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Summary 

The direction of a secondary magnetization component is found from 
the intersection point of converging remagnetization circles using a 
method based on the least-squares fitting of great circles to points on a 
sphere. The technique may be applied to any problem that requires the 
best intersection point of convergent great circles and is thus useful in 
other fields besides palaeomagnetism, such as structural geology, plate 
tectonics and astronomy. 

Introduction 

In palaeomagnetic studies rocks are often encountered which possess two 
superimposed components of remanent magnetization. If their coercivity or blocking 
temperature spectra are dis-similar, one or other of the remanences will be preferen- 
tially removed at various stages of AC or thermal stepwise magnetic cleaning. 
Successive total magnetization vectors obtained after each cleaning step may thus 
have different directions but should always Iie within a single plane. On a stereonet 
the vectors define an arc of a great circle, the so-called remagnetization circle. 

It is possible to recover one or both of the component directions if demagnetiza- 
tion results yield stable end-points or are amenable to a vector subtraction analysis 
(e.g. Buchan & Dunlop 1976). The success of these procedures demands certain 
relations between the coercivity or blocking temperature spectra of the two com- 
ponents which are summarized in Fig. 1. This paper describes a least-squares method 
using converging remagnetization circles, which can give the component directions 
without the above spectral constraints. 

If the spectra of two components A and B partially overlap as shown in Fig. 1 (a), 
stepwise cleaning yields the direction of the B component from the stable end-point. 
During the initial cleaning stages when the B component remains undemagnetized, 
successive vector differences remain parallel to one another and define the direction 
of the A component. However, as Fig. l(b) shows, successively parallel vector 
differences can be observed even if the intensity of the B component is changing. In 
this example successive vector differences, although parallel, do not have the same 
direction as the A component. Therefore if vector subtraction is used to find the A 
direction it is important that there is evidence for the spectral relations shown in 
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FIG. 1 .  Schematic diagrams to illustrate demagnetization characteristics of two 
superimposed remanences A and B for different relations between their coercivity 
or blocking temperature spectra. Regions of the demagnetization curves are 
specified as follows: 1, resultant vectors progressively change direction but 
successive vector differences remain parallel to one another; 2, resultant vectors 
progressively change direction but successive vector differences are not parallel to 
one another; and 3, resultant vectors do not change direction, implying that the A 
component has been completely removed. This is the stable end-point situation 
and gives the direction of the B component. The lower figures of I(a) and I(b) 
show the change in direction and intensity of resultant magnetization vectors on 
stepwise cleaning. B1 represents that part of the B remanence, corresponding to 
the higher of the two spectrum peaks in Fig. 1(b), which initially remains unde- 
magnetized. Dz is that part which decays initially at the same rate as the A com- 

ponent. 
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FIG. 2. Wulff net diagrams illustrate schematically how the directions and relative 
ages of two magnetization components can be resolved when sample cleaning 
yields successive magnetization vectors which define arcs of great circles, but no 
stable end-points. In  the hypothetical example given, remagnetization circles are 
defined by sample data from three sites (1, 2, 3) in a structurally disturbed area. 
Arrows indicate sense of directional swings on cleaning; dashed/solid parts of 
circles are plotted on the lower /upper hemispheres; and solid /open dots are down- 
ward /upward magnetizations. In  Fig. 2(a), B and B are the common intersection 
points of remagnetization circles before structural unfolding (SU). In Fig. 2(b), 
A and A‘ are the intersection points of the same circles after SU, and BAl and 
BAl’ etc. are the positions of poles B and B’ for site 1 etc. On each of the three 
great circles in Fig. 2(b) there are two possible directions of the primary and 
rotated secondary components. The ambiguity is removed because the data points 
defining these circles must lie between the true primary and secondary directions. 
Hence A and B are respectively the directions of the primary and secondary com- 

ponents. 

Fig. 1 (a). Vector subtraction cannot be used to resolve the A direction if the coercivity 
or blocking temperature spectra of the two components have very similar ranges 
(Fig. l(c)). Also, if both spectra have similar lower limits, but the A spectrum is 
narrower, then it is not possible to use vector subtraction to recover the A direction, 
despite knowing the B direction from the stable end-point. 

The above limitations in vector subtraction and end-point analyses may be 
removed if remagnetization circles, observed for different palaeomagnetic sites, tend 
to intersect at a common point. This convergence point, or its antipole, gives the 
direction of one of the components. The relatively large dispersion in one component 
over the other, necessary for converging circles to be observed, can be produced either 
by folding, if the period of deformation separates the times of magnetization (e.g. 
Irving 1964), or by factors unrelated to structure such as secular variation. If folding 
introduces appreciable scatter in one component relative to the other, and vice-versa 
after unfolding, then two sets of converging circles are produced, corresponding to 
the €olded and unfolded states. In this instance, only portions of remagnetization 
circles need be defined to specify uniquely the relative age and direction of the two 
components as shown in Fig. 2. If only one of the two sets of circles shows converg- 
ence, additional data from stable end-points or vector subtraction are needed to 
obtain the same information. Secular variation as a possible cause of circle con- 
vergence becomes apparent if the data are obtained from rocks with a uniform 
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structural attitude. In this case only the direction of the least dispersed component 
can be obtained from the converging circles, and again further data are required to 
find the direction and relative age of the other component. 

Since the convergence of remagnetization circles will be invariably blurred due to 
dispersion, it is necessary to obtain a best estimate of the convergence point. This 
can be accomplished by fitting planes to the vectors defining each remagnetization 
circle by the method of least squares, and then repeating the process on vector 
normals to these planes. The technique, described below, is a special case of least 
squares fitting a plane to a set of data points (e.g. Blow 1959), and is an extension of 
the method outlined by Creer (1962) for finding the best-fitting great circle through a 
number of points on a sphere. 

The least-squares method 

Let V be the unit normal vector to a plane of remagnetization. Thus 

v =  I V, 

where V,, V, and V3 are the vector elements. Similarly if Ui are the measured mag- 
netization vectors which define the remagnetization plane, 

where Ui, etc. are the vector elements which are known from the measured inclina- 
tions and declinations, and i = 1,2, ..., N ,  N being the number of vectors. We wish 
to find the direction of the normal to the remagnetization plane such that the sum 
of squared deviations C pi2 of the vectors Us from the plane is a minimum. In terms 
of V and Ui, pi = Ui .V. We therefore wish to minimise the quantity G = C (U,. V)’. 
G cannot be immediately minimized by setting its partial derivatives with respect to 
V,, V, and V3 equal to zero and solving the equations because V,, V, and V3 are not 
independent quantities. Since the length of V must be held constant during the 
optimizing process the quantity H = V,2+V,2+V3;2 must be a constant. The 
problem is solved using the Lagrange Multiplier Rule to form the three Euler 
equations : 

N 

I =  1 N 

i = l  

aG aH aG aH aG atz 
av, av, av, av, av, av, 
- -A- -0,  - -2- = O ,  and - -1- = O  

where A. is a constant known as the Lagrange Multiplier. These equations reduce to 
the following matrix equation (M-AI)V = 0 where I is a unit matrix and M is a 

real symmetric matrix formed by the terms mJk = C (UiJUik) where j and k both 

take values from 1 to 3. The problem, which consists of finding the eigenvalues 1, and 
their corresponding eigenvectors vk €or the matrix M, is solved using a standard 
FORTRAN computer program (EIGEN) from the IBM Scientific Subroutine Package 
(SSP). The three eigenvectors define normals to three orthogonal planes, one of which 
is the least squares plane. It can be shown from the three Euler equations that the 
values of Ak equal the sum of the squared deviations of the vectors U, from each of the 
three planes i.e. C p: . The minimum value of the together with its corres- 

N 

i= 1 

N 

( i = 1  1 
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ponding eigenvector thus yield respectively the least sum of squared deviations and 
the direction of the normal to the least squares plane. 

Once the direction of the least squares normal has been found for one remagnetiza- 
tion plane, the process is repeated for all others obtained from different samples. A 
samplelsite normal can then be defined by finding the direction of the resultant of all 
specimen/sample normals. If all the remagnetization circles tend to converge as 
shown in Fig. 3(a), their normals will be distributed along a great circle, i.e. they will 
tend to lie within a single plane. The normal to the least-squares plane fitted to these 
normals by the method described above will then define the line of intersection of all 
the remagnetization planes and hence the direction of one of the remanence com- 
ponents. The procedure is shown schematically in Fig. 3(b). 

Applications of the method 

The use of remagnetization circles to find the direction of a secondary remanence 
is illustrated for a case where the vector subtraction method fails. The example is 
taken from a study of late Precambrian Keweenawan lavas and feeder dikes from the 
Slate Islands in northern Lake Superior (Halls 1975). More than 60 specimens, each 
representing a different sample collected from 12 palaeomagnetic sites, yielded upon 
AC cleaning above 100 Oe, successive magnetization vectors which defined segments 
of remagnetization circles. Before structural unfolding all the circles converged upon a 
point whose pole (or antipole), given by the least-squares method, specifies the 
orientation of the common intersection line of all the remagnetization planes. 
Structural diversity is insufficient to permit use of the method shown in Fig. 2 to 
resolve uniquely the relative age and directions of the two components. Palaeomag- 
netic data in addition to those defining the orientation of the remagnetization circles 
are thus needed. In the present example a small number of specimens attained stable 
end-points on magnetic cleaning (Fig. 3(a)). After structural unfolding all these 
points group more tightly in the SE quadrant of the stereonet and yield a mean 
direction within 10" of that found for reversely magnetized Keweenawan igneous 
rocks elsewhere around Lake Superior (e.g. Palmer 1970; Halls 1974). The stable 
end-points in Fig. 3(a) thus record the direction of the primary remanence before 
unfolding and do not merely reflect stages in the AC cleaning process at which further 
differentiation between the two components was not possible. Hence the convergence 
point in Fig. 3(a) represents the pole of the secondary component, rather than its 
antipole, because as shown in Fig. 2 data points defining remagnetization circles must 
lie between the primary and secondary directions. 

The convergence of circles in Fig. 3(a) is only in part due to structural diversity. 
The two groups of primary directions with declinations (D) approximateIy 180" and 
90" are respectively from volcanics which dip 40+ 10" SW and vertical diabase dikes 
some three miles distant which appear unrotated. However circle convergence is 
also apparent within these two groups, especially the one with D 5 180". Here the 
primary dispersion is principally due to variations in remanence directions between 
flows and hence is likely caused by secular variation. In comparison, the secondary 
dispersion must be very much less, otherwise convergent circles would not be 
observed. A possible reason for this anomalously low dispersion is that the secondary 
component was acquired in a time interval short compared to periods of scatter- 
inducing secular variation. The origin of such a rapidly-formed remanence is ascribed 
to the passage of a shock wave generated by a meteorite impact which occurred on the 
Slate Islands sometime after the Keweenawan volcanics were erupted and tilted 
(Halls 1975). All the rocks on the Slate Islands, which range in age from Archean to 
Keweenawan, are locally shatter-coned and cut by breccia dikes carrying shatter- 
coned fragments. Preliminary palaeomagnetic results on the breccias yield single, 
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180' 
FIG. 3. Diagram 3(a) is a Wulff stereonet showing remagnetization circles obtained 
after AC demagnetization on samples of Late Precambrian igneous rocks from 
the Slate Islands, northern Lake Superior (after Halls 1975). The solid portions 
of circles are defined by data; the dashed parts are extrapolated. Arrows indicate 
direction of vector movement on stepwise cleaning. The diagram includes only data 
from specimens which attained stable end-points. These points are upward mag- 
netizations and are shown as open circles. The large open circle is the approximate 
area of great circle convergence. The data have not been structurally unfolded. 
The inset diagram 3(b) illustrates schematically the principles behind the least 
squares method. Three remagnetization planes ( 1 , 2 , 3 )  intersect along the line AB. 
These planes are least squares fits of vector sets which define successive magnetiza- 
tion directions obtained on stepwise cleaning. Only one set ( U l ,  i = 1 to 4) for 
plane 1 is shown. The vector normals to the planes 1 , 2  and 3 are respectively V1, 
Vz and VJ. The normal to the least-squares plane through Vl, Vz and V3 thus 
lies along AB. If U4 is a stable end-point corresponding to the direction of one of 
the remanence components, then the vector OA gives the direction of the other 

component. 

stable magnetization directions within about 10" of that given by the convergence 
point in Fig. 3(a). 

Since the direction of both magnetization components in Fig. 3(a) is known and 
the magnitude and direction of the resultant is measured after successive cleaning 
stages, demagnetization curves for both components can be obtained. Mean curves 
for the 13 specimens in Fig. 3(a) are presented in Fig. 4 and indicate demagnetization 
of both components simultaneously until ultimate removal of the softer secondary 
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AC FIELD (OERSTED x 100) - 
FIG. 4. Average demagnetization curves for the primary and secondary components 
derived from the data in Fig. 3(a). Results below AC fields of 100 Oe are not 
shown because in this range a third component of magnetization is often present 

in the specimens. 

one at AC fields of about 600-700 Oe. This situation corresponds to that shown in 
Fig. l(d) which explains why the direction of the secondary component could not be 
recovered using vector subtraction. 

Convergent great circles are observed in many other fields of study besides 
palaeomagnetism, including for example structural geology, plate tectonics and 
astronomy. In structural geology the direction of a cylindrical fold axis is given by 
the common intersection point of great circles defined by measured tangent planes 
to the folded surface (Ramsay 1967). Likewise the rotation pole of lithospheric 
plates is found from the intersection point of great circles drawn perpendicular to 
transform faults (Morgan 1968). In astronomy the movement direction of a star 
cluster can be obtained by finding the convergence point of observed individual star 
trajectories projected onto the celestial sphere (e.g. Hogg 1959). A least-squares 
method to find the best intersection point is thus common to all these problems. 
While the method described above has undoubtedly been used in these types of studies 
it does not seem to have been fully exploited in palaeomagnetism. Furthermore, 
alternative but less rigorous methods have been described (e.g. Ramsay 1967) which 
yield solutions for least-squares planes which are not independent of the choice of 
reference axes, and which can also lead to large errors in the position of the best 
convergence point if great circle planes are used which intersect at small angles. 
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A further aspect of the least-squares method is that the eigenvector corresponding 
to the maximum eigenvalue defines the direction of a line from which the sum of 
squared deviations of all the vectors Ui is a minimum. This line would thus represent 
the best direction for a magnetization which was measured from a site population 
which included both normal and reversed polarities. Another use of the maximum 
eigenvalue would be in the directional analysis of fabric elements in rocks, such as 
fold axes, lineations, and normals to foliation planes. 

A statistical analysis of the least-squares method is presently under study so that 
confidence limits can be assigned to a magnetization direction obtained from converg- 
ent great circles. 

A FORTRAN computer program which performs the least-squares calculation is 
available from the author by request. This research was supported by Grant A7824 
from the National Research Council of Canada. The author is indebted to Dr Y .  
Lamontagne, Department of Physics, University of Toronto, for many helpful 
discussions. 
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