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Abstract. We give an O(IF(G)l)-time algorithm to assign vertical and horizontal 
segments to the vertices of any bipartite plane graph G so that (i) no two segments 
have an interior point in common, and (ii) two segments touch each other if and 
only if the corresponding vertices are adjacent. As a corollary, we obtain a 
strengthening of the following theorem of Ringel and Petrovi~. The edges of any 
maximal bipartite plane graph G with outer face bwb'w' can be colored by two 
colors such that the color classes form spanning trees of G -  b and G -  b ' ,  
respectively. Furthermore, such a coloring can be found in linear time. Our method 
is based on a new linear-time algorithm for constructing bipolar orientations of 
2-connected plane graphs. 

1. Introduction 

Throughout  this paper  we consider only finite graphs G without loops, but we allow 
multiple edges. If  G has no multiple edges, then it is called a simple graph. A graph 
is 2-connected if it cannot be disconnected by the removal of a vertex. 

Let  G be a directed graph obtained by orienting the edges of G. A vertex of t~ is 
said to be a source (sink) if its indegree (outdegree) is 0. G is acyclic if it contains no 
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oriented cycle. For any partition of the vertex set V(G) = V 1 u 1/2, the family of 
edges between V 1 and V 2 is said to form a cocycle (or an oriented cut) if all of  them 
are oriented toward V 2. 

The following concept was introduced by Lempel et al. [LEC] to design an 
efficient planarity-testing algorithm. It plays a crucial role in many problems about 
graph drawings, motion planning, visibility, and incidence relations between geomet- 
ric objects, etc. [EET], [FMR], [FPP], [FRU], [OW], [P2], [R2], [R3], [RT], [T1], IT2], 
[TF1], [TF2]. 

Definition 1.1. Given an edge g = J~ of  G, we say that the orientation of G is 
g-bipolar (or defines an st-ordering) if: 

(a) G is acyclic, and 
(b) s and t are the unique source and sink of G, respectively. 

We also use another equivalent form of this definition (which can easily be 
extended to matroids). 

Lemma 1.2. Given an edge g o f  G, the orientation of  G is g-bipolar if  and only if: 

(a')  every edge of  G belongs to a cocycle, and 
(b') every cocycle of  G contains g. 

Proof. Obviously, (a ')  implies (a). Conversely, if G is acyclic and g'  = ~ is any 
edge, then let V 2 be the set of all vertices that can be reached from t '  by a directed 
path, and let V 1 = V((~) - V 2. Then all edges between V 1 and V 2, including e", are 
oriented toward V2, thus (a')  holds. 

To show that (b) implies (b') for any acyclic digraph G, it is enough to observe 
that, if a partition V(G) = V 1 u V 2 defines a cocycle, then V 1 and V 2 must contain a 
source and a sink, respectively. Thus, s ~ V 1 , t ~ V 2, and g = ~ belongs to this 
cocycle. Conversely, if an acyclic digraph satisfies (b') with g = ~ then, for any 
source x (and sink y), the collection of  edges incident to x (y) forms a cocycle. 
Consequently, g is incident to both x and y. Hence, x = s, y = t, and (b) holds. []  

Corollary 1.3. I f  G has an g-bipolar orientation, then it has no two cocycles such that 
one contains the other. 

Proof. Let E and E '  be two cocycles of G defined by the partitions V 1 u V 2 and 
1/1' u 1/~, respectively, where s ~ V 1 o V[ and t ~ V 2 n V~. Suppose without loss 
of generality that W 1 = 1/~ n V 2 4= 0 .  If E___E', then W 1 and W 2 = V(G)  - W 1 
define a cocycle which does not contain g = sT, contradicting condition (b') in 
Lemma 1.2. []  

If  G has an g-bipolar orientation, then its underlying graph G (obtained by 
disregarding the orientation of the edges) is obviously 2-connected. Indeed, if G fell 
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into two components G 1 and G 2 by the removal of a vertex x, then, by the acyclicity 
of G, both parts of G induced by V(G 1) U {x} and V(G 2) U {x} would contain a 
source and a sink, contradicting condition (b) of Definition 1.1. 

On the other hand, it is easy to see that, given any 2-connected graph G and any 
edge e = st, an Y-bipolar orientation of the edges of G exists with Y = gL Moreover, 
Even and Tarjan [ET] devised a linear-time algorithm to find such an orientation, 
which has been subsequently simplified by Ebert [E] and Tarjan IT2]. 

In Section 2 of this paper we propose an equally fast but much simpler greedy 
algorithm based on Whitney's theorem [W] to find bipolar orientations of 2- 
connected plane graphs. 

A plane graph is a planar graph embedded in the plane (or in the sphere) so that 
its edges are represented by simple noncrossing Jordan arcs. If a plane graph G with 
at least three vertices is 2-connected, then its dual graph G* can be defined as 
follows. Put a vertex of G* in each face of G and, if two faces meet along an edge f, 
then connect the corresponding two vertices by an arc f* crossing f. (It is well 
known and easy to see that this construction can be carried out so that we obtain a 
plane graph G*. By the 2-connectedness of G, G* has no loops, but it may have 
multiple edges.) Any orientation of G induces a dual orientation of G* in a natural 
way: we obtain the orientation of f* from that of f by a clockwise turn. 

Theorem 1.4. Let G be an Y-bipolar orientation of a 2-connected plane graph with at 
least three vertices, and let G* denote its dual graph with the dual orientation. Then the 
directed graph G* obtained from G* by reversing the orientation of Y* is Y*_-bipolar 
oriented, where ~*_ and Y* are opposite orientations of the same edge. 

Proof. We show that G*_ satisfies conditions (a') and (b) of I_emma 1.2 and 
Definition 1.1, respectively. 

Let G_ denote the digra~oh obtained from G by changing the orientation of Y = 
s~ to d_ = gL Any edge of G can be extended to a directed path in G connecting s 
to t. Thus, any edge f ~  E(G_)  belongs to a (simple) cycle of G_ passing through 
~'_. The edges of G*_ crossing this cycle form a cocycle containing f*  (and Y*), 
which proves (a'). 

Suppose, for contradiction, that G*_ does not satisfy (b). Let s* and t* denote the 
endpoints of Y*_ (0'* = s*-~t ), and assume without loss of generality that G*_ has a 
source x different from s*. Clearly, x 4: t*. Those edges of G_ which cross an edge 
incident to x form a cycle. Since this cycle does not use the arc e, this would also be 
a cycle in G, a contradiction. [] 

As any graph which has a bipolar orientation is 2-connected and vice versa, 
Theorem 1.4 immediately implies that the dual of a 2-connected plane graph is also 
2-connected. 

In Section 3 we apply the above concepts and results to obtain the following 
theorem. 
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Theorem 1.5. A linear-time algorithm exists which assigns vertical and horizontal 
segments to the vertices of any bipartite plane graph G so that: 

(i) No two segments have an interior point in common. 
(ii) Two segments touch each other if and only if the corresponding vertices are 

adjacent in G. 

Note that if the black and white vertices of a bipartite (2-colored) graph G can be 
represented by vertical and horizontal segments, respectively, satisfying conditions (i) 
and (ii), then G is necessarily planar. 

We say that a graph G has a segment representation if its vertices can be 
represented by segments in the plane so that two segments cross each other if and 
only if the corresponding vertices are adjacent. It was shown in [HNZ] that any 
bipartite planar graph can be represented in such a way. Note that this fact is an 
immediate corollary to Theorem 1.5. However, it is not known whether every planar 
graph admits a segment representation. 

Definition 1.6. A bipartite plane graph is called a quadrilateralization if it contains 
no multiple edges and each of its faces has four edges. 

It is easy to see that every quadrilateralization is 2-connected. 
Given a bipartite plane graph, in linear time we can remove all multiple edges (by 

lexicographically bucket-sorting all edges with respect to their endpoints). Then we 
can use any naive linear-time algorithm to extend the remaining graph to a 
quadrilateralization, by adding edges and vertices. Thus, it is sufficient to prove 
Theorem 1.5 for quadrilateralizations. 

Definition 1.7 [R1]. Let H be a connected plane graph. Triangulate every face f of 
H from one of its interior points xf  (by connecting xf to the vertices of f ) ,  and 
delete all edges belonging to H. The resulting graph A ( H )  is called the angle graph 
of H. 

Remark 1.8. Let H be a connected plane graph. Then A ( H )  is a quadrilateraliza- 
tion if and only if H is 2-connected. 

On the other hand, every quadrilateralization can be obtained as the angle graph 
of some 2-connected plane graph. 

Lemma 1.9. Let G be a quadrilateralization whose vertices are colored black and 
white. For every face f of G, connect its two black (white) vertices by an edge within f. 
The graph G b (G w) formed by these edges is called the graph of black (white) diagonals 
of G. Then 

A(G b) = A ( G  w) = G .  

Corollary 1.10. G b and Gw are 2-connected plane graphs, dual to each other. 

Proof. Immediately follows from Remark 1.8. [] 

For some related results, see [DLR] and [TF3]. 
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In Section 4 of this paper we apply our technique to give a simple alternative 
proof of a theorem of Ringel JR1] and Petrovi~ [P1] on quadrilateralizations (see 
Corollary 4.1). 

2. Greedy Algorithm for Bipolar Orientation 

2.1. The General Scheme 

Let G be any 2-connected graph with n vertices and m edges. For any edge st of G, 
G has a Whitney decomposition into handles, i.e., there is a nested sequence of 
subgraphs G O = {st} c G 1 c G 2 c ... c G k = G such that Gi+ 1 c a n  be obtained 
from G i by the addition of a simple path P,+t which has only its endpoints in 
common with G i. 

First we present a simple general algorithm which maintains a total ordering of 
the vertices of  G i such that every Pj ( j  < i) forms a monotone chain. Directing every 
edge of G toward its larger endpoint in the final ordering, we obtain an st-ordering 
(bipolar orientation) of  G. In fact, our algorithm will also maintain the orientation 
of the edges of  G i compatible with the ordering of its vertices. 

Suppose that we have already found a sequence of subgraphs Gj (j  < i) with the 
above properties, and that the vertices of G i are totally ordered by a linked list 
called "LINK." Assume further that all edges of Gi are oriented toward their higher 
endpoints in this order, and every ~ (j  < i) forms an oriented path. A vertex 
x ~ V ( G  i) is said to be saturated, if all edges of G incident to x belong to Gi. Step i 
(i >_>_ 0) of our algorithm consists of  three parts: 

(1) Find the first unsaturated vertex x ~ V(G~) on the list LINK. 
(2) Find a simple path Pi+l in G -  G~ connecting x to some other vertex 

y E V ( G i )  such that no internal point of Pi+l belongs to V ( G ) .  Orient the 
edges of P~§ from x toward y. 

(3) Insert the internal vertices of Pi+ 1 in the list LINK between x and LINK[x], 
i.e., immediately after x. 

If we cannot execute (1), i.e., all vertices of G i a r e  saturated, then G~ = G and 
our algorithm ends. Otherwise, let x '  be any neighbor of x such that the edge xr '  
does not belong t o  G i. If x '  ~ V ( G i ) ,  then x '  is also unsaturated, so x precedes x '  
on the list LINK. In this case, Pi§ consists of the single edge xx' oriented from x 
to x ' ,  and (3) is void. If  x '  q~ V(Gi) ,  then it follows from the 2-connectedness of G 
that it can be connected to some y ~ V ( G i ) ,  y -~ x, by a simple path in G - G i . 

Obviously, x precedes y on the list LINK, so in this case we can execute (2) and (3) 
without adding any edge oriented backward with respect to the revised LINK list, 
and we can pass to the next step. 

Note that in the last part of Step i, when we revise the LINK list, we do not add 
any elements below x. Since all elements preceding x have already been saturated in 
G~, when we come to part (1) of Step i + 1, we do not have to check any member of 
LINK before x. 
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To execute part (2) of Step i, we can use depth-first search on G - G i ,  starting at 
x and stopping when we hit the first vertex y ~ V ( G i ) .  We put every edge e of the 
tree visited during the search in a (last-in, first-out) stack, and remove e if we have 
to "backtrack" along it. At the end of the search, the edges remaining in our stack 
will form a simple path Pi+l - G - G i meeting the requirements. However, unless 
we are lucky, this procedure may take I ) ( I E ( G  - Gi)D time, and, summing over all 
0 < i < k, the total running time of our algorithm can be as large as l ) ( k m ) .  

2.2. The  P lanar  Case 

If G is a plane graph, then the above algorithm can be implemented in O ( m )  time. 
Suppose that, for every vertex v, we are given the clockwise circular order of 
the edges incident to v. We follow the same scheme as in the general case. To 
execute part (2) of Step i, we use the following method that can be called "left-first 
search." 

Whenever we orient a new edge f toward one of its endpoints z, then we set 
IN[z] = f. Furthermore, let IN[s] = st.  

Assume that we have already finished part (1) of Step i, i.e., we have found the 
first unsaturated vertex x ~ V ( G  i) on the list LINK. Starting from x 0 = x, we 
construct the path Pi+l  = XoXlX2 . . .  as follows. For every j > 0, let x j x j +  1 be the 
first unoriented edge incident to xj, which follows IN[xj] in the clockwise order. 
Orient x j x j +  1 from xj toward xj+ 1. If xj+ 1 ~ V ( G i )  , then it is the last point of 
P i + l ,  and part (2) of Step i has been completed. 

To prove that this construction is correct, it is enough to check that xj+ 1 :~ xh for 
any h < j .  However, this is true, otherwise XhXh+ 1 . . .  Xj+ 1 would bound a face of 
G, and x j x j +  1 = x hx j  would precede x h x  h +1 in the cyclic order of edges around Xh, 

contradicting the choice of x h +1. 

It remains to show that our algorithm can be implemented in linear time. To this 
end, whenever we orient an edge z T ,  then we introduce a pointer NEXT[z]  
pointing to the edge that follows immediately after z z '  in the clockwise order of 
edges incident to z. 

L e t  x = x o ~ V ( G  i) be the first unsaturated vertex on the list LINK at the 
beginning of Step i of the algorithm. According to te above rule, next we have to 
find the first unoriented edge XoX 1 which comes after IN[x 0] in the clockwise order 
of edges incident to x 0. However, this can be accomplished in constant time, 
because XoX 1 = NEXT[x0]. To prove this, it is enough to notice that the edges 
oriented toward x 0 at the beginning of Step i form a single block in the clockwise 
order of  edges incident to x o, whose last element is the edge along which x 0 has 
been visited for the first time. 

Note that the same algorithm can be used to find a Whitney decomposition (and 
a bipolar orientation) of any cellular graph. 

Definition 2.1. A graph G that can be embedded in an oriented 2-manifold E is 
called cellular, if it divides E into connected components so that each of them is 
topologically equivalent to a disk. 
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3. Bipartite Plane Graphs 

In this section we prove Theorem 1.5. As we have pointed out in the Introduction, 
we can assume that G is a quadrilateralization (see Definition 1.6), whose vertices 
are colored black and white. Let G b and Gw be the graph of black diagonals and the 
graph of white diagonals of G, respectively (see Lemma 1.9). Furthermore, let 
s b, S w , t  b, t w denote the vertices of the outer face of G, listed in clockwise order 
(sb,tb G V(Gb); sw, tw ~ V(Gw)). 

By Corollary 1.10, G b is 2-connected, so we can use the algorithm described in 
Section 2.2 to find an sbtb-ordering (bipolar orientation) of G b. That is, in linear 
time we can number the black vertices b 1 = s b, b 2, b3 ,  . . . ,  bp = t b so that, orienting 
every edge of G b toward its endpoint of larger index, we obtain an sbtb>-bipolar 
orientation G b . 

Gb induces a dual orientation Gw on G w. By Theorem 1.4, reversing the 
) . 

orientation of the edge twS ~ ~ Gw, we obtain an Swt w -bipolar orientation Gw. 
Using topological sorting, we can easily find a numbering of the white vertices 
w I = s w, W z , W  3 . . . . .  Wq = tw such that every edge of Gw is oriented toward its 
endpoint of larger index (p  + q = [V(G)[). 

For any black point b i (1 < i < p), let V i be a vertical segment in the plane, 
whose endpoints are (i, minb,w,~a j ) a n d  (i, maXb,wj~a j). Similarly, to any white 
vertex wj (1 < j  _< q), we assign a horizontal segment Hi, whose endpoints are 
(minbiw, E~ i, j )  and (maXb,wj~C i , j ) .  We claim that this collection of segments 
meets the requirements of Theorem 1.5. 

It is clear by the definition that all segments are contained in the rectangle 
enclosed by V 1 , H a , Vp, H q ,  and that each of these four segments is in contact with 
exactly those segments which correspond to its neighbors. 

Let us now fix a black point bk ,  1 < k < p ,  and let B 1 = {bili  < k},  B 2 = {bi[i > 

k}. Clearly, the edges connecting B 1 to B 2 U {b k} form a cocycle E 1 in Gb, and the 
edges connecting B 1 I,.) {bk} to  B 2 form another cocycle E 2 . Since all cocycles of Gb 
are minimal (by Corollary 1.3), the edges of Gw intersecting some element of E 1 
(E 2) form a (minimal) oriented cycle C 1 (C 2) passing through tw-~%. Deleting the 
edge twS w' from C 1 and C 2, we obtain two simple oriented paths P1 and P z ,  

respectively, connecting Sw to t w in (~w. It is easy to see that b k is the only black 
vertex enclosed by P1 and P2. Indeed, if there were another v e r t e x  b i (i  < k ,  say) 
with this property, then all vertices along an oriented path connecting b 1 = s b to  b i 

in (~b would belong to B 1, hence this path could intersect neither P1 nor P2, 
contradiction. On the other hand, since P1 and P2 are not identical, they must 
enclose at least one black vertex. 

Thus, starting from s~, P1 and P2 are identical up to a point s ' .  Then they split 
up, and meet again at some point t ' ,  from which they run together to their common 
endpoint tw. Let P~ and P~ denote the parts of P1 and P2, respectively, connecting 
s" to t ' .  Since all edges of G b intersecting some edge of P~ (P~) must end (start) at 
b k,  we obtain that all vertices of P~ U P~ are adjacent to b k in G. Moreover, bk does 
not have any other neighbor not belonging to P~ U P~. 

Let W 1 (W 2) denote the set of white points, all of whose black neighbors are in 
B~ (B2). If a white point w does not belong to W~ u W2, then it must be a vertex of 
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Px or P2. Indeed, if w ~ W 1 t3 W2, then it has two consecutive neighbors b and b '  
such that, say, b ~ B x and b '  ~ B~. However, then b-~ belongs to the cocycle E 1 in 
d b, so the edge of Gw crossing b-~ belongs to P1, and one of its endpoints is w. 

Let wj (1 < j < q) be a white vertex, and let Hj be the corresponding horizontal 
segment. 

Case 1: bkwj ~ G. Then wj ~ W 1 U W 2 or wj is an internal vertex of P1 n P2. 
If wj belongs to (say) W1, then maxb,wj ~ G i < k. So Hj is to the left of V k, and 

njnv =O. 
Suppose next that wj belongs to (say) the portion of P1 •/ '2 lying strictly 

between s w and s~. Then j is smaller than the index of any white neighbor of bk, 
because all of these neighbors belong to P~ U P~ and can be reached from wj by an 
oriented path in Gw (along P1 or P2)- Thus, /-/j- is below V k , and Hj n V~ = O. 

Case 2: bkw j E G. Then wj belongs to P~ U P~. 
If wj = s w (or tw), then wj has the smallest (largest) index among all white 

neighbors of b k, so the lower (upper) endpoint of V k lies on Hi. Moreover, V k has 
to touch Hj at one of its interior points, because wj must be adjacent to at least one 
black vertex whose index is smaller than k and to another one whose index is larger 
than k. 

Suppose next that wj is an internal point of (say) P~. Then the right endpoint of 
Hj is an interior point of Vk. 

This shows that the vertical and horizontal segments assigned to the vertices of G 
satisfy the conditions of Theorem 1.5. We have also proved that the only pairs of 
segments that share an endpoint are {I"1, Hi}, {H 1 , l/p}, {Vp, Hq}, and {Hq, ~} .  
Consequently, the segments Vii and Hj (1 < i _<_ p, 1 < j < q) determine a tiling of 
the rectangle bounded by V 1 , H 1 , Vp, Hq with smaller rectangles. In a forthcoming 
paper [FMP], we prove Theorem 1.5 by induction. 

4. Partition into Trees 

The aim of this section is to show that the following theorem of Ringel [R1] and 
Petrovi~ [P1] can be easily deduced from the above results. 

Corollary 4.1. Let G be a quadrilateralization, and let sb , Sw, tb, t w denote the vertices 

o f  the outer face o f  G, listed in clockwise order. Then the edge set o f  G can be 

partitioned into two parts, forming a spanning tree of  G - s b and G - tb, respectively. 

) . ) . 

Consider the Sbt b -bipolar orientation of G b and the Swt w -bipolar orientation of 
G w constructed in the previous section. 

I~mma  4.2. An ordering v 1 = Sb, V2, U3 . . . . .  U n = tb o f  the vertex set o f  G exists, 
. . . .  ) ~ . . . 

whtch ts compattble wtth the above S b t  b - and Swt w -bzpolar onentattons and satisfies 
the condition that every v i (1 < i < n) is adjacent to at least one larger and one smaller 

element. 
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Proof. As in the previous section, assign to every vertex v ~ V(G)  a vertical or 
horizontal segment with endpoints (xl(v),  yl(v))  and (x2(v), y2(v)), where xl(v)  <_ 
x2(v), yl(v)  <_ y2(v). For any pair of  adjacent vertices v, v' ~ V(G)  different from s b 
and t u, let v <_ v' if and only if x2(v) < x~(v') or y2(v) < yl(v ') .  Furthermore, let s b 
be smaller and let t b be larger than any other element of V(G). It is not hard to 
check that this relation defines a partial order on V(G) compatible with the partial 
orders on V(G b) and V(Gw) induced by the corresponding bipolar orientations. 
Therefore, these three relations have a common extension into a total order of 
V(G). (It can also be shown that this total order is uniquely determined.) []  

Now we can finish the proof of  Corollary 4.1 as follows. For any black vertex 
v i ~ V(Gb), let S/ denote the vertical segment whose endpoints are (i, min~,~. ~ c J) 
and (i, maxv,~j~ ~ j). For any white vertex vj ~ V(Gw), let Sj denote the horizontal 
segment with endpoints (min~,v,~c i , j )  and (max,. ~,~a i , j ) .  Clearly, two such 
segments touch each other if and only if the corresi~onding vertices are adjacent. 
Moreover, by Lemma 4.2, every segment S i (1 < i < n) will cross the line y = x. 

Color every edge vic ). ~ G by red or green according to whether the point of 
incidence of S i and Sj lies above or below the line y = x. Then the red and green 
edges form a spanning tree of G - v 1 and G - Vn, respectively. This completes the 
proof of Corollary 4.1. 

Assume that there is an enumeration vl , v 2 , . . . ,  v, of the vertices of a graph G 
and a coloring of its edges with c colors such that each color class can be "drawn on 
a page," that is, there are no two edges of the same color, vhv j and UiUk, with 
h < i < j < k. The smallest number c for which such a representation exists is called 
the page number of G. Notice that the total order of V(G) described in Lemma 4.2 
and the red-green  coloring defined above also yield the following result. 

Corollary 4.3. The page number o f  any quadrilateralization G is at most two. More- 
over, the edges o f  G can always be drawn on two pages so that each page contains a tree. 
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