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We present a hierarchical Bayesian model (HBM) to estimate the growth parameters, production,
and production over biomass ratio (P/B) of resident brown trout (Salmo trutta fario) populations.
The data which are required to run the model are removal sampling and air temperature data which
are conveniently gathered by freshwater biologists. The model is the combination of eight submodels:
abundance, weight, biomass, growth, growth rate, time of emergence, water temperature, and pro-
duction. Abundance is modeled as a mixture of Gaussian cohorts; cohorts centers and standard
deviations are related by a von Bertalanffy growth function; time of emergence and growth rate are
functions of water temperature; water temperature is predicted from air temperature; biomass,
production, and P/B are subsequently computed. We illustrate the capabilities of the model by
investigating the growth and production of a brown trout population (Neste d’Oueil, Pyrénées,
France) by using data collected in the field from 2005 to 2010.

Keywords: Growth; Hierarchical Bayesian model; Production; Removal sampling; Salmo
trutta.

1 Introduction

In order to evaluate, compare, and predict the status of fish populations, freshwater biologists have
considered numerous descriptors of fish populations. Such variables can characterize fish stocks
(Pauly and Moreau 1997; Kwak and Waters 1997; Ruiz and Laplanche 2010) duration and rates of
success through life-history stages (Hutchings 2002, Klemetsen et al., 2003), phenotypic or geno-
typic traits (Ward, 2002; Shinn, 2010). Descriptors of fish populations can be examined separately,
depending on the population aspect under focus. For instance, the impact of surface water con-
tamination by pesticides on fish can be investigated by assessing DNA damage to blood cells
(Polard et al., 2011). Aquatic resource management would rather focus on fish stock variables, such
as abundance (number of fish per unit area of stream), biomass (mass of fish per unit area),
production (mass of fish produced per unit area per unit time), or production over biomass ratio
P/B (Pauly and Moreau, 1997). The drawback of examining a single population variable is its
limited, descriptive prospect. A countermeasure would be to relate a population variable to cov-
ariates, e.g. environmental variables or descriptors of coexisting populations. As an illustration,
growth of salmonids has been related to environmental factors such as temperature (Mallet et al.,
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1999) and stream flow (Jensen and Johnsen 1999; Daufresne and Renault, 2006). Descriptors of a
population can also be examined jointly. The examination of multiple variables has a more potent,
explicative prospect and could improve our understanding of population dynamics (Nordwall et al.
2001).

Brown trout (Salmo trutta) is indigenous to Eurasia. Brown trout has been introduced to non-
Eurasian freshwaters for fishing purposes. It can either grow in oceans and migrate to freshwaters
for reproduction (S. trutta trutta), or live in lakes (S. trutta lacustris), or be stream-resident (S. trutta
fario). As a result of such adaptation capabilities, brown trout has successfully colonized fresh-
waters to a world-wide distribution (Elliott, 1994; Klemetsen et al., 2003). Although ecologically
variable, brown trout is demanding in terms of habitat and water quality. As a result, brown trout is
a relevant bioindicator of the quality of freshwaters at a global scale (Lagadic et al 1998; Wood
2007). Moreover, a fundamental environmental variable driving brown trout life history is tem-
perature (Jonsson and Jonsson, 2009), hence using brown trout as a bioindicator of climate change.
Temperature affects growth (as aforementioned) as well as life-stage timing (Webb and McLay,
1996; Armstrong et al., 2003). Key life-stages of brown trout are egg laying (oviposition), hatching
of larvae, emergence of fry, reproduction of adults, and death. In our case, we will focus on the
effect of temperature on growth and on time between oviposition and emergence of riverine brown
trout (S. trutta fario). We will also consider several variables characterizing stocks (abundance,
biomass, production).

Abundance of riverine fish species is conveniently assessed through removal sampling: (i) a reach is
spatially delimited (later referred to as a stream section), (ii) fractions of fish are successively removed
of the section by electrofishing and counted, (iii) captured fish are released altogether (Lobón-Cerviá,
1991). Abundance is typically computed by using the method suggested by Carle and Strub (1978): the
main statistical assumption was that the probability of capturing fish (referred to in the following as
catchability) would be equal for all fish. Some contributions have shown, however, that the use of
more advanced statistical models is recommendable in the aim of lowering estimation bias (Peterson
et al., 2004; Riley and Fausch, 1992). The trend is to construct such statistical models within a
Bayesian framework (Congdon, 2006). Recent hierarchical Bayesian models (HBMs) relate abun-
dance to environmental covariates (Rivot et al., 2008; Ebersole et al., 2009), include heterogeneity of
the catchability (Mäntyniemi et al., 2005; Do-razio et al., 2005; Ruiz and Laplanche, 2010), and can
handle multiple sampling stream sections (Wyatt, 2002; Webster et al., 2008; Laplanche, 2010). The
reason of popularity of HBMs over the last decade is their ability to handle complex relationships
(multi-level, non-linear, mixed-effect) between variables with heterogeneous sources (relationships,
data, priors) of knowledge. Freshwater biologists can statistically relate multiple descriptors of fish
populations together with covariates within a single HBM framework.

We present an HBM of riverine brown trout growth and production. Our primary objective is to
provide a layout to compute growth parameters of brown trout populations by using accessible data
(namely removal sampling and air temperature data). Our second objective is to use such a layout to
compute interval estimates of brown trout production. To fulfill the first objective, we extend the
abundance model of Ruiz and Laplanche (2010) with a growth module. The abundance model
performs a multimodal decomposition of length-abundance plots. Our growth module constrains
parameters of the multimodal decomposition with a growth function. The interest is twofold: to
guide the decomposition of length-abundance plots with a growth function and to use length-
abundance plots to estimate growth parameters. Ruiz and Laplanche (2010) also created a module
which computes fish biomass. To fulfill the second objective, we extend their biomass module with a
production model. The overall model is the combination of eight HBMs, three (abundance, weight,
biomass) related to the contribution of Ruiz and Laplanche (2010) and five to growth and pro-
duction (growth, growth rate, emergence, temperature, production), which are presented succes-
sively. We show the capability of the overall model to estimate the growth parameters and the
production of a brown trout population with a data set collected in the field. We discuss possible
extensions of the current model.



2 Materials and methods

2.1 Notations and measured variables

A single section (of area A, m2) of a stream populated with S. trutta fario is sampled by electrofishing.
Electrofishing is spread over several years in a series of O campaigns with Jo removals per campaign
(index over campaigns is o 2 f1; . . . ;Og). The number of campaign(s) per year as well as the number of
removal(s) per campaign can be variable. Time scale is daily, spans from January 1st of the year of the
first campaign to December 31st of the year of the last campaign, with a total of T days. Times of
campaigns are noted to (day). Let Co;j be the number of fish caught during removal j 2 f1; . . . ; Jog at
time to and Co ¼

P
j Co;j be the total number of fish caught at time to. The length and weight of the

caught fish are measured and are noted Lo;j;f (mm) andWo;j;f (g) (f 2 f1; . . . ;Co;jg). As done by Ruiz and
Laplanche (2010), fish are grouped by length class: Dl (mm) is the length class width, I is the number of
length classes, [(i �1)Dl, iDl [ are the classes (with [a,b[ denoting an interval including the lower limit a
and excluding the upper limit b), and Li5 (i�1/2)Dl are the class centers. Given class centers Li and fish
lengths Lo;j;f , the number of fish of length class i caught during removal j at time to can be computed and
is labeled Co;i;j (i 2 f1; . . . ; Ig). The air and water temperatures on day t are noted yat and ywt , respec-
tively (t 2 f1; . . . ;Tg). The measured variables of the HBM are fish length and weight (Lo;j;f andWo;j;f ),
catch (Co;i;j), stream section area (A), air and water temperatures (yat and ywt ). Constant (known)
parameters, free (unknown) parameters of interest, and remaining (unknown) nuisance parameters are
provided together in Tables 1–3, respectively.

2.2 Model structure

As briefly introduced, the overall HBM is the combination of eight submodels. Submodels are
interconnected as a consequence of sharing subsets of parameters, connections between submodels

Table 1 Values of constant parameters.

Parameter Notation Value Unit

Abundance
Area A 574.5 m2

Length class center Li – mm

Growth
Date of campaign to – day

Growth rate
Cardinal temperature ymin 3.6 1C
Cardinal temperature ymax 19.5 1C
Cardinal temperature yopt 13.1 1C

Emergence
Cardinal temperature y0 �2.8 1C
Cardinal temperature y1 22.4 1C
Date of oviposition tovio;k – day
Critical value CE50 76.2 day

Cardinal temperatures are minimum (ymin), optimum (yopt), and maximum (ymax) temperatures required for growth as well as

minimum (y0) and optimum (y1) temperatures required for hatching. CE50 is the critical value leading to the emergence of

50% of the fry. See text for values of multidimensionnal parameters (Li; to; tovio;k).



are illustrated in Fig. 1: abundance and growth submodels depend on common parameters (mo;k and
so;k, defined later), growth depends on the time of emergence and growth rate, these quantities
further depend on the water temperature, fish biomass is the cross-product of fish weight and
abundance, and the combination of growth and biomass parameters lead to production. Submodels
are also connected to subsets of measured variables: Fish weight (Wo;j;f ) is predicted from fish length
(Lo;j;f ), water temperature (ywt ) is predicted from air temperature (yat ), and abundance is related to
removal sampling catch (Co;i;j) plus stream section area (A). The model is structured into five levels :
campaign (o 2 f1; . . . ;Og), day (t 2 f1; . . . ;Tg), length class (i 2 f1; . . . ; Ig), removal (j 2 f1; . . . ; Jog),
plus an additional level, cohort (k 2 f1; . . . ;Kg), which is defined later. The temperature submodel is
dealt with in Appendix A (Supporting Infomation), remaining submodels are successively presented
below.

Table 2 Distributions of free parameters (priors).

Parameter Notation Prior Unit

Abundance
Abundance l Gamma(0.001,0.001) per m2

Cohort proportion t0k Uniform(0,1) –
Slope a Normal(0,1000) per mm
Intercept b Normal(0,1000) –
Precision 1=s2

l Gamma(0.001,0.001) per m2

Precision 1=s2
t Gamma(0.001,0.001) –

Precision 1=s2
a Gamma(0.001,0.001) per mm

Precision 1=s2
b Gamma(0.001,0.001) –

Growth
Optimal growth rate Gopt Lognormal(�7.25,0.30) per day
Asymptotic length LN Lognormal(6.23,0.30) mm
Length on tem1;1 �m0kjL1 Eq. (9) mm
Precision 1=s2

1 Gamma(0.001,0.001) mm
Precision 1=s2

0 Gamma(0.001,0.001) mm
Precision 1=s2

m Gamma(0.001,0.001) mm

Temperature
Maximum water temperature ay Normal(0,1000) 1C
Inflection by Normal(0,1000) 1C
Inflection gy Normal(0,1000) per 1C
Minimum water temperature my Normal(0,1000) 1C
Precision 1=s2

y Gamma(0.001,0.001) 1C

Weight
Allometric Z Gamma(0.001,0.001) g/L
Allometric z Normal(0,1000) –
Precision 1=s2

Z Gamma(0.001,0.001) g/L
Precision 1=s2

z Gamma(0.001,0.001) –
Precision 1=s2

W Gamma(0.001,0.001) –

Parameters are shape and rate for gamma distributions, expectation and variance for normal and lognormal distributions,

and boundaries for uniform distributions. Units which are provided with precisions (e.g. 1=s2
l) are units of respective

standard deviations (e.g. sl). Standard deviations are related to random errors across campaigns (sl, st, sa, sb, sZ, sz),

among individuals (sN, s0), and residual (sm, sT, sW).



Table 3 Definition of deterministic and stochastic� nodes.

Parameter Notation Expression Unit

Abundance

Population size� no;i no;ijlo;i;A � Poissonðlo;iAÞ –

Abundance lo;i Eq. (1) per m2

Weight to;k logitðt0o;kÞjtk;s
2
t � NormalðlogitðtkÞ;s2

tÞ –

Abundance� lo lo|l, sl
2
� Lognormal(l, sl

2) per m2

Abundance lo;i;k lo;i;k ¼ lo;i to;k per m2

Abundance lo;k lo;k ¼ loto;k per m2

Abundance lk lk 5 ltk per m2

Population size no;i;j no;i;j ¼ no;i;j�1 � Co;i;j�1 –

Catch� Co;i;j Co;i;j � Binomialðno;i;j ; po;iÞ –

Catchability po;i logitðpo;iÞ ¼ aoLi1bo –

Slope� ao ao|a,pa � Normal(a, pa) per mm

Intercept� bo bo|b,pb � Normal(b, pb) –

Growth

Length at emergence L0 L0 ¼ �m01 mm

Cohort center �mo;k Eq. (2) mm

Growth rate Gt Gt 5 GoptXt per day

Growth rate �Go;k Eq. (3) per day

Cohort center� mo;k Eq. (4) mm

Cohort standard deviation so;k Eq. (5) mm

Growth rate

Cardinal growth rate Xt Eq. (6) –

Emergence

Date of emergence temo;k Eq. (7) day

Temperature

Expected water temperature E[yt
w] Eq. (A.1) 1C

Water temperature� yt
w yt

w|E[yt
w],sy

2
� Normal(E[yt

w], sy
2) 1C

Weight and biomass

Weight� Wo;j;f Wo;j;f jZo; zo;Lo;j;f ;s2
W � LognormalðZoL

zo
o;j;f ;s

2
W Þ g

Allometric� Zo Zo|Z,sZ
2
� Normal(Z, sZ

2 ) g/L

Allometric� zo zo|z,sz
2
� Normal(z, sz

2) –

Biomass Bo;i;k Bo;i;k ¼ ZoL
zo
i e

s2
W=2lo;i;k g/m2

Biomass Bo;k Bo;k ¼
P

i Bo;i;k g/m2

Biomass Bo Bo ¼
P

k Bo;k g/m2

Production

Production Po;i;k Eq. (8) g/m2/day

Production Po;k Po;k ¼
P

i Po;i;k g/m2/day

Production Po Po ¼
P

k Po;k g/m2/day

Production over biomass ðP=BÞo;k ðP=BÞo;k ¼ Po;k=Bo;k per day

Production over biomass (P/B)o (P/B)o 5 Po/Bo per day



Figure 1 The overall model comprises eight submodels: Abundance, growth, growth rate, emer-
gence, temperature, weight, biomass, and production. Large frames with rounded corners: sub-
models with at least one stochastic node. Large frames with right corners: submodels with
deterministic nodes only. Within frames: levels, constant parameters (bold), free parameters. Light
filled rectangles: variables common to pairs of submodels. Dark filled rectangles: observed variables.
Full arrows: stochastic links. Dashed and dotted arrows: deterministic links. Parameters of some
submodels (growth rate, emergence, temperature, weight) are precomputed and provided to parent
submodels as fixed input values (dotted arrows). Remaining submodels (abundance, growth,
biomass, production) form a full HBM.

Figure 2 DAG of the abundance submodel. Frames indicate levels: campaign (o 2 f1; . . . ;Og),
cohort (k 2 f1; . . . ;Kg), length class (i 2 f1; . . . ; Ig), and removal (j 2 f1; . . . ; Jog). Rectangles:
deterministic nodes; Ellipses: stochastic nodes; Dark filled nodes: observed variables (A, Co,i,j);
Light filled nodes: variables common to the growth (mo,k, so,k) and biomass (lo,i,k) submodels. Full
arrows: stochastic links. Dashed arrows: deterministic links.



2.3 Abundance

The abundance submodel is briefly presented and is more thoroughly investigated by Ruiz and
Laplanche (2010). We substitute the spatial level (stream section) presented by Ruiz and Laplanche
(2010) by a time level (campaign, o 2 f1; . . . ;Og). An illustration of the submodel is provided
as a Directed Acyclic Graph (DAG, Fig. 2). The number of fish of length class i present in
the stream section at time to are taken to be independent Poisson random variables,
no;ijlo;i;A � Poissonðlo;iAÞ, where lo,i is the expected density per unit area of fish of length class i at
time to. The latter quantity is referred to in the following as abundance (of fish of length class i at
time to). We define additional abundance variables at higher levels: abundance lo of fish (of all sizes)
present in the stream section at time to (four more abundance variables at distinct levels are defined
later). Abundance lo;i is given by decomposing the total abundance lo into length classes by using a
mixture of Gaussian probability density functions

lo;i ¼ loDl

XK
k¼1

to;k
so;k

F
Li � mo;k

so;k

� �
; ð1Þ

where K is the number of Gaussian components, mo,k, so,k, and to,k are component centers, standard
deviations, and weights (

PK
k¼1 to;k ¼ 1), respectively. An illustration of the mixture is provided in

Fig. 3. We only consider the Gaussian kernel FðlÞ ¼ expðl2=2Þ=
ffiffiffiffiffiffi
2p
p

for the reasons provided in
Appendix B (Supporting Infomation). Gaussian component indexed by o,k exclusively includes the
fish born k�1 years before the year of campaign o, as a result components are referred to in the
following as cohorts (Pitcher, 2002). Conditional distributions of cohort centers and standard
deviations (mo,k and so,k) are provided by the growth submodel. Weight to,k of cohort k at time to
and abundance lo at time to are variable across campaigns, logitðt0o;kÞjtk;s

2
t � NormalðlogitðtkÞ;s2

tÞ

and lojl;s2
l � Lognormalðl;s2

lÞ, with to;k ¼ t0o;k=
PK

k0¼1 t
0
o;k0 . We partition abundance variables

(lo,i, lo, and l) into cohorts (lo,i,k, lo,k, and lk, respectively, see Table 3 and Fig. 3). The number of
fish of length class i remaining in the stream section before removal j at time to is noted no,i,j, with
no,i,1 5 no,i and no;i;j ¼ no;i;j�1 � Co;i;j�1 for subsequent removals (j 2 f2; . . . ;Kg). The number of fish
of length class i caught during removal j at time to is a binomial, Co;i;j � Binomialðno;i;j ; po;iÞ. The
catchability is provided by a mixed-effect logit regression model logit(po,i) 5 aoLi 1 bo with random
variability of the slope and the intercept across campaigns (Table 3). Positive (negative) value ao40
(aoo0) indicates an increase (decrease) of the catchability with fish length. Null value ao 5 0
corresponds to a catchability constant with fish length, of value po,i 5 logit�1(bo).

2.4 Growth

The growth submodel constrains cohort centers and standard deviations (mo,k and so,k) to a growth
function. We model individual fish growth by using a von Bertalanffy growth function (VBGF). We
relate individual VBGF parameters to cohort VBGF parameters through a statistical model which
is detailed in Appendix B (Supporting Infomation). An illustration of the growth submodel is
provided as a DAG (Fig. 5, Supporting Infomation). Expected center of cohort k at time to is
(Appendix B, Supporting Infomation)

�mo;k ¼ L1 � ðL1 � L0Þ exp½� �Go;kðto � temo;kÞ�; ð2Þ

where temo;k is the date of emergence of cohort k, L0 is the expectation (over individuals) of the length
at emergence, LN is the expectation (over individuals) of the asymptotic length, and �Go;k is the
average (between temo;k and to) of the expectation (over individuals) of the daily growth rate

�Go;k ¼
Xto

t¼tem
o;k

11

Gt=ðto � temo;kÞ: ð3Þ



The daily growth rate Gt as well as the date of emergence temo;k are functions of water
temperature. Their expressions are provided by the growth rate and emergence submodels,
respectively. We tolerate discrepancies between cohort centers �mo;k expected by the growth
submodel and cohort centers mo,k used by the abundance submodel. They are equal modulo
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Figure 3 Number of caught fish Co,i,j per Dl 5 10mm length class at Saint-Paul from October 2005
(o 5 1) to October 2010 (o 5 8). The number Co,i,j of fish of length class i caught during removal j
during campaign o is illustrated as the j-th stacked sub-bar making up the bar of i-th length class
(x-axis) of the subplot related to campaign o. Cohort centers (mo,k, triangles) are represented.
Expected population sizes per cohort (lo,i,kADl, thin solid lines) and total (lo,iADl, thick solid lines)
are computed by using Eq. (1) with point parameter estimates of mo,k, so,k, to,k, and lo.



a logit-transformed residual normal error

logit
mo;k � �m0o;k
�m1o;k � �m0o;k

 !
j �mo;k; �m

0
o;k; �m

1
o;k;s

2
m � Normal logit

�mo;k � �m0o;k
�m1o;k � �m0o;k

 !
;s2

m

 !
; ð4Þ

of variance s2
m, where �m

0
o;k is the center of cohort k at the date of emergence of the year of campaign

o (temo;1) and �m
1
o;k is the center of cohort k at the end of the year of campaign o (December 31th). The

motivation to include this additional error term in the model is illustrated and discussed later.
Variables �m0o;k and �m1o;k are computed with a formula similar to Eq. (2). The scaled logit transfor-
mation of Eq. (4) ensures that both �mo;k and mo;k are greater than �m0o;k and lesser than �m1o;k. The
standard deviation so,k is provided by

s2
o;k ¼ s2

0

½L1 � �mo;k�
2

½L1 � L0�
2

1s2
1

½ �mo;k � L0�
2

½L1 � L0�
2
; ð5Þ

where s0 and sN are the standard deviations representative of variability among individuals of the
length at emergence and of the asymptotic length, respectively (Appendix B, Supporting Infoma-
tion). We do not model growth of fish born before the year of the first campaign. The resulting edge
effects are dealt with by simulating growth by starting on the date of emergence on the year of the
first campaign (tem1;1). Cohort centers on such a date are labeled �m0k.

2.5 Growth rate and emergence

2.5.1 Growth rate
Water temperature affects fish growth (Jonsson and Jonsson, 2009). Therefore, various authors
have included seasonal variability in the VBGF parameters to consider the effects of water tem-
perature on growth (Taylor, 1960; Somers, 1988; Mallet et al., 1999). Fontoura and Agostinho
(1996) have successfully modeled the growth of two freshwater fish species by using the VBGF with
a growth rate as a deterministic function of water temperature. The latter authors have suggested
the use of a bell-shaped relationship between temperature and growth rate, with a null growth rate
below a minimum temperature (ymin) or above a maximum temperature (ymax) and a maximum
growth rate at an optimum temperature (yopt). Mallet et al. (1999) have suggested a similar
relationship to predict fish growth rate from water temperature. The latter relationship originates
from the work of Rosso et al. (1995) dealing with bacterial growth with pH. We use the relationship
provided by Mallet et al. (1999) to relate daily growth rate to water temperature. The daily growth
rate is Gt 5 GoptXt where Gopt is the growth rate at optimum temperature yopt and Xt is the cardinal
daily growth rate

Xt ¼
ðywt � yminÞðy

w
t � ymaxÞ

ðywt � yminÞðy
w
t � ymaxÞ � ðy

w
t � yoptÞ

2
; ð6Þ

where ywt is the water temperature at time t.

2.5.2 Emergence
Water temperature affects life-stage timing of fish (Jonsson and Jonsson, 2009). Time from ovi-
position to hatching and time from hatching to emergence are related to water temperature (Webb
and McLay, 1996; Armstrong et al., 2003). Elliott and Hurley (1998) have shown that the delay
between oviposition tovi and the median date of emergence tem (date when half fry have emerged) of

brown trout can be well-predicted by finding tem leading to
R tem
tovi
ðywðtÞ � y0Þ=½y1 � ywðtÞ�dt ¼ CE50,

where yw(t) is water temperature at time t, y0 is the minimum temperature required for hatching, y1
is the optimum temperature for hatching, and CE50 is the critical value leading to the emergence of
50% of the fry. By approximating the latter integral by the midpoint rule with a daily time step, the



date of emergence temo;k of fish which are present under the form of cohort k at time to leads to

Xtemo;k
t¼tovi

o;k

ywt � y0
y1 � ywt

’ CE50: ð7Þ

2.6 Weight

Length and weight of fish f 2 f1; . . . ;Co;jg caught during removal j at time to are related by the

allometric formula Wo;j;f ¼ ZoL
zo
o;j;f expðeo;j;f Þ with an i.i.d lognormal residual error of variance s2

W ,

eo;j;f js2
W � Normalð0;s2

W Þ. Allometric parameters Zo and zo are allowed to vary between campaigns
and are taken independent (Table 3). Log-transformed, the latter submodel is a two-level linear
mixed-effect model with a normal, heteroscedastic residual error (Pinheiro and Bates, 2000).

2.7 Model outputs: Biomass and production

The biomass of fish of length class i of cohort k at time to is approximately Bo;i;k ’ ZoL
zo
i e

s2
W
=2lo;i;k

(Ruiz and Laplanche 2010). The biomass of fish of cohort k at time to is Bo;k ¼
P

i Bo;i;k and the
overall biomass at time to is Bo ¼

P
k Bo;k. The production of fish of length class i of cohort k at time

to is

Po;i;k ¼
dBo;i;k

dt
¼ zo

Bo;i;k

Li

dLi

dt
¼ zoBo;i;kGo

L1 � Li

Li
; ð8Þ

where Go 5 Gt for t 5 to. The production of fish of cohort k at time to is Po;k ¼ dBo;k=dt ¼
P

i Po;i;k

and the overall production at time to is Po ¼ dBo=dt ¼
P

k Po;k. Respective production over bio-
mass ratios are (P/B)o,k 5 Po,k/Bo,k and (P/B)o 5 Po/Bo.

2.8 Constant parameters, data sets, and priors

2.8.1 Constant parameters
We use cardinal temperatures (ymin, ymax, yopt) suggested by Elliott et al. (1995) for S. trutta fario.
Dates of emergence are computed from Eq. (7) by using parameter values (y0, y1, CE50) provided by
Elliott and Hurley (1998) for S. trutta. Oviposition dates are assumed equal for all years (October
20th). Values of constant parameters are provided in Table 1 and are highlighted in Fig. 1.

2.8.2 Data sets
We use the model to study growth and production of resident brown trout (S. trutta fario) popu-
lating the Neste d’Oueil stream (Haute Garonne, Pyrénées, France). Neste d’Oueil brown trouts are
the dominant species of the stream (Gouraud et al., 2001). Trouts which are considered in this case
study were electrofished at a single stream section (Saint-Paul d’Oueil) O5 8 times from 2005 to
2010, 6 times in October (13th, 10th, 12th, 14th, 7th, and 13th from 2005 to 2010, respectively) plus
twice in July (2006 July 17th, 2008 July 10th). The Saint-Paul d’Oueil stream section is 121m long,
4.7m wide with a 1050m elevation. The stream section is not delimited with physical barriers,
neither across removals nor across campaigns, as discussed later. Captured fish are released at the
end of each electrofishing campaign. The number of fish caught Co,i,j is illustrated by length-
abundance plots (Fig. 3). A total of 2078 fish were captured among which 875 were weighted. A
description of air and water temperature data sets is provided as Supporting Infomation.



2.8.3 Priors
Growth rate Gopt and asymptotic length LN are assigned informative independent lognormal
priors. Such a choice is based on 41 estimates of growth rate and respective asymptotic length of
brown trout from the literature (Froese and Pauly, 2010). Shapiro–Wilk test for multinormality
shows that log-transformed growth rate and asymptotic length reasonably follow a bivariate normal
distribution (p5 0.046). Correlation between log-transformed growth rate and asymptotic length is
not significant, however (p 5 0.085). Growth rates and asymptotic length are therefore assigned
independent lognormal priors which hyperparameters are computed by using the database cited
above. We set L0 ¼ �m01. In order to fulfill the constraint 0o �m01o � � �o �m0KoL1, we simulate
independent qk0 � Uniformð0; 1Þ (k0 2 f1; . . . ;K11g) and use the prior ( �m00 ¼ 0)

�m0k ¼ �m0k�11L1qk

,XK11

k0¼1

qk0 : ð9Þ

Remaining parameters are assigned vague priors (Table 2).

2.9 Computations

2.9.1 Precomputations
The computation resources which are required to carry out a joint simulation of the 8 submodels for
6 years are prohibitive. Fish weight, water temperature, time of emergence, and growth rate are
precomputed and provided to parent models as fixed input values. This issue is discussed later.
Parameters of the weight submodel are estimated by using collected fish lengths and weights.
Parameters of the temperature submodel are estimated by using collected air–water temperatures
(from March 2006 to October 2009). The sum of Eq. (7) is precomputed step by step by increasing
the date of emergence starting on January 1st until the critical value CE50 is reached. The quantity
�Xo;k ¼

Pto
t¼tem

o;k
11 Xt=ðto � temo;kÞ appearing in Eq. (3) is also precomputed. Precomputed time of

emergence temo;k and �Xo;k are then provided as inputs to the growth submodel.

2.9.2 BUGS simulations
Submodels, to the exception of the emergence submodel which is executed with R (Crawley, 2007),
are implemented by using OpenBUGS, open source version of WinBUGS (Lunn et al., 2009;
Ntzoufras, 2009). We simulate posterior samples of model parameters by using a Markov chain
Monte Carlo (MCMC) method (Robert and Casella, 2004). Samples are processed by using
R (Crawley, 2007). WinBUGS and R scripts as well as data files are gathered within a GPLv3
piece of software, Hierarchical Modeling of Salmonid Populations (HMSPop) version 2.0 (http://
modtox.myftp.org/software/hmspop). Reported point estimates of the parameters are
posterior expectation estimates. Interval estimates are 2.5 and 97.5% quantile estimates of marginal
posteriors. Convergence was investigated by using the ANOVA-type diagnosis described by Gel-
man and Rubin (1992) with three chains. Independent samples were obtained by thinning guided
through the examination of the autocorrelation functions of the posterior samples. Five hundred
independent posterior samples were generated for each model. Alternative growth submodels are
compared in terms of goodness-of-fit ( �D, posterior expectation of the deviance statistics). Penali-
zation with complexity was not feasible: it was not possible to compute complexity (effective
number of parameters) as presented by Spiegelhalter et al. (2002) due to the use of a discrete node in
our model (Co,i,j), alternative estimate relying on asymptotic distribution of the deviance statistics
(Gelman, 2003) did not lead to reliable results, and a manual count of stochastic parameters clearly
overestimated complexity.



2.9.3 Model comparisons
In the aim of providing the most parsimonious model, we evaluate the relevance of including the
emergence, temperature, and growth submodels to compute production. For that purpose, several
model alternatives are compared (Table 4). The first alternative (M1, baseline) is the overall model
which has just been presented. The second alternative (M2) considers that time of emergence is not
temperature-dependent (April 1st for all years). The third alternative (M3) considers that time of
emergence and growth rate are not temperature-dependent (Xt 5 1 for all t). In that case, the
growth rate at optimum temperature is equal to the growth rate averaged over the study period
( �G ¼ Gopt

P
t Xt=T). In the aim of comparing growth rates of models M1�3, we report average

growth rate instead of growth rate at optimum temperature. The last two alternatives (M4�5) do
not constrain cohort centers to a VBGF. We outline the fact that, although abundance and biomass
can be computed with all alternatives, growth parameters and consequently production
can only be computed with alternativesM1�3. AlternativeM5 is the adaptation to our case study of
the model presented by Ruiz and Laplanche (2010): cohort centers and standard deviations are
random parameters (see Tables 2 and 3 of the latter reference). Alternative (M4) is the
adaptation to our case study of the model discussed by Ruiz and Laplanche (2010): cohort centers
are random and standard deviations are proportional to centers (so,k 5 nmo,k with
n�Gamma(0.001,0.001)). Alternative M4 is actually in-between alternatives M3 and M5 with
random centers while standard deviations are constrained with an approximate VBGF (nCsN/LN

by using Eq. (5) with L0 � mo,k and s0 � sN). All five alternatives are simulated with K5 3
Gaussian components and a Dl 5 10mm length class, see Ruiz and Laplanche (2010) for insights
supporting such a choice. AlternativesM1�3 are of equal complexity,M1�3 are less complex than
M4, which is less complex thanM5.

3 Results

Estimates of time of emergence are 101, 106, 68, 91, 106, 95 Julian days from 2005 to 2010,
respectively. Point and interval estimates of parameters related to temperature and weight are
provided in Appendix A (Supporting Infomation). Model fit (D) and VBGF point parameter
estimates ( �G, L0, LN, s0, sN) are reported (Table 4; burn-in: 5 105; thinning: 103). Alternatives
M1�3 and M5 provide similar fit (633:9 � D � 634:3) whereas fit of alternative
M4 is slightly worse (D ¼ 637:0). Informal penalization with complexity suggests thatM5 is to be
rejected, M4 is significantly better than M5, M1�3 are equivalent to each other and significantly

Table 4 Growth model alternatives, fit (D), and growth point parameter estimates.

Model alternatives VBGF parameter estimates Invariant parameter estimates

so,k mo,k Gt temo;k D 103 �G L0 LN s0 sN
�GL1 s0/L0 sN/LN

M1
p p p p 634.3 0.471 28 419 4.5 83 0.18 0.16 0.16

M2
p p p – 634.1 0.394 25 486 6.1 92 0.18 0.25 0.25

M3
p p – – 633.9 0.843 37 282 6.5 57 0.23 0.18 0.18

M4
p – – – 637.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.15

M5 – – – – 634.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Reported growth parameters are average growth rate ( �G ¼ Gopt

P
t Xt=T), length at emergence (L0), asymptotic length (LN),

and standard deviations (s0 and sN). The product �GL1 as well as the coefficients of variation s0/L0 and n C sN/LN are

also provided. Units are per day for growth rate (G) and millimeters for lengths (L0, LN, s0, sN). Model alternatives are

defined whether cohort standard deviations so;k (M1�4) and centers mo;k (M1�3) are constrained with a VBGF and whether

growth rate Gt (M1�2) and date of emergence temo;k (M1) are temperature-dependent.



better than M4. In other words, constraining cohort centers and/or standard deviations
with a VBGF does not (or slightly) worsen model fit while it significantly decreases complexity.
As a result, alternatives M1�3 constraining both cohort centers mo,k and standard deviations so,k

with a VBGF are to be preferred. The improvement which is provided by modeling temperature-
dependent time of emergence and growth rate is not significant, in favor of selecting
alternative M3 for this case study. Nevertheless, in the aim of illustrating the modeling of tem-
perature-dependent time of emergence and growth rate, following results are computed by using
baseline (M1).

Raw VBGF point parameter estimates are variable across models. For that reason, we also
provide estimates of the product �GL1 as well as the coefficients of variation s0/L0 and sN/LN

(Table 4). We provide interval estimates of growth parameters by using alternative M1 (Table 5,
Supporting Infomation). Interval estimates of �GL1 and sN/LN are of lesser amplitude than
interval estimates of �G, LN, and sN, in favor of reporting the former parameter estimates instead of
raw VBGF parameters. This issue is discussed later.

Point and interval estimates of abundance (lo,k, lo, lk, l), biomass (Bo,k, Bo), and production
(Po,k, Po) variables are provided with HMSPop software. Some illustrations are provided and
commented below, however. The multimodal decomposition of length-abundance plots is illu-
strated in Fig. 3 by plotting Eq. (1) with point estimates of parameters related to abundance (mo,k,
so,k, to,k, and lo). Our model provides satisfactory results on this aspect. The VBGF by using
temperature-dependent time of emergence and growth rate is illustrated in Fig. 4. Cohort disper-
sion, that is to say an increase of cohort standard deviation so,k with time, cohort overlapping, as
well as seasonal variability of the growth rate (low in winter, highest in summer) are prominent in
Fig. 4. We highlight the close relationship between Figs. 3 and 4: the three-component distributions
of the eight subplots of Fig. 3 are snapshots at the eight campaign times of the three cohorts which
growth is simulated in Fig. 4. We compare (Fig. 6, Supporting Infomation) three sets of cohort
centers: centers �mo;k which are predicted by the VBGF (M1), centers mo,k used in the multimodal
decomposition of length-abundance plots when assisted with the VBGF (M1), and centers mo,k
computed by the abundance model alone (M4). The results show that three sets are of similar
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Figure 4 Cohort growth curves. Expected cohort centers (thick solid lines) plus and minus (thin
solid lines) cohort standard deviations are computed by using the cohort growth model with the
point estimates of the growth parameters which are reported in Table 5. Cohort centers at cam-
paigns ð �mo;k and mo,k) are represented (circles and triangles, respectively). Squares: emergence
(at time temo;k of length Lo). Observation times to are highlighted with vertical dashed lines.



values. Estimates of production over biomass ratios ((P/B)o,k and (P/B)o) are illustrated (Fig. 7,
Supporting Infomation). (P/B)o values range between 1.03 and 1.59 per year.

4 Discussion

The results show that constraining cohort centers and standard deviations with a growth model is a
fruitful approach in the aim of interpreting length-abundance plots. As a corollary, the modeling of
individual fish growth with a VBGF as well as the statistical model of Appendix B (Supporting
Infomation) are decisive steps toward a refined interpretation of length-abundance plots. Our
feeling is that advanced modeling has the potential to enhance the value of removal sampling data
by leading to estimates of parameters with ecological meaning (e.g. growth rate). HBMs have
proven an efficient tool to fulfill this objective. Some choices have been made while constructing and
simulating our HBM, which are discussed below. We also suggest some possible refinements and
extensions to the current HBM.

Model selection has shown that the improvement brought by modeling temperature-dependent
time of emergence and growth rate is not significant in this case study. The reasons are (i) stability of
temperature across years resulting in stability of time of emergence temo;k and averaged growth rate
�Go;k and (ii) sampling occurring mostly around the same date resulting in stability of the length of
the time period between emergence and campaign ðto � temo;kÞ, consequently resulting in stability of
the cumulative growth rate �Go;kðto � temo;kÞ. The consideration of removal sampling campaigns more
scattered across the year, or of a study area with more variable temperatures, or of a longer study
period, for instance in the aim of investigating the consequences of climate change on brown trout
growth and production, would require the inclusion of temperature-dependent time of emergence
and growth rate.

HBM framework would make it technically possible to handle missing water temperature data,
simulate raw water temperatures (ywt ) for the whole duration of the study, and use such tempera-
tures to compute temperature-dependent growth parameters. We, however, chose to compute
temperature-dependent parameters by using predictions of water temperature ðE½ywt �Þ instead of raw
values ðywt Þ. We provide three reasons supporting this choice. First, the use of predictions of water
temperature instead of raw measurements leads to negligible consequences on computed time of
emergence and growth rate, as discussed later. Second, the computations of time of emergence and
growth rate (sums in Eqs. 3 and 7) during the MCMC simulation are time-consuming. The latter
sums can be precomputed by using predictions of water temperature instead of raw values. Third,
our aim is to provide a layout to compute growth parameter estimates of brown trout populations
that could apply to previously acquired removal sampling data. The motivation for that is to
investigate consequences of climate change, for instance over the last decades. Air temperature is
available posterior to electrofishing campaigns by simply making a query to meteorological data-
bases. Water temperature is more difficult to acquire and, in our case study, such measurements are
only used to calibrate the air–water temperature submodel.

The joint simulation of the overall model was not feasible with the computation resources at
hand. For that reason, we have simulated the overall model into three steps. The sequence of
computations which is described below is illustrated in Fig. 1. The first step was to estimate the
parameters of the weight and temperature submodels. Point parameter estimates of the latter
submodels are used to predict fish weight (from fish length) and water temperature (from air
temperature). At the second step, predictions of water temperature are used to compute time of
emergence and growth rate. At the third step, the remaining submodels (abundance, growth, bio-
mass, production) are simulated as a full HBM. We outline the fact that precomputation isolates
submodels from the consecutive fully Bayesian inference. We see two consequences of that. First,
presimulated submodels (e.g. emergence) cannot borrow information from other submodels
(e.g. growth) to provide an improved estimation of parameters (e.g. CE50). An extended discussion



on this issue is provided later. Second, uncertainty of parameters of precomputed submodels (e.g.
Zo) is not propagated to parent submodels (e.g. biomass). Potential consequences would be an
underestimation of the variance of the estimate of parameters of interest (e.g. Bo,k). A solution to
the latter issue could be not to convey input values as fixed (as we have done here) but rather as
random. In our case, however, the consequences of using fixed input values are negligible. The
reason for that is that fish weights are summed to compute biomass, functions of water temperature
are summed to compute time of emergence (Eq. 7) and growth rate (Eq. 3). See Ruiz and Laplanche
(2010) for a demonstration regarding the consequences of using predictions of fish weight (instead
of raw values with residual error) to compute biomass.

Estimates of growth parameters �G, LN, and sN are highly uncertain (Table 5, Supporting
Infomation). The reason for that is that sports fishing takes place in the Neste d’Oueil from March
to September with a 180mm minimum size limit. Large, and consequently old, brown trouts are
rare. The VBGF is approximately linear of slope �GL1 for young fish, it is not feasible to jointly
provide accurate estimates of �G and LN by using our data set. It is not either feasible to jointly
provide accurate estimates of LN and sN (Eq. 5 approximates to so;k ’ ðs1=L1Þmo;k as shown
earlier). We suggest three options. The first option, which we have chosen here, is to report more
robust parameters such as �GL1 and sN/LN. The product �GL1 is a life-history invariant which has
already been reported in the literature (Mangel, 1996; Hutchings, 2002). The second option would
be to provide multimodel estimates (Burnham and Anderson, 2002). The third option would be to
use a distinct data set, e.g. collected in a fishing preserve, to provide estimates of �G, LN, and sN.
Estimation of length at emergence L0 is relatively less uncertain. L0 estimate is contingent on
precalculated time of emergence, which is a function of temperature and time of oviposition. Time
of emergence actually depends on more covariates, e.g. discharge (Capra et al., 2003). Time of
oviposition has been roughly (in the absence of more appreciable information) assumed equal for all
years. Oviposition timing is not punctual and depends on covariates. As a result, our estimates
of L0 should be considered with caution. An over (under) estimation of oviposition timing leads to
an over (under) estimation of L0. An inaccurate estimation of oviposition timing has, however,
negligible consequences on other parameters (since L0 is adjusted accordingly). Estimation of s0,
and as a result s0/L0, are uncertain. The posterior distribution of s0 (or quantiles, Table 5, Sup-
porting Infomation) suggests to reduce of our growth model with s0 5 0. As a conclusion, we
suggest to give credential to parameters �GL1 and sN/LN and consider remaining parameters with
caution.

HBM framework would make it technically possible to handle cardinal temperatures (ymin, ymax,
yopt, y0, y1) as well as date of oviposition and critical value EC50 as random. The motivation for that
would be to propagate the uncertainty of our knowledge on such parameters to estimates of
remaining parameters. We have nevertheless considered cardinal temperatures, date of oviposition,
and EC50 as constant. The main reason is that removal sampling data does not contains enough
information to enhance our knowledge on the above parameters plus L0 and Gopt. Randomizing
cardinal temperatures, date of oviposition, and EC50 would result in randomizing time of emergence
and cardinal growth rate. It is not possible, however, due to under-identification, to provide
relevant estimates of time of emergence together with length at emergence (both represent varia-
bility of emergence) neither provide relevant estimates of cardinal growth rate together with opti-
mum growth rate (both represent variability of growth rate). We chose to set constant time of
emergence and cardinal growth rate (by setting constant cardinal temperatures, date of oviposition,
and EC50) in order to provide estimates of L0 and Gopt. The interest of setting constant the former
parameters is also to be able to carry out the (necessary) precomputations of time of emergence and
cardinal growth rate.

Residuals �mo;k � mo;k are low (sm 5 0.7 (0.5, 1.3) mm) but are not negligible (Fig. 4). Residuals
would be negligible if the reduction of the current model with the constraint of null residuals
provided satisfactory results. Such a reduction did not provide satisfactory results (not shown) and
we suggest several possible countermeasures. We have linearly interpolated monthly and 10-day air



temperatures to a daily time step. The use of daily air temperature measurements would be a first
improvement. A more complex modeling of stream temperature, e.g. as a function of minimum and
maximum daily air temperature and stream discharge, is a second option. A more complex mod-
eling of the growth rate, e.g. as a function of discharge (Daufresne and Ranault, 2006), is a third
option. The use of a more advanced statistical model of growth parameters, e.g. by correlating
growth rate to asymptotic length or by adding an autoregressive component to the growth rate, is a
possibility. At last, the use of a different growth function is also conceivable.

The model at the current state applies to riverine brown trout (S. trutta fario). Main model
assumptions are that (i) reproduction occurs once a year, (ii) growth and emergence are pre-
dominantly dependent on water temperature, and (iii) temperature history at the stream section is a
relevant indicator of temperature to which captured fish have been subjected to. Additional
developments would be required to apply the model to species with a migrating behavior (e.g.
brown trout morphs S. trutta trutta and lacustris) or with a different reproduction pattern. S. trutta
fario also migrates, but operates low amplitude movements in order to switch for microhabitats. We
highlight the fact that, for not to disturbing such natural movements as well as for practical reasons,
we did not physically delimited the stream section across campaigns. Microhabitat movements are
of limited consequences on temperature to which fish are subjected to. Temporal variations of
abundance, however, are to be interpreted with caution: abundance (lo) is not synonymous with
population size. Abundance is not representative of the size of a closed brown trout population
inhabiting a stream section (such a population is fictional). Abundance rather depicts the status of a
single species at a single place, which temporal variations are the result of some complex population
dynamics. Finally, the stream section is not either physically delimited across removals. Results are
potential entries and exits of fish during electrofishing, e.g. downstream exits of stunned but not
caught fish. Consequences of the latter movements are an overestimate of electrofishing efficiency
and an underestimate of abundance. A solution to this issue would be to position nets down- and
up-stream while electrofishing.

To conclude, we highlight some possible extensions to the current model. First, the growth model
could be perfected, as suggested above. Date of oviposition could be modeled and related to
covariates. Removal sampling data could be accompanied with age data in the aim of
facilitating cohort decomposition. To achieve this goal, age of fish could be evaluated through
scalimetry (age is determined by counting growth zones of fish scales magnified with a microscope)
on a sample of caught fish and treated as missing data on the rest. The model could be
extended with an additional spatial structure in order to deal with multiple sampling sections
(Wyatt, 2002; Ebersole et al., 2009; Ruiz and Laplanche, 2010). Parameters (e.g. growth parameters)
could be spatially related to each other or related to spatially distributed environmental covariates
(Wyatt, 2003; Webster et al., 2008). Parameters of the multimodal description of length-abundance
plots are cohort centers, standard deviations, and weights (to,k) as well as total abundance (lo). We
have constrained centers and standard deviations with a growth model. Weights and abundance
could also be constrained with a population dynamics submodel. Parameters of the population
dynamics submodel could be spatially related to each other or to covariates. The motivation is to
build a single framework which would provide interval estimates of a large panel of descriptors
indicative of brown trout populations at a large spatio-temporal scale. Such a model could be used
to evaluate, compare, and predict the status of brown trout populations, e.g. consequently to
climate change.
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sucesivas en la estima de abundancias. Monografı́as del Museo Nacional de Ciencias Naturales,
Madrid.

Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project: Evolution, critique and future
directions. Statistics in Medicine 28, 3049–3067.

Mallet, J., Charles, S., Persat, H. and Auger, P. (1999). Growth modelling in accordance with daily water
temperature in European grayling (Thymallus thymallus L.). Canadian Journal of Fisheries and Aquatic
Sciences 56, 994–1000.

Mangel, M. (1996). Life history invariants, age at maturity and the ferox trout. Evolutionary Ecology, 10,
249–263.

Mäntyniemi, S., Romakkaniemi, A. and Arjas, E. (2005). Bayesian removal estimation of a population size
under unequal catchability. Canadian Journal of Fisheries and Aquatic Sciences 62, 291–300.

Mohseni, O., Stefan, H. and Erickson, T. (1998). A nonlinear regression model for weekly stream temperatures.
Water Resource Research 34, 2685–2692.

Morrill, J., Bales, R. and Conklin, M. (2005). Estimating stream temperature from air temperature: implica-
tions for future water quality. Journal of Environmental Engineering 131, 139–146.

Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptional models, 1. a discussion of
principles. Journal of Hydrology 10, 282–290.
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