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Abstract

This paper presents the application of the refined least squares method. The
refinement makes it possible to solve problems with not only boundary, but
also initial and non-continuous conditions. Mathematica is used to develop
algorithms and carry out computations. It enables us to extend fields of
approximate analytical method applications and allow them to be regarded
as computer ones. Mathematica makes it possible to solve unstable and
ill-conditioned tasks which are too difficult for numerical methods.

1 Introduction

The problem of approximate solution of boundary value problems with Ma-
thematica was already considered by Barrere & Carmasol [1, 2]. They ap-
plied the Galerkin method.

The least squares method is a well known method in mathematics. It
is used to approximate data sets or functions with other functions or to
approximate solutions of differential equations. Boundary conditions in tra-
ditional approach have to be satisfied by the approximating functions. The
same conditions should be satisfied by the functions in Galerkin method.
The least squares method was used previously only for solving boundary
value problems.

Demanding that boundary conditions have to be satisfied by definition
limits the application fields of the analytical approximation. It is difficult
to find a set of functions which satisfy all boundary conditions, especially
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for multidimensional tasks with non-continuous conditions.
The least squares method is based on integration. Therefore it is not

sensitive to steep gradients. Mathematica as a tool which can easily handle
analytical or numerical integration is very useful. Computations made with
exact or arbitrary precision allows us to solve ill-conditioned problems.

The paper presents a refinement of analytical approximation with the
method of least squares. It is based on the idea that, like in the Finite
Element Method, boundary conditions can be added to the minimized func-
tional. The functions which we use to approximate the tasks do not have
to satisfy boundary conditions. Hence it is very simple to handle them.
Moreover it is possible to solve the problems with initial conditions, as pre-
sented in the example. Evaluation of an error of approximation is much
more straightforward.

2 The method description

Let us consider, to focus our attention, the domain D limited by the bound-
ary F — F/ U r//, Majchrzak & Mochnacki [4], in which the function is
described by an equation,

£([/) - b, (I)

with conditions,

,= 9d, (2)

where x is a point on the boundary of the domain D, and q = n • grad[7.
Vector n is normal to the boundary. Let us introduce functions of residuum
(error or defect of the solution),

Ri = U- U*, (4)
T~) / r-- \
ttn — q ~ Qd- (5)

If the UQ is an approximate solution of the boundary value problem then
residue functions are not equal to zero. We can build the following functional
on the functions (3), (4) and (5),

/>
(#//"S#)̂ dr#, (6)

where s, s/ and s// are scale coefficients (or scale functions).
The problem of these scale coefficients is very important. They are

used to satisfy compatibility of physical measure units of all functional^
summands. The more important role of them is that they can shape ap-
proximation paths. Enlargement of some of the scale coefficients results
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in quicker convergence of that condition or equation which have these co-
efficients. The cost of that manipulation is slower convergence of other
conditions or equations. The problem of scale coefficients has not been
properly examined yet. It requires further research.

To approximate solutions by the minimization of the functional eqn (6).
we can use the Ritz method. We can predict the solution in a form of linear
combination of independent functions %,. The best results are obtained with
functions based on rnonic Tchebyshev T polynomials. Burden & Faires [3].

where fa are unknown coefficients.
If the function UQ only approximates the actual solution U then the

functional eqn (6) is a positive number. The condition of minimization is
equivalent to the system of m algebraic equations,

§=«•

For linear problems that system of equations is linear A • x = b. Square
matrix A is symmetrical and positive definite.

Coefficients of the matrix A can be computed with the formula,

% = / Q c, ̂  dD 4- / c/, c/j s^ dF/ + / c//, c/^ s^ dF//, (9)
•/(#) -/(r/) 4r//)

and coefficients of the vector b with the formula,

/, w//^!rdF//, (10)

where c&, c/t and c//̂  are coefficients which stand by the /% and %,\ ?̂'/ and
wn are free terms in eqns (3), (4) and (5) respectively.

The solution of the system of eqns (8) is the vector x of coefficients J/,.

3 Example — the Mathematica implementation

The way of thinking, presented above, can be easily expanded on systems of
equations or problems with initial-boundary conditions. Moreover we can
solve any type of equations: differential, integral and so on. The functional
eqn (6) can be built for any of the problems.

The Mathematica implementation is also very easy. To show this let us
consider the following hyperbolic partial differential equation,

(in
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in domain x £ (0, 10) and y G (0, 10), with two boundary conditions,

;/ G (0. 10), z = 0 : T(z, ?/) = 0, % E (0, 10), z = 10 : — = 0, (12)
(7%

and with two initial conditions,

2- G (0, 10), ?/ = 0 : T(̂ , ?/) = %(1 - z), ^ = 0, (13)

where tl(x) is a Heaviside unit step function.
In Mathematica language we can define for this task, the following func-

tions of residuum.

rr: = (D[T[x,y],{x,2}] - D[T[x,y],y] - D[T[x,y],{y,2}])/sxl/syl

r[l]:= ((T[x,y] -UnitStep[l-x])/sxl/.y->0)

r[2]:= ((D[T[x,y],y])/sxl/.y->0)

r[3]:= ((T[x,y])/syl/.x->0)

r [4] : = ( (D [T [x , y] , x] ) /sy I/ . x->bx)

where we introduce scale coefficients,

sxl = Sqrt [20] ; syl = Sqrt [20]

Coefficients of the linear system can be computed from the formulas,

Expand [integ [Expand [cr [i] cr [ j ] ] ] +
integl [Expand [cbr [i , 1] cbr [ j , 1] +cbr [i , 2] cbr [ j , 2] ] ] +
integ2 [Expand [cbr [i , 3] cbr [j , 3] +cbr [i , 4] cbr [ j , 4] ] ] ]

integ [Expand [cr [i] wr]]+
integl [Expand [cbr [i,l] wbr [l]+cbr [i ,2] wbr [2]]] +
integ2 [Expand [cbr [i , 3] wbr [3] +cbr [i , 4] wbr [4] ] ]

Functions integ, integl, and integ2 are author defined functions com-
puted by the Mathematica Integrate. They are used to increase the speed
calculations. Symbols cr, wr, wbr and cbr are coefficients c and w, in eqns
(9) and (10), respectively. The computations of these coefficients has been
made analytically. The task is ill-conditioned but the solution of linear
system can be made by Mathematica with an arbitrary precision.
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The result of computations of approximation of the task by the set
of 361 functions is presented in the Figure 1. It is very easy to evaluate
the approximation error. The obtained results can be substituted into the
eqn (11). The diagram of its residuum is presented in Figure 2. It gives
information only where the eqn (11) is not well satisfied. If we compare the
absolute of the the maximal value of the residuum with the absolute of the
maximal value of any of the summand in the equation, for example with
functions /(z,?/) = ̂  and #(z,2/) = -^, (Figures 3 and 4), we receive
the relative error to each of the of eqn (11) residuum components.

Figure 1: Approximate solution of the initial-boundary problem.

4 Final remarks and conclusions

The presented method can be easily applied to the initial-boundary prob-
lems and systems of equations. These equations could be differential, inte-
gral or integral-differential ones.

The main difference to the Galerkin, classical least squares method and
other methods is that the satisfaction of boundary conditions by functions
Ui is not essential. This is not essential and from the point of view of the
author not advisable. It is not straightforward to find functions which satisfy
non-continuous boundary conditions. Numerical experiments, carried out
by the author, shows that the functions not "tied" to the boundary are
more "flexible" to approximate the problem.

The method is also stable. As was shown above, there were no prob-
lems with solving hyperbolic and parabolic equations. The results were
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Figure 2: Error of the differential equation approximation.

much more accurate than those obtained with finite differences method. In
the presented example finite difference method is unstable because of high
gradients near the point (0,1).

The subject of research of the author is the theory of shells. These
tasks are badly conditioned. One way to avoid instability is to search for
the analytical solution. An exact solution is possible almost only for one-
dimensional problems. Some solutions obtained with Mathernatica were
presented in [5]. The Mathematica as a tool which can solve equations with
an arbitrary precision is very useful. The least squares method is also of
much use here. The shell analysis by the method will be presented in future
contributions.

Analytical integration with Mathematica was applied if possible. It is
specially useful for ill-conditioned tasks like, for example, axially symmet-
rical problems. The precalculated integrals presented in the paper often
make computations faster than with the numerical NIntegrate procedure.

The better approximation can be done by adding other functions to the
eqn (7). The matrix A and vector b can be built up from ones obtained
in the previous step. The Cholesky-Banachiewicz method is very useful
here. It is more precise than Gauss Elimination for the type of problems
considered. It has another positive feature. It does not need pivoting so
the new elements could be added to the previously decomposed matrix A.
This increases the speed of the linear system's solution.

It is worth noting that Mathematica can handle complex numbers, so it
is possible to solve the system of linear equations with non-positive definite
matrix A, by the Cholesky-Banachiewicz method.
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Figure 3: Function f(x,y) = |̂ .

The Mathematica lines, presented above, almost define the method.
Only a few technical aspects were not presented here. The method uti-
lizes one of the main advantages of the system - it saves the programmer
time.

The result is given in the form of functions. It can be easily presented
with Mathematica and used in other tasks. No interpolation and extrapo-
lation is necessary.

The error estimation is very easy. One should only substitute the result
into the residuum functions eqns (3), (4) or (5) to see "local satisfaction"
of the problem or into functional eqn (6) to estimate the overall error.

Mathematica was applied in whole process of building the algorithms.
testing them and solving the tasks. It is very useful for solving badly con-
ditioned problems because it can compute with arbitrary precision and is
"honest" returning the result omitting round-off error. It is a very im-
portant feature. The result can be presented graphically with wonderful
Mathematica capabilities.
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Figure 4: Function g(x,y) = —-
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