X , (3.54a)

(1− α)m2 + α∇m2 · n̂ = (1− α) b2 + αp2 · n̂ (x, y) ∈ ∂X . (3.54b)

These are two decoupled Poisson equations with Robin boundary conditions for the
two components of m [15]. These Poisson equations are solved using standard sec-
ond order accurate central finite differences for the first and second order deriva-
tives. These approximations contain points outside the domain when applied at the
boundary. We eliminate these points using the discretized Robin boundary condition.
The derivatives of p11, p12 and p22 are approximated using similar finite difference
schemes, and when needed on the boundary, using one-sided second-order schemes.
The discretized Poisson equations are solved using the Matlab-implementation of LU-
decomposition with full pivoting. The LU-decomposition only needs to be computed
once, and the Poisson equations can be solved very efficiently during the iterations.

4. Computation of u and algorithm summary. The minimization steps
given by (2.13a), (2.13b) and (2.13c) are repeated until J(m,P , b) is no longer de-
creasing. Then we stop the iteration. If we are interested in the solution of the
Monge-Ampère equation, we can compute its solution u from the mapping m, i.e.,
we calculate u such that ∇u = m. This u will be the approximate solution of the
Monge-Ampère equation (1.3) with boundary condition (1.4). In the ideal situation,
Dm = P and thus ∂m1

∂y = ∂m2

∂x . In this case there exists a function u such that

∇u = m, because m is a conservative vector field [14, p.494]. However, we will most
likely not be in this ideal situation, therefore we look for a function which has m as
gradient in a least-squares sense, i.e.,

u = argmin
ψ

I(ψ), I(ψ) =
1

2

∫∫

X

|∇ψ −m|2 dx dy. (4.1)

We calculate the minimizing function u using Calculus of Variations. The first varia-
tion of the functional (4.1) is given by

δI(u)[v] = lim
ǫ→0

1

ǫ
(I(u+ ǫv)− I(u))

= lim
ǫ→0

1

2

∫∫

X

ǫ |∇v|2 + 2 (∇u−m) ·∇v dx dy

=

∫∫

X

(∇u−m) ·∇v dx dy.

(4.2)

The minimizer is given by

δI(u)[v] = 0, ∀v ∈ C2(X ). (4.3)

Let n̂ denote the unit outward normal at the boundary ∂X . Using integration by
parts and Gauss’s theorem we find

0 =

∮

∂X

(∇u−m) · n̂ v ds−
∫∫

X

(∆u−∇ ·m) v dx dy, ∀v ∈ C2(X ). (4.4)

Applying the fundamental lemma of Calculus of Variations [6, p.185], we find

∆u = ∇ ·m (x, y) ∈ X , (4.5a)

∇u · n̂ = m · n̂ (x, y) ∈ ∂X . (4.5b)

13



This is a Neumann problem, and only has a solution if the compatibility condition is
satisfied. The compatibility condition is given by [7]

∫∫

X

−∇ ·m dx dy +

∮

∂X

m · n̂ ds = 0. (4.6)

By Gauss’s theorem we see that it is satisfied indeed. The solution of the Poisson
equation with Neumann boundary condition is unique up to a constant. To make the
solution unique, we add the constraint

u(xi, yj) = 0, (4.7)

for some arbitrarily chosen i and j.
The numerical algorithm is summarized as follows. We discretize the source

domain X and select points on the boundary of the target domain Y. The initial
guess is given by (2.15). Subsequently, we repeatedly perform the steps given by
(2.13a), (2.13b) and (2.13c). The first step is a minimization for b(xi, yj), and is
performed pointwise for all grid points (xi, yj) ∈ ∂X using (3.4). The second step is a
minimization procedure for P (xi, yj), and is performed pointwise for all gridpoints by
calculating the global minimizer. The third and last step is a minimization procedure
for m, and is performed by solving two Poisson boundary value problems given by
(3.53) and (3.54). The three steps are repeated until the functional J(m,P , b) defined
by (2.12) has decreased sufficiently. If needed, the function u is computed from m by
solving the Poisson problem (4.5).

5. Numerical results. We test our algorithm on four test problems: in the first
test problem we map a square with uniform density into a circle with uniform density,
in the second test problem we map a circle to a square with uniform density, in the
third test problem we map a square to target-distributions on non-convex domains,
and in the fourth test problem we challenge our algorithm to design a special lens
mapping a uniform, square parallel beam of light to a projection of a famous Dutch
painting on a wall.

5.1. From a square to a circle. In our first test problem, the source domain
is given by X = [−1, 1]2, and the target domain by Y =

{
(p, q) ∈ R

2
∣∣ p2 + q2 ≤ 1

}
.

We have f(x, y) = 1/4 and g(p, q) = 1/π . We solve the boundary value problem
(1.3) and (1.4) for different grid sizes with α = 0.2. The resulting mapping after 100
iterations is shown in Figure 5.1.

Subsequently we test the algorithm with different grid constants. We use an
N ×N grid with N ∈ {51, 61, 71, 81, 91, 101, 151, 201, 251, 301, 351, 401}. The number
of boundary points Nb = 1000, such that it will not be the limiting factor in accuracy.
We calculate the mapping on the N × N grids using 400 iterations. The value of J
as function of the iteration number for the different grid sizes is shown in Figure
5.2a. The lower lines correspond to larger grids. Surprisingly, the grid size does not
influence the convergence speed in the initial iterations. It does, however, determine
at which value the convergence stalls. The final value of J after 400 iterations is
plotted in Figure 5.2b.

We analyzed the calculation time for the LU decomposition, the three minimiza-
tion steps performed in each iteration and the computation of u for N × N grids
as function N , and as function of the number of boundary points Nb. The results
are shown in Figure 5.3. The calculation times for the LU decomposition and the
computation of the function u are clearly the largest, however, they only have to be
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Figure 5.1: The mapping for the ’square to a circle’ problem after 100 iterations on a
101× 101 grid, 100 points on the boundary of the target domain and α = 0.2.

0 100 200 300 400
10

−8

10
−6

10
−4

10
−2

10
0

Iteration

J

(a) The value of J as function of the iteration
number for the different grid sizes. The lower
lines correspond to larger values of N .
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(b) Value of J after 400 iterations as func-
tion of N on a loglog scale. The fit is a loga-
rithmic linear least-squares, we find that the
value of J is proportional to N−2.37.

Figure 5.2: Calculation of the mapping for different grid sizes with Nb = 1000,
α = 0.2 and 400 iterations. The grids have dimensions N × N with N ∈
{51, 61, 71, 81, 91, 101, 151, 201, 251, 301, 351, 401}.

performed once. We expect the calculation times for the minimization procedures for
P and m (using the LU decomposition) to be linear in the number of grid points
and thus quadratic in N , and we expect the calculation time for the minimization
procedure for b to be linear in both N and Nb. The calculation times for the LU
decomposition and the linear solve for the calculation of the function u depend on the
Matlab implementation, we expect them to be at the very least linear in the number of
grid points and thus at least quadratic in N . We performed logarithmic least-squares
fits on the data in Figure 5.3, the results are shown in Table 5.1.
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(a) Calculation time for the LU decomposi-
tion, the minimization steps (per iteration)
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function u. We used Nb = 500.
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cedure for b per iteration as function of
the number of boundary points Nb for an
101× 101 grid.

Figure 5.3: Calculation time as function of N and Nb. The calculations were per-
formed on a laptop with an Intel Core i5 M520 2.40 GHz with 4 GB of RAM. The
dotted lines are least-squares fits. See also Table 5.1.

Procedure Expected calculation time Relation from fit

LU decomposition ∝ N2.22

Minimization for P O(N2) ∝ N2.00

Minimization for b O(N ·Nb) ∝ N0.94, ∝ N0.79
b

Minimization for m O(N2) ∝ N2.15

Linear solve for u ∝ N2.10

Table 5.1: Expected and measured calculation times for the different procedures in
the algorithm.

We also tested the influence of Nb on the convergence rate of the algorithm. We
use a 401 × 401 grid and plot the values of JI and JB as function of the iteration
number for different choices of Nb. The results are shown in Figure 5.4. Again, the
value of Nb does not influence the initial convergence of the algorithm, but only the
final value of J after convergence. If Nb is chosen large enough, its effect on the
final value of J becomes negligible. Because an increase in Nb does not significantly
increase the calculation time, it is recommended to choose Nb sufficiently large.

There is no obvious way to choose an appropriate value for α. Nevertheless, the
choice of α strongly influences the performance of the algorithm. We determined an
optimal choice for α experimentally. The influence of α on the convergence of the
algorithm is shown in Figure 5.5. A value of α between 0.1 and 0.5 results in good
performance. This value is independent of the grid size.

5.2. From a circle to a square. The second test case involves a mapping of a
circle to a square. We have f(x, y) = 1/π for x2 + y2 ≤ 1 and f(x, y) = 0 otherwise.
The target domain is the square [−1, 1]2 ∈ R

2 and we have g(p, q) = 1/4. Because the

16



0 100 200 300 400
10

−8

10
−6

10
−4

10
−2

10
0

Iteration

J
I

 

 

Nb=25

Nb=100

Nb=200

Nb=1000

0 100 200 300 400
10

−8

10
−6

10
−4

10
−2

Iteration

J
B

 

 

Nb=25

Nb=100

Nb=200

Nb=1000

Figure 5.4: Value of JI and JB as function of the iteration number for different values
of Nb on a 401× 401 grid.
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Figure 5.5: Value of J as function of the iteration number for mapping a square to a
circle with different values of α.

target domain is square, we only need 4 points to model the boundary accurately. In
this test case, many more iterations are needed to achieve good convergence. We used
500 iterations and compared the performance of the algorithm for different choices
of α. The results are shown in Figure 5.6d. Convergence of the mapping was often
problematic in the corners. Choosing the right value of α reduces this problem.

5.3. A non-convex target. In the third test problem we test the algorithm on
non-convex target domains. We choose a uniform square source distribution on the
square [−1, 1]2 with f(x, y) = 1/4. The target distribution is also uniform, and the
target boundary is defined by

ρ(θ) = 1 + C cos(3 θ), (5.1)

where θ is the counter-clockwise angle with respect to the p-axis in the (p, q)-plane.
We test the algorithm for C ∈ {0.1, 0.2, 0.3, 0.4}. We use a 201 × 201 grid, 1000
points on the boundary and α = 0.2. The mappings after 200 iterations are shown in
Figure 5.7. The value of J after 200 iterations is 4.43 · 10−7, 8.53 · 10−7, 5.16 · 10−5
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(a) α = 0.05 (b) α = 0.01

(c) α = 0.2
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(d) Value of J as function of the it-
eration number with different values
of α for mapping a circle to a square.

Figure 5.6: Final mapping after 500 iterations on a 401× 401 grid for the second test
case. Convergence is often slow in the corners. Choosing the right value of α reduces
this problem.

and 4.82 · 10−4, respectively. Convergence problems arise for target domains which
strongly deviate from a convex shape, but if the shape only deviates moderately, the
algorithm performs adequately.

5.4. A Vermeer lens. Our own interest in the Monge-Ampère equation comes
from the field of illumination optics. The aim is to provide numerical algorithms to
assist optical engineers in the design of lenses and reflectors for illumination that can
transform a parallel beam of light with an arbitrary light distribution into another
given arbitrary distribution. Such lenses and reflectors can be used for example to
create efficient road lighting illuminating the streets uniformly, spots with square,
rectangular or arbitrary-shaped output beams, or car headlamps. For this article, we
will test our algorithm to the limit to design a lens transforming a square uniform
parallel beam of light into a target distribution corresponding to a famous Dutch
painting.
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(a) C = 0.1 (b) C = 0.2

(c) C = 0.3 (d) C = 0.4

Figure 5.7: Mapping after 200 iterations for target domains with boundary defined
by (5.1).

Figure 5.8: A lens redistributing the light from a parallel beam onto a plane.
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(a) The original painting (b) The corresponding target distri-
bution g(p, q).

Figure 5.9: The painting ”Girl with a pearl earring” by Johannes Vermeer. Note that
the domain of the target distribution g(p, q) is not convex.

A schematic drawing of a lens design problem is shown in Figure 5.8. In this
example, we have a parallel beam of light in the z-direction with given radiant exitance
M(x, y) [W/m2], and an irradiance on the plane P given by L(x, y) [W/m2]. The light
from the parallel beam is redistributed by a lens of which the first surface is described
by the function z = u(x, y) and the second surface is flat. The goal is to find the
lens surface z = u(x, y) which gives for the specified radiant exitance M(x, y) of the
parallel beam the specified irradiance L(x, y) on P. Using conservation of energy and
the law of refraction, it can be shown that u(x, y) is the convex solution of the Monge-
Ampère equation (1.3) with boundary condition (1.4), where f(x, y) = M(x, y) and
the function g(p, q) is as plotted in Figure 5.9b [20, p.78-88]. The target distribution
g(p, q) is a deformation of the painting ”Girl with a pearl earring” by the famous
Dutch painter Johannes Vermeer, as shown in Figure 5.9. The painting is converted
to grayscale and the grayscale values are used as irradiance pattern. Because the target
distribution contains many details and its domain is just not convex, it provides a
challenging test for our algorithm.

To avoid division by 0, we increase irradiances of less than 5% of the maximum
value to 5% of the maximum value. The target plane is located at distance d = 100
from the origin, and the painting has a width of 53.2 and a height of 63 (all in
arbitrary units). The resulting target distribution g(p, q) is plotted in Figure 5.9b.
As source emittance we use a uniform square parallel beam of light, so f(x, y) = 1/4
on the domain [−1, 1]2. We calculate the lens surface z = u(x, y) on a 801 × 801
grid with 1996 points to discretize the boundary (500 at each side of the painting),
and use α = 0.2. The values of JI and JB as function of the iteration number are
plotted in Figure 5.10a. It can be seen that the value of J may increase during the
iterations. This happens during the minimization procedure for P . The reason is
that the mapping m has changed, and thus the set P(m) has changed, therefore we
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(a) Values of JI and JB for the Vermeer-lens
as function of the iteration number.

(b) The final mapping for the Vermeer-lens.

Figure 5.10: The function u(x, y) representing the lens-surface.

may have

min
P∈P(mn+1)

JI(m
n+1,P ) > min

P∈P(mn)
JI(m

n,P ). (5.2)

The final mapping resulting from the iteration process is shown in Figure 5.10b.
The target distribution 5.9b can clearly be recognized. A denser grid corresponds to a
higher target density, and therefore to lighter colors. The function u(x, y) representing
the lens surface, which is computed from this mapping, is shown in Figure 5.10.

We tested the calculated surface using the optical simulation software LightTools
[18]. In this program we build a three-dimensional model of the lens, a square surface
emitting a parallel beam of light and a target plane P. The surface emitting the
light and the lens in the simulation software are shown in Figure 5.11. The software
shoots 5 million evenly distributed rays randomly from a square plane through the
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Figure 5.11: Ray-tracing the Vermeer lens. The screenshot shows the light source
(left) and the lens (middle). The target screen is located at a large distance to the
right.

Figure 5.12: The ray-tracing results for the Vermeer lens.

lens and returns the distribution of these rays over the target plane. This distribution
is plotted in Figure 5.12.

The experiment shows that the algorithm can be used to calculate very detailed
surfaces. The algorithm is very memory-efficient so the calculation could be performed
on a laptop with only 4 GB of RAM. The optical simulation reproduces the painting
in great detail. This shows that the algorithm can be used to design advanced lenses
for illumination converting arbitrary parallel beams of light into arbitrary target dis-
tributions.

6. Discussion and conclusions. We developed a new method to compute the
solution of optimal mass transport and the corresponding convex solution of the
Monge-Ampère equation with the transport boundary condition. Numerical methods
for optimal mass transport and the Monge-Ampère equation with transport boundary
conditions are very scarce. To the best of our knowledge, the only other methods were
published only recently [3, 4, 9–12, 16, 17]. These methods compute a convex solution
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of the Monge-Ampère equation using a wide-stencil scheme that enforces convexity.

We implemented this other method as well and published an article with the
results [21]. Both algorithms are able to calculate detailed solutions of the Monge-
Ampère equation on large grids. The memory requirements of the least-squares algo-
rithm is lower, which allows calculation on larger grids than the wide-stencil method.
The wide-stencil scheme requires fewer iterations, but more calculation time per it-
eration. On larger grids, the least-squares method is somewhat faster, because the
calculation time for the different steps during the iterations scale approximately lin-
ear with the number of grid points, and the LU decomposition and linear solve for
u only need to be performed once. If f = 0 on part of the domain, the wide-stencil
scheme performs better: the least-squares algorithm converges slowly for these type of
problems. If the target domain is not convex, the least-squares algorithm has a clear
advantage: as long as the domain does not deviate too much from a convex domain, it
shows good performance. For the wide-stencil method we computed solutions for non-
convex target domains by swapping the source and target distributions: we retrieved
the solution of the original problem using an additional Legendre-Fenchel transform.
However, this introduces additional calculation time, artifacts in the solution, and is
only possible if the source domain is convex [21].

The least-squares method has shown good performance on complicated optimal
mass transport problems. The ability to solve mass transport with non-convex target
domains makes our new method a valuable addition to the existing methods.
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