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Abstract. This paper presents a secure and flexible Mix-net that has
the following properties; it efficiently handles long plaintexts that exceed
the modulus size of underlying public-key encryption as well as very
short ones (length-flexible), input ciphertext length is not impacted by
the number of mix-servers (length-invariant), and its security in terms
of anonymity is proven in a formal way (provably secure). One can also
add robustness i.e. it outputs correct results in the presence of corrupt
servers. The security is proved in the random oracle model by showing a
reduction from breaking the anonymity of our Mix-net to breaking a sort
of indistinguishability of the underlying symmetric encryption scheme or
solving the Decision Diffie-Hellman problem.
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1 Introduction

1.1 Background

Mix-net is a cryptographic primitive that provides anonymity to message senders.
It takes a list of encrypted messages sent from a sufficient number of users and
outputs a list of corresponding plaintexts sorted in random order so that it
conceals the correspondence between each plaintext and user. Accordingly, it
provides anonymity by hiding the individual user in the mass. Such a primitive
was first introduced in [7] with a heuristic construction based on public key
encryption. Since then, many works have improved its usability and security.
In [18], Park, et al., constructed a scheme based on El Gamal encryption, where
the encryption work and resulting ciphertext length were independent of the
number of mix-servers. Robustness was addressed in [22,16,17,3,12,1,13,14,9].
Attacks are found in [20,19,16,9].

A promising application of Mix-net is electronic voting as it can convey any
style of ballots, e.g., simple binary value of Yes/No voting and free-format ques-
tionnaires, without changing the protocol. It is also useful in other applications
such as anonymous payments and anonymous bids.

To support wide availability, Mix-net should be able to efficiently handle mes-
sages of various lengths that differ depending on the application. Some applica-
tions where users anonymously send signatures issued by an authority (possibly
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in a blind way) need Mix-net to convey signature-message pairs which require
thousands of bits to be stored depending on the signature algorithm. Despite
the need for handling long plaintexts, all previous Mix-nets limit messages to
be shorter than a single block of ElGamal encryption or handle long messages
in a heuristic way. For example, if ElGamal encryption is implemented over an
elliptic curve for speed with typical settings, the messages are limited to just 160
bits, which greatly limits applicability. Although one can handle long messages
simply by dividing each message into some blocks and repeating the atomic mix
processing a sufficient number of times, such an approach results in an inefficient
scheme.

Very short plaintexts are also dealt in an inefficient way as they are expanded
to one block of underlying public-key encryption. For instance, ElGamal encryp-
tion with 1024 bit modulus expands 1 bit message to 1024 + 1024 bits ciphertext.
Hence, previous schemes incur higher communication costs than actually needed.

A common approach that overcomes such shortcomings would be to use hy-
brid encryption schemes that combine asymmetric key exchange and symmetric
(common key) encryption. Although some provably secure hybrid encryption
schemes are available in the literature, e.g., [10,23], applying those schemes does
not immediately result in a secure and efficient Mix-net. It is not clear whether
a secure hybrid encryption scheme provides security even in the context of Mix-
net. Furthermore, a straightforward use of hybrid encryption in the original con-
struction of Chaum [7] obviously extends the resulting input ciphertext linearly
depending on the number of servers.

1.2 Our Contribution

This paper presents Mix-nets that realize, for the first time, the following prop-
erties all at the same time.

– Length-flexibility: The size of the public-key of Mix-net does not limit
plaintext length. Plaintexts of any length are encrypted efficiently in terms
of computation and resulting ciphertext length.
– Length-invariance: The length of input ciphertexts is independent of the

number of mix-servers.
– Provable security: The security, in terms of anonymity, of our Mix-net

can be proven in the random oracle model [5] assuming the intractability
of the Decision Diffie-Hellman problem and the availability of a symmetric
encryption scheme that ensures a sort of indistinguishability.

Furthermore, we show an approach to add robustness so that correct output is
obtained even if some of the users and servers behave maliciously.

To achieve the above goals, we developed a novel hybrid encryption scheme
with group decryption feature that suits Mix-net. Informally, it conceals the
correspondence between inputs and outputs at each step of group decryption
performed by each server.

Our scheme saves communication cost for short messages as well as long
ones since the encryption only extends the message with modulus length. For



180 Miyako Ohkubo and Masayuki Abe

instance, input ciphertext is 1024 + 1 bits long for a 1 bit message with 1024
bit modulus. Computational cost of encryption grows linearly depending on the
number of servers. We show, however, in section 7, that the cost can actually be
smaller than that of previous standard schemes in many settings.

We first introduce a basic scheme that highlights our key idea. It is secure
only against honest but curious users and mix-servers. We then add security to
withstand distrustful users (mix-servers are still honest but curious). If needed,
one can add individual verifiability to these basic schemes in a simple stan-
dard way in order to detect the deviation of servers with some probability. Such
schemes would be applicable for applications where mix-servers are chosen care-
fully and thus are more creditable than users. Such schemes would also be used
in the applications, such as anonymous donation or payment, in which each user
is not concerned about the input of other users and thus individual verifiability
is sufficient.

We then add robustness by following [9]. As in their scheme, the resulting
Mix-net is robust in such a sense that it outputs a correct result and provides
anonymity in the presence of corrupt servers, but does not provide universal
verifiability. That is, only the servers can be convinced of the correctness of
the results while no external parties can verify them. Such a model was also
addressed in [12,13]. Accordingly, such scheme would be useful, for instance, for
small scale applications where every user can act as a mix-server.

2 Model

2.1 Scenario

There are n users and m mix-servers. Let Ui and Mj denote user i and server
j, respectively. For simplicity, we assume that all communication between these
participants are done via a bulletin board. The scenario consists of three phases.

Preliminary phase: The maximum length of each plaintext, say �msg is an-
nounced to all users together with other application-dependent information.
It is stressed that �msg is independent of the public key size and is deter-
mined by the Mix-net application. Theoretically, �msg can be any positive
integer bound by a polynomial of the security parameter.

Casting phase: Each user encrypts his message and sends it to the bulletin
board. Appropriate padding may be applied to the message before encryption
so that the length of the message equals �msg.

Mixing phase: Let L0 be a list of all ciphertexts sent from the users. The first
server takes L0 and outputs a list, L1, to the bulletin board. Similarly, server
i takes Li−1 and outputs Li. The final output of the mix-net is Lm. If all
servers work correctly, Lm is a list of plaintexts sorted in random-order.

Let L̄0 be a list of messages obtained by correctly decrypting each cipher-
text in L0. The output of mix-net, Lm, is said to be correct if there exists a
permutation between L̄0 and Lm. We say, informally, that the mix-net provides
anonymity if it is intractable to distinguish two plain messages in Lm that orig-
inate from two honest users.
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2.2 Adversaries

We represent the power of an adversary by (tu , ts)∗∗ where ∗ is either A or P
meaning active or passive, respectively. For instance, (tu , ts)AP-adversary means
that the adversary can thoroughly control up to tu users (i.e., active against
users), and can obtain views from up to ts mix-servers (i.e., passive against
servers). Note that adversaries that are passive against servers only attempt to
violate anonymity as they can not control the servers so as to output incorrect
results. We assume that the adversaries are static meaning that they decide,
before the protocol begins, which users and servers they will attack.

In this paper, we deal with the following types of adversaries. The types are
listed in order of increasing strength.

– (n − 2,m− 1)PP-adversary; There are at least two unattacked users and an
unattacked server. The adversary can obtain views from attacking users and
servers but can not control either of them. Our basic scheme is safe against
this type of adversary.
– (n−2,m−1)AP-adversary; The same as above, but can control corrupt users.

Since the adversary can send any ciphertexts through the corrupt users and
let the servers decrypt them, it can launch chosen ciphertext attacks. Our
extended scheme withstands this type of adversary.
– (n − 2,O(

√
m))AA-adversary; This type of adversary, which is the strongest

of the three, attempts to violate anonymity or correctness. Our third scheme
withstands such an adversary.

3 The Basic Scheme

Let G be a discrete logarithm instance generator such that (p, q, g) ← G(1k)
where k is a security parameter, and p, q are primes that satisfy q|p − 1, and
g is an element of Z∗

p whose order is q. Let 〈g〉 denote a unique subgroup of
Z∗
p generated by g. All the subsequent arithmetic operations are performed in

modulo p unless otherwise stated.
(E,D,K,M, C) denotes a symmetric encryption scheme where E,D are the

encryption and decryption algorithms and K,M, C are the spaces for keys, mes-
sages, and ciphertexts, respectively. EK (x) denotes the result of encrypting plain-
text x with common key K. Similarly, DK (x) denotes the plaintext obtained by
decrypting ciphertext x with key K. We assume that the symmetric encryption
scheme is length-preserving, i.e.,M = C = {0, 1}�msg . Let H be a hash function,
H : 〈g〉 → K.

[Key generation]
Server i randomly selects a pair of private keys ai, xi from Z∗

q and computes

hi := hai

i−1, and
yi := hxi

i ,
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Server 1
(a1, x1)

Server 2
(a2, x2)

(key gen.) h1 = ga1
-

h1 h2 = h1
a2

y1 = h1
x1 y2 = h2

x2

.........................................................................

User

r ← Z∗
q

G = gr
-

(G, E)
G′ = Ga1

-
(G′, E′) G′′ = G′a2

-

msg

K1 = H(y1
r) K1 = H(G′x1) K2 = H(G′′x2)

K2 = H(y2
r) E′ = DK1(E) msg = DK2(E

′)
E = EK1(EK2(msg))

Fig. 1. The basic hybrid Mix-net with two servers. The input to Server 1 is a
list of (G,E)s made by each user. Server 1 outputs a list of randomly ordered
(G′, E′)s. Server 2 finally outputs a list of randomly ordered plaintexts. E,D are
the encryption and decryption algorithms. H is a hash function.

for hi−1 given from the previous server. (Let h0 = g for the first server.) It then
publishes yi and hi as a pair of public keys.

[Encryption]
User encrypts message msg ∈ {0, 1}�msg to ciphertext C as

C := (G,E) = (gr, EK1 · · · EKm(msg))

where r is randomly taken from Z∗
q , and K1, . . . ,Km are session keys for sym-

metric encryption E and are computed as

Ki := H(yir).

[Mix Decryption]
For i = 1 to m, server i decrypts each ciphertext C = (G,E) in list Li−1 to get
C′ = (G′, E′) as

G′ := Gai ,

E′ := DKi(E) where Ki = H(G′xi).

(For the last server, let C′ = E′.) Server i then selects a random permutation
πi of {1, . . . , n} and puts the resulting ciphertexts into Li in the random order
defined by πi.

Figure 1 illustrates the above basic scheme with two servers. For each i,
H(G′xi) = H(hraixi

i−1 ) = H(hrxi

i ) = H(yir) = Ki holds. Thus, if every server
works correctly, correct session keys are retrieved by each server and the correct
plaintext is obtained.
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4 Security of the Basic Scheme

4.1 Definitions and Assumptions

For ρ := (p, q, g) generated by G(1k), we assume that all poly-time algorithms
solve the following problems only with negligible (in k) advantage over randomly
guessing.

Definition 1. (Computational Diffie-Hellman Problem : CDHP)

Input: (ρ, ga, gb) where a, b← Zq.

Output: gab

Definition 2. (Decision Diffie-Hellman Problem : DDHP)

Input: (ρ, ga, G0, G1, Gb
a) where b← {0, 1}, a← Zq, G0, G1 ← 〈g〉.

Output: b

Definition 3. (Matching Diffie-Hellman Problem : MDHP)

Input: (ρ, ga, G0, G1, Gb
a, Gb̄

a) where b← {0, 1}, a← Zq, G0, G1 ← 〈g〉
Output: b

It holds that CDHP > DDHP > MDHP, i.e., CDHP is the hardest to solve.
The reverse relation between CDHP and DDHP is not known. For DDHP and
MDHP, we can show that MDHP = DDHP following [11] or [21].

Next we define the Matching Find-Guess problem, which is closely related
to the Find-Guess problem [10] which defines a sort of indistinguishability of
symmetric encryption schemes.

Definition 4. (Matching Find-Guess Problem : MFGP)

Input: (EK0(x0), EK1(x1), xb, xb̄) where x0, x1←M, K0,K1← K, b← {0, 1}.
Output: b

We say that a symmetric encryption is secure in the sense of MFG if for all
poly-time algorithms MFGP can be solved only with negligible advantage over
1/2. Clearly, a one-time pad provides security in the sense of MFG. A stream
cipher also provide the same security if its generator produces a pseudorandom
bit-stream. For the sake of efficiency, we expect that existing carefully designed
symmetric encryption schemes used in an appropriate mode of operation such
as OFB provide such security as well.

In our construction, session keys for symmetric encryption are derived by ap-
plying hash functionH to the results of the Diffie-Hellman key exchange. Namely,
the Diffie-Hellman key exchange and the symmetric encryption are connected by
hash function H . The security of our hybrid encryption scheme is related to the
following problem.
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Definition 5. (MFG-MDH Joint Problem)

Input: (ρ, ga, gax,M0, G0,M1, G1,M
′
b, G

′
b,M

′̄
b
, G′̄

b
)

Where a, x← Z∗
q , b← {0, 1}, and

for i = (0, 1), Gi ← 〈g〉, Mi ←M, G′
i = Ga

i , M
′
i = DKi(Mi)

where Ki = H(G′
i
x).

Output: b

It will be shown that if H is an ideal hash function then solving the above
joint problem is as hard as solving either MFGP or MDHP.

4.2 Theorems and Proofs

Theorem 1. The basic scheme provides anonymity in the presence of (n−2,m−
1)PP-adversary if DDHP and the MFGP are intractable.

To support this theorem, we will prove the following lemmas.

Lemma 1. If there exists an (n−2,m−1)PP-adversary AXp that breaks anony-
mity in our Mix-net, then there exists machine AM that solves the MFG-MDH
joint problem with probability non-negligibly better than 1/2.

Lemma 2. If AM exists, then there exists machine AD that solves, at least,
either MFGP or MDHP with probability non-negligibly better than 1/2.

Lemma 3. If AD solves MDHP, then there exists a machine AH that solves
DDHP with probability non-negligibly better than 1/2.

Here, we sketch the proof of Lemma 1 and put the proof of Lemma 2 in the
Appendix. Lemma 3 can be proven in the same way as shown in [11], so its
proof is omitted.

Proof of Lemma 1 (sketch): Let Mξ be the server that AXp does not attack,
i.e, the one whose view is not given to AXp. Given an MFG-MDH joint problem
instance (p,q,g,ga,gax,M0,G0,M1,G1,M′

b,G
′
b,M

′̄
b
,G′̄

b
), AM simulates the

view of AXp as follows.
Simulating Keys: For server Mξ, AM sets hξ = ga and yξ = gax. For the keys

of descending servers, Mξ+1, . . . ,Mm, AM follows the key generation procedure,
i.e. randomly chooses private keys ai, xi and computes corresponding public
keys hi = hai

i−1, yi = hxi

i . For the keys of ascending servers, a little thought is
needed. Let hξ−1 = g. Then, for i = ξ− 1 to 1, AM chooses ai, xi and computes
hi−1 = h

1/ai

i , yi = hxi

i . It finally sets ρ = (p,q, h0).
Simulating Lists: AM puts (M′

b,G
′
b) and (M′̄

b
,G′̄

b
) into random positions in

Lξ. It then randomly generates other entries of Lξ by taking M randomly from
ciphertext space C and computing G as hrξ with randomly chosen r. Next, it
selects random permutation πξ and computes each entry of Lξ−1 by encrypting
the corresponding entry in Lξ. (This is possible because AM can retrieve the
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correct session key by computing yrξ .) For the two special entries of Lξ−1 that
correspond to (M′

b,G
′
b) and (M′̄

b
,G′̄

b
), AM inserts (M0,G0) and (M1,G1).

Now, the rest of ascending lists, Lξ−2 to L1, can be computed in order by
encrypting the previous lists with the simulated private keys and randomly gen-
erated permutations. (Note that those permutations are chosen so that the two
special entries of Lξ−1 correspond to the inputs from unattacked users U1 and
U2.) Similarly, the rest of descending lists, Lξ+1 to Lm, can be computed by
decrypting from Lξ to Lm−1 in order. In the course of the above simulation, AM
consults random oracle H to compute the session keys.

Views of attacked users and servers can be appropriately simulated by using
messages in Lm and random choices of above simulation. Given the perfectly
simulated views and lists, and free access to H , AXp distinguishes two messages
in Lm originated from U1 and U2. From the result of AXp, AM can derive the
correspondence between two special positions in Lξ−1 and Lξ where the given
instances were placed by using the permutation taken by the simulated servers,
except for Mξ. The success provability of AM is the same as that of AXp. ��

5 Securing against Corrupt Users

The key idea to add security against corrupt users is to make the underly-
ing encryption non-malleable so that they cannot launch chosen ciphertext at-
tacks. Although several efficient non-malleable encryption schemes are available
(e.g. [24,25,8,6,2,10,23]), few meet our requirements. For our security proof, we
need the underlying encryption scheme that provides plaintext awareness [4] and
public verifiability. The latter functionality allows the validity of ciphertexts to
be checked without using the decryption key. Our solution is based on [24].

Overall, the protocols are unchanged except that users attach a kind of proof
and the mix-servers screen ciphertexts that come with invalid proofs.

[Encryption]
Message msg is encrypted to C = (G,E) in the same way as in the basic scheme.
Let G = gr. A proof of knowing r is defined as P := (e, z, Ḡ, G̃, η, η̄, η̃) such that

ḡ := H2(G), g̃ := H3(G),
Ḡ := ḡr, G̃ := g̃r,

η := gς , η̄ := ḡς , η̃ := g̃ς ,

e := H4(E, g, ḡ, g̃, G, Ḡ, G̃, η, η̄, η̃),
z := ς − re mod q,

where ς ← Zq and H2, H3, H4 are hash functions. The output is (C,P ).

[Mix Decryption]
Each server first verifies that

e = H4(E, g, ḡ, g̃, G, Ḡ, G̃, gzGe, ḡzḠe, g̃zG̃e)
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holds for each input ciphertext. Here ḡ, g̃ are computed as ḡ := H2(G), g̃ :=
H3(G), respectively. After they agree on the result of the verification, they put
C, which came with valid P , into list L0. The rest of the process is the same as
that of the basic scheme.

The benefit of P is that it makes the simulation of a server, say Mξ, possible
without knowing its private keys. The trick is as follows. We want to derive Kξ

and G′ for each ciphertext in Lξ. Set ḡ = H2(G) = yξ
u and g̃ = H3(G) = hξ

v

taking u and v randomly from Zq. It follows that valid P should contain Ḡ =
ḡr = yrξ

u and G̃ = g̃r = hrξ
v. Thus, we can compute H(Ḡ1/u) = H(yrξ) = Kξ

and G̃1/v = hrξ = G′ as expected.

Theorem 2. The extended scheme provides anonymity in the presence of (n−
2,m− 1)AP-adversaries if DDHP and MFGP are intractable.

To prove the above theorem, it is sufficient to prove the following lemma.
The rest of the proof is supported by Lemma 2 and 3.

Lemma 4. If there exists an (n − 2,m− 1)AP-adversary that breaks anonymity
in our Mix-net, there exists machine that solves the MFG-MDH joint problem.

Proof (sketch) The difference of this proof from that of Lemma 1 is twofold:

– the proof-part P of the inputs from honest users has to be simulated, and
– the simulator AM has to correctly decrypt the input ciphertexts coming from

a corrupt user without knowing the private keys of the unattacked server.

For the first point, we will use the standard simulation technique for the
honest verifier public-coin zero-knowledge proofs by regarding H4 as a random
oracle.

For the second point, we exploit the plaintext awareness (PA) of the under-
lying encryption scheme. AM first computes Lm by using the PA property, and
subsequently computes Lm−1, ..., Lξ by encrypting each entry of the previous
list with the simulated public keys. AM then computes L0 to Lξ−1 by correctly
performing decryption with the simulated decryption keys. In this way, the re-
sulting Lξ−1 and Lξ have the same relation as the one in the real execution with
regard to the public key of unattacked server Mξ. ��

6 Securing against Corrupt Servers

Robustness is added following [9]. Let us briefly introduce the main idea here
and omit the details due to page restriction.

To prevent corrupt servers from behaving maliciously, we group servers in
such a way that every group contains at least one honest server, and at least one
group consists only of honest servers. Such grouping is easily formed by placing
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t+ 1 servers in each of t+ 1 groups when m = (t+ 1)2. Then, a representative
member in each group executes mix decryption and all other members are given
all private information (secret keys and random choices) used in mix decryption
and monitor its behavior. Thus malicious deviation in each group is always
detected by an honest member. Since there is at least one perfectly honest group,
the group works correctly and outputs correct result.

7 Efficiency Analysis

Here, the computational cost of our basic scheme is compared to that of [18],
which is one of the widely known schemes based on ElGamal encryption. It pro-
vides the same level of security as our basic scheme. Their scheme is summarized
as follows; Server i has private key xi and public key yi = gxi . For each ElGa-
mal ciphertext (G,M) = (gr,msg · yr) where y =

∏m
j=1 yj , server i computes

(G′,M ′) = (Ggt,Mg−xi ŷti) where ŷi =
∏m

j=i yj . In this scheme, q must be very
large so that all potential messages are in the subgroup generated by g. Hence
we assume |p| ≈ |q|. On the other hand, since our scheme needs randomness
sufficient for generating symmetric keys, |q| can be much smaller than |p|.

Table 1 shows the number of modular multiplications needed for encryption
assuming the use of the binary method for exponentiation. For double-base and
single-base exponentiation, we assume the simple table-lookup method described
in [15] which costs 7

4 |q| multiplications for a double-base exponentiation, and
3
2 |q| for a single-base exponentiation. Although user’s computation is linear in
the number of servers, for a typical setting, say |p| = 1024 and |q| = 160, our
scheme enjoys lesser computation (excl. symmetric encryption) up to 11 servers.

This advantage will be lost if one considers elliptic curve implementation
where |p| ≈ |q|. However, our scheme still saves computation if messages ex-
ceeds 160 bits as symmetric encryption is 100 to 1000 times faster than scalar
multiplication over an elliptic curve.

Scheme User Each Server

El Gamal [18] 3
2
|p| × 2 7

4
|p|+ 3

2
|p|

Ours (basic) 3
2
|q| × (m + 1) 3

2
|q| × 2

Table 1. Number of modular multiplications per message. m is number of
servers.

8 Open Problems

The resulting robust scheme still has some issues that must be resolved. First,
it is preferable to provide public verifiability so that anyone outside of the mix
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can be convinced of the output. Second, optimal resiliency should be provided.
At least, we need linear resiliency, i.e., O(m), instead of O(

√
m).

Our security proof of Lemma 1 is for the case where honest users select
messages uniformly from {0, 1}�msg . However, the users might be restricted to
choose messages from exponentially sparse space (with length �msg). In such a
case, our simulation in the proof of Lemma 1 is not suitable. That is because the
plain messages obtained by decrypting the given instance of the joint problem
are not likely to fall into the exponentially sparse space. Since we assume that
the underlying encryption scheme provides security equally for all messages, such
restriction on message space is not likely to impact security. It remains, however,
as an open problem to prove this in a formal way.
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Appendix (Proof of Lemma 2)

We first show that AM can be used to solve CDHP, or else can be used to solve
either MFGP or MDHP. Let (M0,M1,M′

bF
,M′̄

bF
) be an instance of MFGP and

(ρ,h,G0,G1,Ga
bD
,Ga

b̄D
) be an instance of MDHP. Let y := hx for x ← Zq.

The input to AM is a tuple such as : Input∗AM
:= {ρ, y,h, (M0,G0), (M1,G1),

(M′
bF
,Ga

bD
), (M′̄

bF
,Ga

b̄D
)}. Note that this may not be a correct instance of the

joint problem as bD and bF may not be the same. Now we observe the behavior of
AM given this input. Let qF be the maximum number of queries from AM to H .
Here qF is limited to a polynomial in the security parameter κ. Let Qi denote
the i-th query to H . If there exists i such that Qi = (Gax

bD
), then Gax

bD
is the

answer of CDHP [h, y,Ga
bD

] ([h, y,Ga
bD

]=[ga, gax, gar], Gax
bD

= gaxr). Similarly,
if there exists i such that Qi = (Gax

b̄D
), Gax

b̄D
is the answer of CDHP [h, y,Ga

b̄D
].

Define PDH as PDH = Pr[∃i ∈ {1, . . . , qF},∃ j ∈ {0, 1} ; Qi = (Gax
j )]. As above,

AM can be used to solve CDHP.
Next we show that AM can be used to solve either MFGP or MDHP. Sup-

pose that no such queries exist. In this case, the symmetric keys used in the
MFGP are independent of the MDHP part because of the randomness of H ; the
adversary AD makes those keys randomly without asking random oracle H . We
next consider the relation between bF and bD.
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1. The case of bF = bD.
Input∗AM

is perfectly indistinguishable from the correct input coming from

the answer of random oracleH . SoAM will output ˜̃b as ˜̃b = b with probability
(> 1

2 + µA), i.e., the same as the success probability of AXp

2. The case of bF �= bD.
In this case, the distribution of Input∗AM

is not correct.

If AM does not stop within tA, ˜̃b is randomly taken from {0, 1}. Now, define
PF and PD as follows. PF = Pr[˜̃b = bF |bF �= bD], PD = Pr[˜̃b = bD|bF �= bD].

If bF �= bD, ˜̃
b must equal to either bF or bD. Hence, PF + PD = 1.

Since both bF = bD and bF �= bD happen with probability 1
2 , we have

Pr[˜̃b = bF ] = (1− PDH){1
2

(
1
2

+ µA) +
PF
2
} = (1 − PDH){1 + 2PF

4
+
µA
2
} (1)

Pr[˜̃b = bD] = (1− PDH){1
2

(
1
2

+ µA) +
PD
2
} = (1 − PDH){1 + 2PD

4
+
µA
2
} (2)

According to equation (8), either PF or PD is not less than 1
2 . Therefore,

either Equation (1) or (2) is not negligible, or both.
The common key used in MFGP is perfectly indistinguishable from the actual

common key derived from the answer of random oracle H because it is decided
randomly. So if the answer of the CDHP is not contained among the list of queries
from AM to H , we can say that (M0,M1,M

′
b,M

′̄
b
) and (G0, G1, G

′
b, G

′̄
b
) have no

relation to each other, though they affect each other through the common key
in the actual input. Hence MFGP and MDHP are independent, and neither
provides any help in solving the other.

Based on the above observation, we construct Block T1, Block T2, Block T3
that solve CDHP, MFGP and MDHP, respectively.

[Block T1]

1. Receive CDHP instance (ρ,gα,gβ).
2. Make an MDHP instance as follows.
– Choose b1 ← {0, 1}.
– y := gα, G′

b1
:= gβ, G′̄

b1
← 〈g〉

– a← Z∗
q , g := g

1
a , h := ga, G0 := G′

0

1
a , G1 := G′

1

1
a

– ρ = (p,q, g)
3. Make an MFGP instance as Mi ←M, Ki ← K, M ′

i := DKi(Mi) for i = 0, 1.
4. Choose b← {0, 1}.
5. Choose I randomly from 1 ≤ i ≤ qF .
6. Input the following to AM .

Input′AM
= {ρ, h, y, (M0, G0), (M1, G1), (M ′

b, G
′
b), (M

′̄
b
, G′̄

b
)}

7. If AM poses query to H , return a random value chosen from key space K.
If it is the I-th query, output and stop.

Observe that the simulation is perfect only if the correct answer of CDHP
is QI , or it is not asked to H (otherwise we have answered to the query with
randomly chosen session key that may confuse AM ).
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[Block T2]

1. Receive MFGP instance (M0,M1,M′
bF
,M′̄

bF
).

2. Make an MDHP instance as follows.
– (p, q, g)← G(1κ)
– a, x← Z∗

q , y := gax, h := ga

– r0, r1 ← Z∗
q , G0 := gr0 , G1 := gr1 , G′

0 := hr0 , G′
1 := hr1

3. Choose bD ← {0, 1}. Next input the following to AM .
Input′′AM

= {ρ, h, y, (M0, G0), (M1, G1), (M′
bF
, G′

bD
), (M′̄

bF
, G′̄

bD
)}

4. For all queries from AM to H , return a random value from K.
5. Output ˜̃

b that AM outputs.

[Block T3]

1. Receive MDHP instance (ρ,h,G0,G1, Ga
bD
,Ga

b̄D
).

2. Make an MFGP instance as Mi ← M, Ki ← K, M ′
i := DKi(Mi) for i =

{0, 1}.
3. Choose bF ← {0, 1}. Next input the following to AM .

Input′′′AM
= {ρ, h, y, (M0,G0), (M1,G1), (M ′

bF
,G′

bD
), (M ′̄

bF
,G′̄

bD
)}

4. For all queries from AM to H , return a random value from K.
5. Output ˜̃b that AM outputs.

By using the above blocks, we construct AD as follows.

[Construction of AD]

1. Receive CDHP instance (ρ,gα,gβ), MFGP instance (M0,M1,M′
bF
,M′̄

bF
),

and MDHP instance (ρ,h,G0,G1,Ga
bD
,Ga

b̄D
).

2. Input each instance to the appropriate block.
3. Output the result provided by each block as the answer to the corresponding

problem.

Now we discuss the success probability of AD.

Case 1 (PDH is not negligible.)
The output from block T1 is a correct answer of CDHP if QI = G′

b′
logh y for

b′ = b1. This happens with probability PDH

2qF
which is not negligible.

Case 2 (PDH is negligible.)
If PF ≥ 1/2, from Equation (1), we have

Pr[˜̃b = bF ] = (1 − PDH){1 + 2PF
4

+
µA
2
}

≥ (
1
2

+
µA
2

)− (
1
2

+
µA
2

)PDH ≥ 1
2

+ µMFG

for some µMFG which is not negligible. Otherwise, if PDH ≥ 1/2, we have
Pr[˜̃b = bD] ≥ 1

2 +µMFG for some µMFG which is not negligible. Thus, either
MFGP or MDHP will be solved with an advantage that is not negligible. ��
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